Quere, Gabriel und Stulp, Freek und Filliat, David und Silverio, Joao (2024) A probabilistic approach for learning and adapting shared control skills with the human in the loop. In: 2024 IEEE International Conference on Robotics and Automation, ICRA 2024, Seiten 15728-15734. IEEE. 2024 IEEE International Conference on Robotics and Automation (ICRA), 2024-05-13, Yokohama, Japan. doi: 10.1109/ICRA57147.2024.10610956. ISBN 9798350384574. ISSN 1050-4729.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Offizielle URL: https://ieeexplore.ieee.org/document/10610956
Kurzfassung
Assistive robots promise to be of great help to wheelchair users with motor impairments, for example for activities of daily living. Using shared control to provide task-specific assistance - for instance with the Shared Control Templates (SCT) framework - facilitates user control, even with low-dimensional input signals. However, designing SCTs is a laborious task requiring robotic expertise. To facilitate their design, we propose a method to learn one of their core components - active constraints - from demonstrated end-effector trajectories. We use a probabilistic model, Kernelized Movement Primitives, which additionally allows adaptation from user commands to improve the shared control skills, during both design and execution. We demonstrate that the SCTs so acquired can be successfully used to pick up an object, as well as adjusted for new environmental constraints, with our assistive robot EDAN.
elib-URL des Eintrags: | https://elib.dlr.de/208581/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||
Titel: | A probabilistic approach for learning and adapting shared control skills with the human in the loop | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 8 August 2024 | ||||||||||||||||||||
Erschienen in: | 2024 IEEE International Conference on Robotics and Automation, ICRA 2024 | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||
DOI: | 10.1109/ICRA57147.2024.10610956 | ||||||||||||||||||||
Seitenbereich: | Seiten 15728-15734 | ||||||||||||||||||||
Verlag: | IEEE | ||||||||||||||||||||
ISSN: | 1050-4729 | ||||||||||||||||||||
ISBN: | 9798350384574 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | shared control skills | ||||||||||||||||||||
Veranstaltungstitel: | 2024 IEEE International Conference on Robotics and Automation (ICRA) | ||||||||||||||||||||
Veranstaltungsort: | Yokohama, Japan | ||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
Veranstaltungsdatum: | 13 Mai 2024 | ||||||||||||||||||||
Veranstalter : | IEEE | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Robotik | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R RO - Robotik | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Medizinische Assistenzsysteme [RO] | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Robotik und Mechatronik (ab 2013) | ||||||||||||||||||||
Hinterlegt von: | Strobl, Dr.-Ing. Klaus H. | ||||||||||||||||||||
Hinterlegt am: | 14 Nov 2024 11:46 | ||||||||||||||||||||
Letzte Änderung: | 14 Nov 2024 11:46 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags