elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Omnidirectional endpoint force control through functional electrical stimulation

Sierotowicz, Marek und Castellini, Claudio (2023) Omnidirectional endpoint force control through functional electrical stimulation. Biomedical Physics & Engineering Express, 9 (6), 065008. Institute of Physics Publishing. doi: 10.1088/2057-1976/acf04b. ISSN 2057-1976.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
1MB

Offizielle URL: https://iopscience.iop.org/article/10.1088/2057-1976/acf04b

Kurzfassung

Objective. In recent years, Functional Electrical Stimulation has found many applications both within and outside the medical field. However, most available wearable FES devices are not easily adaptable to different users, and most setups rely on task-specific control schemes. Approach. In this article, we present a peripheral stimulation prototype featuring a compressive jacket which allows to easily modify the electrode arrangement to better fit any body frame. Coupled with a suitable control system, this device can induce the output of arbitrary forces at the end-effector, which is the basis to facilitate universal, task-independent impedance control of the human limbs. Here, the device is validated by having it provide stimulation currents that should induce a desired force output. The forces exerted by the user as a result of stimulation are measured through a 6-axis force-torque sensor, and compared to the desired forces. Furthermore, here we present the offline analysis of a regression algorithm, trained on the data acquired during the aforementioned validation, which is able to reliably predict the force output based on the stimulation currents. Main results. Open-loop control of the output force is possible with correlation coefficients between commanded and measured force output direction up to 0.88. A twitch-based calibration procedure shows significant reduction of the RMS error in the online control. The regression algorithm trained offline is able to predict the force output given the injected stimulation with correlations up to 0.94, and average normalized errors of 0.12 RMS. Significance. A reliable force output control through FES is the first basis towards higher-level FES force controls. This could eventually provide full, general-purpose control of the human neuromuscular system, which would allow to induce any desired movement in the peri-personal space in individuals affected by e.g. spinal cord injury.

elib-URL des Eintrags:https://elib.dlr.de/208466/
Dokumentart:Zeitschriftenbeitrag
Titel:Omnidirectional endpoint force control through functional electrical stimulation
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Sierotowicz, MarekMarek.Sierotowicz (at) dlr.dehttps://orcid.org/0000-0001-8040-6438NICHT SPEZIFIZIERT
Castellini, ClaudioClaudio.Castellini (at) dlr.dehttps://orcid.org/0000-0002-7346-2180171567653
Datum:13 September 2023
Erschienen in:Biomedical Physics & Engineering Express
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:9
DOI:10.1088/2057-1976/acf04b
Seitenbereich:065008
Verlag:Institute of Physics Publishing
ISSN:2057-1976
Status:veröffentlicht
Stichwörter:functional electrical stimulation
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Robotik
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R RO - Robotik
DLR - Teilgebiet (Projekt, Vorhaben):R - Intuitive Mensch-Roboter Schnittstelle [RO]
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Robotik und Mechatronik (ab 2013)
Hinterlegt von: Strobl, Dr. Klaus H.
Hinterlegt am:13 Nov 2024 08:56
Letzte Änderung:13 Nov 2024 08:56

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.