elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Oil Spill Detection on Landsat-8/9 Images Based on Deep Learning Methods

Schmidt, Olga und Schwarz, Egbert und Krause, Detmar (2024) Oil Spill Detection on Landsat-8/9 Images Based on Deep Learning Methods. 10th International Conference on Remote Sensing and Geoinformation of Environment - RSCy2024, 2024-04-08 - 2024-04-09, Paphos, Cyprus.

[img] PDF
3MB

Kurzfassung

Oil pollution of seas and oceans poses a danger to human health and has a big impact on the marine environment. Oil enters the water from various sources which are of natural (47 %) and anthropogenic origin (53 %). Human-caused oil pollution is mainly linked to the progressive increase in oil production, consumption and transportation, as well as the general increase in the transportation of goods by sea. The most common cases are accidents in maritime transportation, on oil platforms or deliberate discharges of oil from ships where large amounts of oil can be released into the water during a short time. A timely and accurate oil detection can help to prevent pollution spread and support clean-up operations to minimize the negative impacts on the environment as well as to identify the polluter. Remote sensing has been proven to be effective for monitoring of large areas. This paper presents two different approaches for automated oil spill detection from multispectral satellite images based on a deep neural network (DNN) and the convolutional neural network (CNN). The presented results are based on a very small number of satellite images acquired with the optical satellites Landsat-8 and Landsat-9.

elib-URL des Eintrags:https://elib.dlr.de/208934/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Oil Spill Detection on Landsat-8/9 Images Based on Deep Learning Methods
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Schmidt, OlgaOlga.Schmidt (at) dlr.dehttps://orcid.org/0009-0001-8290-1800NICHT SPEZIFIZIERT
Schwarz, EgbertEgbert.Schwarz (at) dlr.dehttps://orcid.org/0000-0003-2901-234XNICHT SPEZIFIZIERT
Krause, DetmarDetmar.Krause (at) dlr.dehttps://orcid.org/0009-0004-4353-4595NICHT SPEZIFIZIERT
Datum:2024
Referierte Publikation:Nein
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:veröffentlicht
Stichwörter:Oil Spill Detection, Optical Remote Sensing, Deep Learning, DNN, CNN
Veranstaltungstitel:10th International Conference on Remote Sensing and Geoinformation of Environment - RSCy2024
Veranstaltungsort:Paphos, Cyprus
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:8 April 2024
Veranstaltungsende:9 April 2024
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Optische Fernerkundung für sicherheitsrelevante Anwendungen
Standort: Neustrelitz
Institute & Einrichtungen:Deutsches Fernerkundungsdatenzentrum > Nationales Bodensegment
Hinterlegt von: Schmidt, Olga
Hinterlegt am:21 Nov 2024 09:05
Letzte Änderung:21 Nov 2024 09:05

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.