elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Hybrid Motion Planner for a Multi-Armed Robot Performing On-orbit Loco-manipulation Tasks

Rodriguez Brena, Ismael Valentin und Quintero, Sergio und Lutze, Jean-Pascal und Lehner, Peter und Roa Garzon, Máximo Alejandro (2024) Hybrid Motion Planner for a Multi-Armed Robot Performing On-orbit Loco-manipulation Tasks. In: 2024 IEEE Aerospace Conference, AERO 2024, Seiten 1-9. IEEE. 2024 IEEE Aerospace Conference, 2024-03-02, Big Sky, MT, USA. doi: 10.1109/AERO58975.2024.10521183. ISBN 979-835030462-6. ISSN 1095-323X.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Offizielle URL: https://ieeexplore.ieee.org/abstract/document/10521183

Kurzfassung

Large space infrastructure is gaining increasing attention in recent years, including e.g. solar power plants in space or space stations. However, these structures normally are not sent in one piece due to current launch vehicles' size and load capacity limitations. An alternative is to send individual components and subassemblies and perform the final assembly of structures in orbit, mainly using robotic manipulators that execute simple manipulation tasks. However, fixed manipulator systems have limited reachability; therefore, new approaches are required to endow robotic systems with extended mobility and enhanced versatility.Several European projects have developed initial prototypes of robotic systems that could execute On-orbit services. In the MOSAR project, a 7 degrees of freedom (DoF) Walking Manipulator (WM) robot performed locomotion and manipulation (loco-manipulation) tasks for the assembly of modular satellites. In this project, the robot and the modules of the satellite were equipped with Standard Interconnects (SI), which provide mechanical, power, and data connectivity for the different components and also enable a straightforward way for their manipulation using a suitable SI as a robotic end effector. A ground scenario was developed to evaluate the system under laboratory conditions. To enhance the reachability and mobility of the WM, the project MIRROR, funded by ESA, pursued the development of a Multi-Armed Robot (MAR) capable of executing loco-manipulation tasks to assemble modular space structures. This system consists of three robotic subsystems, two 7-DoF arms attached to a torso with an extra DoF on its base.This paper presents a hybrid motion planner for generating trajectories for loco-manipulation tasks using the MAR system. The developed hybrid planner combines a high-level layer that determines the necessary contact states between the robot and the structure, and a low-level layer that plans the joint trajectories among contiguous contact states. The high-level planner implements task-dependent heuristics and a depth-first search approach to reduce the search time for possible contact states. The low-level layer implements an optimization-based motion planner, in particular the Stochastic Trajectory Optimization for Motion Planning (STOMP). Using an optimization-based approach reduces the random component associated typically with sampling-based motion planners, thus generating as well smoother trajectories. STOMP used as objective function the minimization of joint torques required for executing the different tasks. The performance of the MAR system is evaluated in simulation and on a ground demonstration scenario that simulates the assembly of a modular primary mirror of a space telescope, demonstrating different tasks, including robotic locomotion and manipulation of the mirror parts.

elib-URL des Eintrags:https://elib.dlr.de/208503/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Hybrid Motion Planner for a Multi-Armed Robot Performing On-orbit Loco-manipulation Tasks
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Rodriguez Brena, Ismael ValentinIsmael.RodriguezBrena (at) dlr.dehttps://orcid.org/0000-0002-2310-9186NICHT SPEZIFIZIERT
Quintero, SergioNICHT SPEZIFIZIERTNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Lutze, Jean-PascalJean-Pascal.Lutze (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Lehner, PeterPeter.Lehner (at) dlr.dehttps://orcid.org/0000-0002-3755-1186171570857
Roa Garzon, Máximo AlejandroMaximo.Roa (at) dlr.dehttps://orcid.org/0000-0003-1708-4223NICHT SPEZIFIZIERT
Datum:13 Mai 2024
Erschienen in:2024 IEEE Aerospace Conference, AERO 2024
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Nein
DOI:10.1109/AERO58975.2024.10521183
Seitenbereich:Seiten 1-9
Verlag:IEEE
ISSN:1095-323X
ISBN:979-835030462-6
Status:veröffentlicht
Stichwörter:on-orbit loco-manipulation
Veranstaltungstitel:2024 IEEE Aerospace Conference
Veranstaltungsort:Big Sky, MT, USA
Veranstaltungsart:internationale Konferenz
Veranstaltungsdatum:2 März 2024
Veranstalter :IEEE
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Robotik
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R RO - Robotik
DLR - Teilgebiet (Projekt, Vorhaben):R - On-Orbit Servicing [RO]
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Robotik und Mechatronik (ab 2013) > Autonomie und Fernprogrammierung
Hinterlegt von: Strobl, Dr. Klaus H.
Hinterlegt am:13 Nov 2024 09:51
Letzte Änderung:13 Nov 2024 09:51

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.