Bing, Simon und Hochsprung, Tom und Wahl, Jonas und Ninad, Urmi und Runge, Jakob (2024) Invariance & Causal Representation Learning: Prospects and Limitations. Transactions of Machine Learning Research. Transactions of Machine Learning Research (TMLR). ISSN 2835-8856.
PDF
- Verlagsversion (veröffentlichte Fassung)
406kB |
Offizielle URL: https://openreview.net/pdf?id=lpOC6s4BcM
Kurzfassung
Learning causal representations without assumptions is known to be fundamentally impossible, thus establishing the need for suitable inductive biases. At the same time, the invariance of causal mechanisms has emerged as a promising principle to address the challenge of out-of-distribution prediction which machine learning models face. In this work, we explore this invariance principle as a candidate assumption to achieve identifiability of causal representations. While invariance has been utilized for inference in settings where the causal variables are observed, theoretical insights of this principle in the context of causal representation learning are largely missing. We assay the connection between invariance and causal representation learning by establishing impossibility results which show that invariance alone is insufficient to identify latent causal variables. Together with practical considerations, we use our results to reflect generally on the commonly used notion of identifiability in causal representation learning and potential adaptations of this goal moving forward.
elib-URL des Eintrags: | https://elib.dlr.de/208744/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||
Titel: | Invariance & Causal Representation Learning: Prospects and Limitations | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | 2024 | ||||||||||||||||||||||||
Erschienen in: | Transactions of Machine Learning Research | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||
Herausgeber: |
| ||||||||||||||||||||||||
Verlag: | Transactions of Machine Learning Research (TMLR) | ||||||||||||||||||||||||
ISSN: | 2835-8856 | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | Causal Representation Learning, Invariance, Causal Inference, Latent Variables, Identifiability | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||
HGF - Programmthema: | keine Zuordnung | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | R - keine Zuordnung | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - keine Zuordnung, D - keine Zuordnung | ||||||||||||||||||||||||
Standort: | Jena | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Datenwissenschaften > Datenanalyse und -intelligenz | ||||||||||||||||||||||||
Hinterlegt von: | Hochsprung, Tom | ||||||||||||||||||||||||
Hinterlegt am: | 20 Dez 2024 10:48 | ||||||||||||||||||||||||
Letzte Änderung: | 20 Dez 2024 10:48 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags