Hochsprung, Tom und Runge, Jakob und Gerhardus, Andreas (2024) A Global Markov Property for Solutions of Stochastic Difference Equations and the corresponding Full Time Graphs. In: 40th Conference on Uncertainty in Artificial Intelligence, 244, Seiten 1698-1726. Proceedings of Machine Learning Research. Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, 2024-07-15 - 2024-07-19, Barcelona, Spanien.
PDF
480kB |
Offizielle URL: https://proceedings.mlr.press/v244/hochsprung24a.html
Kurzfassung
Structural Causal Models (SCMs) are an important tool in causal inference. They induce a graph and if the graph is acyclic, a unique observational distribution. A standard result states that in this acyclic case, the induced observational distribution satisfies a d-separation global Markov property relative to the induced graph. Time series can also be modelled like SCMs: One just interprets the stochastic difference equations that a time series solves as structural equations. However, technical problems arise when time series "start" at minus infinity. In particular, a d-separation global Markov property for time series and the corresponding infinite graphs, the so-called full time graphs, has thus far only been shown for stable vector autoregressive processes with independent finite-second-moment noise. In this paper, we prove a much more general version of this Markov property. We discuss our assumptions and study violations of them. Doing so hints at several pitfalls at the intersection of time series analysis and causal inference. Moreover, we introduce a new projection procedure for these infinite graphs which might be of independent interest.
elib-URL des Eintrags: | https://elib.dlr.de/208742/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Poster) | ||||||||||||||||
Titel: | A Global Markov Property for Solutions of Stochastic Difference Equations and the corresponding Full Time Graphs | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | Juli 2024 | ||||||||||||||||
Erschienen in: | 40th Conference on Uncertainty in Artificial Intelligence | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||
Band: | 244 | ||||||||||||||||
Seitenbereich: | Seiten 1698-1726 | ||||||||||||||||
Herausgeber: |
| ||||||||||||||||
Verlag: | Proceedings of Machine Learning Research | ||||||||||||||||
Name der Reihe: | Proceedings of Machine Learning Research | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | Markov Property, Full time graphs, Causal Inference, Conditional Independence, Time Series | ||||||||||||||||
Veranstaltungstitel: | Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence | ||||||||||||||||
Veranstaltungsort: | Barcelona, Spanien | ||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
Veranstaltungsbeginn: | 15 Juli 2024 | ||||||||||||||||
Veranstaltungsende: | 19 Juli 2024 | ||||||||||||||||
Veranstalter : | Association for Uncertainty in Artificial Intelligence (AUAI) | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Technik für Raumfahrtsysteme | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R SY - Technik für Raumfahrtsysteme | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - PLASMA [SY] | ||||||||||||||||
Standort: | Jena | ||||||||||||||||
Institute & Einrichtungen: | Institut für Datenwissenschaften > Datenanalyse und -intelligenz | ||||||||||||||||
Hinterlegt von: | Hochsprung, Tom | ||||||||||||||||
Hinterlegt am: | 20 Dez 2024 10:47 | ||||||||||||||||
Letzte Änderung: | 20 Dez 2024 10:47 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags