elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Robot Interaction Behavior Generation based on Social Motion Forecasting for Human-Robot Interaction

Valls Mascaró, Esteve und Yan, Yashuai und Lee, Dongheui (2024) Robot Interaction Behavior Generation based on Social Motion Forecasting for Human-Robot Interaction. In: 2024 IEEE International Conference on Robotics and Automation, ICRA 2024, Seiten 17264-17271. IEEE. 2024 IEEE International Conference on Robotics and Automation (ICRA), 2024-05-13, Yokohama, Japan. doi: 10.1109/ICRA57147.2024.10610682. ISBN 9798350384574. ISSN 1050-4729.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Offizielle URL: https://ieeexplore.ieee.org/document/10610682

Kurzfassung

Integrating robots into populated environments is a complex challenge that requires an understanding of human social dynamics. In this work, we propose to model social motion forecasting in a shared human-robot representation space, which facilitates us to synthesize robot motions that interact with humans in social scenarios despite not observing any robot in the motion training. We develop a transformer-based architecture called ECHO, which operates in the aforementioned shared space to predict the future motions of the agents encountered in social scenarios. Contrary to prior works, we reformulate the social motion problem as the refinement of the predicted individual motions based on the surrounding agents, which facilitates the training while allowing for single-motion forecasting when only one human is in the scene. We evaluate our model in multi-person and human-robot motion forecasting tasks and obtain state-of-the-art performance by a large margin while being efficient and performing in real-time. Additionally, our qualitative results showcase the effectiveness of our approach in generating human-robot interaction behaviors that can be controlled via text commands.

elib-URL des Eintrags:https://elib.dlr.de/208537/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Robot Interaction Behavior Generation based on Social Motion Forecasting for Human-Robot Interaction
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Valls Mascaró, EsteveTU Wienhttps://orcid.org/0000-0003-4195-8672NICHT SPEZIFIZIERT
Yan, YashuaiTU WienNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Lee, DongheuiDongheui.Lee (at) dlr.dehttps://orcid.org/0000-0003-1897-7664NICHT SPEZIFIZIERT
Datum:8 August 2024
Erschienen in:2024 IEEE International Conference on Robotics and Automation, ICRA 2024
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Nein
DOI:10.1109/ICRA57147.2024.10610682
Seitenbereich:Seiten 17264-17271
Verlag:IEEE
ISSN:1050-4729
ISBN:9798350384574
Status:veröffentlicht
Stichwörter:human-robot interaction
Veranstaltungstitel:2024 IEEE International Conference on Robotics and Automation (ICRA)
Veranstaltungsort:Yokohama, Japan
Veranstaltungsart:internationale Konferenz
Veranstaltungsdatum:13 Mai 2024
Veranstalter :IEEE
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Robotik
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R RO - Robotik
DLR - Teilgebiet (Projekt, Vorhaben):R - Intuitive Mensch-Roboter Schnittstelle [RO], R - Autonome, lernende Roboter [RO]
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Robotik und Mechatronik (ab 2013)
Hinterlegt von: Strobl, Dr.-Ing. Klaus H.
Hinterlegt am:14 Nov 2024 11:41
Letzte Änderung:14 Nov 2024 11:41

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.