Schmidt, Olga und Schwarz, Egbert und Krause, Detmar (2024) Oil Spill Detection on Landsat-8/9 Images Based on Deep Learning Methods. 10th International Conference on Remote Sensing and Geoinformation of Environment - RSCy2024, 2024-04-08 - 2024-04-09, Paphos, Cyprus.
PDF
3MB |
Kurzfassung
Oil pollution of seas and oceans poses a danger to human health and has a big impact on the marine environment. Oil enters the water from various sources which are of natural (47 %) and anthropogenic origin (53 %). Human-caused oil pollution is mainly linked to the progressive increase in oil production, consumption and transportation, as well as the general increase in the transportation of goods by sea. The most common cases are accidents in maritime transportation, on oil platforms or deliberate discharges of oil from ships where large amounts of oil can be released into the water during a short time. A timely and accurate oil detection can help to prevent pollution spread and support clean-up operations to minimize the negative impacts on the environment as well as to identify the polluter. Remote sensing has been proven to be effective for monitoring of large areas. This paper presents two different approaches for automated oil spill detection from multispectral satellite images based on a deep neural network (DNN) and the convolutional neural network (CNN). The presented results are based on a very small number of satellite images acquired with the optical satellites Landsat-8 and Landsat-9.
elib-URL des Eintrags: | https://elib.dlr.de/208934/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||
Titel: | Oil Spill Detection on Landsat-8/9 Images Based on Deep Learning Methods | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 2024 | ||||||||||||||||
Referierte Publikation: | Nein | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | Oil Spill Detection, Optical Remote Sensing, Deep Learning, DNN, CNN | ||||||||||||||||
Veranstaltungstitel: | 10th International Conference on Remote Sensing and Geoinformation of Environment - RSCy2024 | ||||||||||||||||
Veranstaltungsort: | Paphos, Cyprus | ||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
Veranstaltungsbeginn: | 8 April 2024 | ||||||||||||||||
Veranstaltungsende: | 9 April 2024 | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Optische Fernerkundung für sicherheitsrelevante Anwendungen | ||||||||||||||||
Standort: | Neustrelitz | ||||||||||||||||
Institute & Einrichtungen: | Deutsches Fernerkundungsdatenzentrum > Nationales Bodensegment | ||||||||||||||||
Hinterlegt von: | Schmidt, Olga | ||||||||||||||||
Hinterlegt am: | 21 Nov 2024 09:05 | ||||||||||||||||
Letzte Änderung: | 21 Nov 2024 09:05 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags