Röhrig-Zöllner, Melven (2024) Performance of linear solvers in tensor-train format on current multi-core architectures. NHR PerfLab Seminar Series, 2024-02-27, Erlangen, Deutschland.
PDF
1MB |
Offizielle URL: https://hpc.fau.de/2024/02/22/nhr-perflab-seminar-performance-of-linear-solvers-in-tensor-train-format-on-current-multicore-architectures
Kurzfassung
This talk discusses the node-level performance of numerical algorithms for handling high-dimensional problems in a compressed tensor format. It focusses on two problems in particular: (1) approximating large (dense) data (lossy compression) and (2) solving linear systems, both in the tensor-train / matrix-product states format. For both problems, we optimize the required underlying linear algebra operations, respectively the mapping of the high-level algorithm to (potentially less accurate) lower-level operations. In particular, we suggest improvements for costly orthogonalization and truncation steps based on a high-performance implementation of a "Q-less" tall-skinny QR decomposition. Further optimizations for solving linear systems include memory layout optimizations for faster tensor contractions and a simple generic preconditioner. We show performance results on today's multi-core CPUs where we obtain a speedup of up ~50x over the reference implementation for the lossy compression, and up to ~5x for solving linear systems.
elib-URL des Eintrags: | https://elib.dlr.de/208208/ | ||||||||
---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||
Titel: | Performance of linear solvers in tensor-train format on current multi-core architectures | ||||||||
Autoren: |
| ||||||||
Datum: | 27 Februar 2024 | ||||||||
Referierte Publikation: | Nein | ||||||||
Open Access: | Ja | ||||||||
Gold Open Access: | Nein | ||||||||
In SCOPUS: | Nein | ||||||||
In ISI Web of Science: | Nein | ||||||||
Status: | veröffentlicht | ||||||||
Stichwörter: | tensor-networks, matrix-product states, tensor-train, linear solvers, performance-engineering | ||||||||
Veranstaltungstitel: | NHR PerfLab Seminar Series | ||||||||
Veranstaltungsort: | Erlangen, Deutschland | ||||||||
Veranstaltungsart: | Andere | ||||||||
Veranstaltungsdatum: | 27 Februar 2024 | ||||||||
Veranstalter : | Erlangen National High Performance Computing Center (NHR@FAU) | ||||||||
HGF - Forschungsbereich: | keine Zuordnung | ||||||||
HGF - Programm: | keine Zuordnung | ||||||||
HGF - Programmthema: | keine Zuordnung | ||||||||
DLR - Schwerpunkt: | Quantencomputing-Initiative | ||||||||
DLR - Forschungsgebiet: | QC AW - Anwendungen | ||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | QC - QuTeNet | ||||||||
Standort: | Köln-Porz | ||||||||
Institute & Einrichtungen: | Institut für Softwaretechnologie Institut für Softwaretechnologie > High-Performance Computing | ||||||||
Hinterlegt von: | Röhrig-Zöllner, Melven | ||||||||
Hinterlegt am: | 11 Nov 2024 12:00 | ||||||||
Letzte Änderung: | 11 Nov 2024 12:00 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags