Introduction High-level tensor algorithms Underlying building blocks Conclusion
00000000 00000 0000000000 [e]e]

Performance of linear solvers in tensor-train format on current
multi-core architectures

Melven Réhrig-Zéliner
Institute for Software Technology, German Aerospace Center (DLR)

February 27, 2024

DLR

Introduction High-level tensor algorithms Underlying building blocks Conclusion
0000000 00000 0000000000 [e]e)

Goal

Show performance of mapping tensor algorithms onto linear algebra building blocks

Based on 2 examples. ..
Related talk: Paolo Bientinesi: The Linear Algebra Mapping Problem and how programming languages solve it

https://www.youtube.com/watch?v=PDAcuw1oQNs

Introduction High-level tensor algorithms
O@000000 00000

Problem definitions

Approx. large data with low-rank tensor
Given:
> dense tensor X € R™M XM Xng

P desired tolerance € or max. rank rmax

Calculate:

» Low-rank approximation Xt1 with
X = XrrllF < €t
or

Xrr ~ X, withrank(X77) < fmax

Underlying building blocks Conclusion
0000000000 [e]e)

Solve linear system in low-rank tensor format
Given:

. d d
» low-rank linear operator Att : R” — R"

» low-rank right-hand side Btt € R

» desired tolerance €

Calculate:
> iterative solution X1 with

lATT X7 = Br1ll+ < €t

for some suitable norm || - ||«

Introduction High-level tensor algorithms Underlying building blocks Conclusion
[e]e] lelelele]e] 00000 0000000000 [e]e]

Tensor-train format

m ng ns ny ns

» Known as MPS (matrix-product states) in physics. | | | | |

» Defined by series of 3d tensors

(tensor-network notation)
Xy, , Xg, with X € R0k rg = rg =1

with ranks (bond-dimensions) r1,. .., rgy—1 and dimensions nq, ... ny.
» Approximates a high-dim. tensor X € RMXMX-"XNd jth

XTT ::X1><X2><'--><Xd

where - X - is the contraction: X; X Xj;11 := Ek(X")i#vk(XHl)k € Rfi—1XNXnip1Xrig1

BN

> with a “TT-rank” of r := max(ri,..., r4—1)

i DLR

Introduction High-level tensor algorithms Underlying building blocks Conclusion
00080000 00000 0000000000 [e]e)

Tensor-train operator

. . . n n n n n
» Known as MPO (matrix-product operator) in physics. 1 2 3 4 5

. . n n n n n
» Defined by series of 4d tensors 1 2 3 4 5

(tensor-network notation)
A1, ,Aq, with Ay € RrOF’vk*I’n“’nk’rol’vk7 rop,0 = op,d = 1

with ranks rop 1, .., fop,d—1 and dimensions ny X ny,...,ng X nq.

> Provides the high-dim. linear operator Aty € R(mXm)x(nxn2)x--x(ngxng) with
-ATT :=A1 ><A2 ><~“><Ad

In the following, we simply use ny = --- = ng = n.

i DLR

Introduction High-level tensor algorithms Underlying building blocks Conclusion
00008000 00000 0000000000

Tensor network notation

Helpful notation from physics to illustrate linear algebra operations in higher dimensions:
scalar vector matrix 3d tensor 4d tensor

Contractions:

oo o0 oo

dot-product matrix-vector product matrix-matrix product contraction of 4d and 3d tensors

Orthogonalities and decompositions:

D 00 —Cl+ alag Do

vTv=1 QT Q=/ usvT

S)/ i

Introduction High-level tensor algorithms Underlying building blocks
00000800 00000 0000000000

Tensor unfoldings and orthogonalities

Unfolding a 3d tensor T € R":""" (“matrification”):

> “left-unfolding” combines first two dimensions:

Tieft := reshape(T, rn, r,) € R}
> ‘“right-unfolding” combines last two dimensions:

Tright 1= reshape(T,r, nry) € R Xnrr

Orthogonality of a 3d tensor:

> T is “left-orthogonal” if its left-unfolding has orthonormal columns:

(T

left

T\eft =le Rr,><rr)
> T is “right-orthogonal” if its right-unfolding has orthonormal rows:

(Tright Tright =leRx r,)

i DLR

Conclusion
[e]e]

Introduction High-level tensor algorithms Underlying building blocks Conclusion
00000080 00000 0000000000 [e]e)

Relation between tensor-trains and 2d SVDs

Remark: tensor-train invariant wrt. multiplying with a matrix and its inverse (M € R™*"k):

Xpp = Xe X oo X (X X M) X (M7 X Xpy1) X o+ X Xg = X771

So we can left-orthogonalize Xj then X, ..., up to X,_1:
X{ = X1 x R}, X3 = Ri X Xa, with Xq jeft = Q1R
Xy = X5 x Ry %, X5 = Ry x X3, with X} ¢ = QaR;

And similarly right-orthogonalize Xy to sub-tensor Xi...with an SVD in the last step:

X! =X x Uk, X/ =Vl x X/, with Xei1,right = Ukr1SVy(1
Resulting in (for k = 3): m ny n3 ny ns
u S vT

i DLR

Introduction High-level tensor algorithms
O000000e 00000

Underlying building blocks Conclusion
0000000000 [e]e)

Performance of required dense linear algebra operations (on my machine. . .)

Matrix-matrix product (GEMM)
C « A B
(nx k) (nxm)(mx k)

Costs: 2nmk flop, (nk + nm + mk) data transfers
compute-bound for min(n, m, k) > 100
memory-bound for min(n, m, k) < 100

(Pivoted) QR decomposition
AP = QR,

with QT Q =/, R upper triangular, n > m.

Costs: 2nm? — 2/3m3 flop, 2nm + 1/2m? data transfers
memory-bound for m < 100 — tall-skinny QR (TSQR)

Singular value decomposition (SVD)
A=USVT,

with UTU =1, VTV = I, S = diag(o1, ..., 0/).
Costs: > 7nm? flop, > 2nm + m? data transfers

In practice: tsyp > tqr > tgemm for similar dimensions

Introduction High-level tensor algorithms Underlying building blocks Conclusion
00000000 @0000 0000000000 [e]e)

Problem 1 — approximate large data with low-rank: TT-SVD

Idea Algorithm [Oseledets, 2011]

» Based on successive SVDs for each dimension. Input: Tensor X
» Truncated right-singular vectors become next fori=1,...,d —1do
sub-tensor. Reshape X to (Hk:i+1,d nk) X (nri—1)

Calculate SVD: USVT = X

Remarks)
Choose truncation rank r;
> Large matrices are tall and skinny (e.g., n~1 x n). T; + V|, reshape to ri_1 X nj X r;
! -
» Size of X (ideally) decreases in each step. X + Uy S1
. for
» Cheap operations are grayed out. end
pop eray T4 < X, reshape to (rg—1 X ng x 1)
Output: Tensor-train (T1,..., Ty)

5

Introduction High-level tensor algorithms
00000000 ©O@000

Problem 2 — solve linear systems: TT-AMEn

Idea

> Alternating least-squares (ALS):
"optimize” one sub-tensor at a time
sweep left-right until convergence

> Orthogonalize all other sub-tensors
= projection onto smaller problem

» Enrich subspace by a few directions of the residual

Remarks
> iterative solver (GMRES, CG) for small problems

» Subspace enrichment needed to adapt ranks
(for unknown solution rank)

» Complex algorithm with lots of different operations

o i/ @

Underlying building blocks Conclusion
0000000000 [e]e]

Algorithm [Dolgov, 2014]

Input: Operator Att, RHS By, initial guess Xyr
Right-orthogonalize Xy, ..., X>
while not converged do
fori=1,...,d—1do
Viefe := (X1, -+, Xi—1), Viight = (Xit1,. .-, Xq)
V= Vleft ®1I® Vright
Approx. solve (VT ArtV)y = VT Brr
Left-orthogonalize X; < y
Update (Xj, Xj1+1) to enrich subspace
(adds directions to X; and zeros to Xit1)
end for
fori=d,...,2do
Same as above but right-to-left
end for
end while
Qutput: Approx. solution XtT

Introduction High-level tensor algorithms Underlying building blocks Conclusion
00000000 [sle] lele] 0000000000 [e]e)

Problem 2 — solve linear systems: projection onto small problem

Idea: minimize energy J(u) := 1(u, Au) — (u, b) for (X;)

Properties:
p_ _Q Q_ > Viy=1|
> Vy = X7
— —— * — —_— For spd operator A:
> minimizes || X7T — X{1[l.a
> cond(VT.AV) < cond(A)
Alternative for non-symmetric A:
WwTAVy = WT A,
v A v y = v Brr

e.g., with WTW = [and WC ~ AV.

i DLR

Introduction High-level tensor algorithms Underlying building blocks Conclusion
00000000 [sle]e] le} 0000000000 [e]e)

Problem 2 — solve linear systems: TT-AMEn subspace enrichment

Idea: directions from steepest descent step for minimizing J(u)

Basis enrichment (for left-to-right sweep):
1. With V := Vet ® | @ Vyight, calculate

Zrr = Vil (Brr — ArrXrr)

2. Right-orthogonlize Z71
3. Add leading ryqq directions of Z; to X;:

X. .
(Xi)tefe ((Xi)left (Zl):,lzradd) , (Xis1)right < <('+(1J)"ght)
= Increases rank by r,qq in each sweep

Remark: this “full” variant needs another costly SVD, cheaper updates for approximating of ZtT possible

4#7 s
DLR ;

Introduction High-level tensor algorithms Underlying building blocks Conclusion
00000000 [slefele]) 0000000000 [e]e)

Problem 2 — solve linear systems: TT-rankl preconditioner

Idea:
> Approximate TT operator with rank-1 TT operator: Art ~ AtT, rank(.ﬂ-r-r) =1

» Rank-1 inverse is then: (/Tl bR ® A~d) - /5171 ® A~271 R --Q® A"dil
Two-sided preconditioner (for symm. problems E.}_—T =Rr17):
LrrArTRYT =~ |
using the SVDs A, = U, SV,
_1 _1
Ly=S, U], Rk := V4S, 2

= Reduces the condition number without increasing the rank of the operator

Introduction High-level tensor algorithms
00000000 00000

Underlying building blocks: TT-SVD

Required operation
For X € R"™*™ n>> m, we need:
IX = BQT|lF <7
X1 < reshape(B,...)
X + QT

Standard: truncated SVD
UsvT ~ X,
X1+ US,
Xp+ VT,

X{ + reshape(Xi,...)

Costs: > 7nm? flop, > 2n(m + r) data transfers

Underlying building blocks Conclusion
@000000000 (e]e}

Optimized: Q-less TSQR & TSMM+-reshape
QR =X,
UsvT ~ R,
X1 < reshape(XV,...),
Xo VT

Costs: 2nm(m + r) flop, 2n(m + r) data transfers

Introduction
00000000

TT-SVD performance results [Rohrig-Z6lIner, 2022]

High-level tensor algorithms
00000

Underlying building blocks Conclusion
O@00000000 [e]e]

Further “tricks”

» Combine dimensions to increase
compute intensity

100

» Add padding to avoid bad strides
(multiples of 2% — cache thrashing) 10

Setup & results

time [s]

|

» Decompose random 227 tensor
» Data size: 1GB

» 14-core Intel Skylake Gold 6132
— Existing software: >50x slower
>

0.1

Much closer to roofline performance
(N :=ninz---ny)

2'2N/bs,load

t3f (Eigen::BDCSVD) ——
TensorToolbox (MKL dgesvd) ————
tntorch (MKL dgeqrf) ——

simple numpy (MKL dgesdd)
ttpy (MKL dgesvd)
TSQR TT-SVD

12 Nrmax/ Ppeak

» tntorch first constructs a full-rank TT,
then truncates it.

i DLR

10 15 20 25 30 35 40 45 50

max. rank

Introduction High-level tensor algorithms Underlying building blocks Conclusion
00000000 00000 00®@0000000 oo

Underlying building blocks: orthogonalization in linear solvers

Required operation

For X := X1 X5, we need:
(with X3 € R™™, X, € R™*K, m <« n = k)

QB = X; (rank-revealing)

X{=Q
X} = BX;
Standard: pivoted QR Optimized: Q-less (TS)QR:
R = X1 P
Q) 17, QR = X, P
X1 =Q, / -1
Xi = X1PR (backward subst.)
X3 = RPTX, , -
X, = RPT X,
Costs: 5nm? flop, 6nm data transfers Costs: 4nm? flop, 5nm data transfers
But X] inaccurate for cond(R) > 1 = track errors

oy ‘l

S Y/ i

High-level tensor algorithms

Introduction
00000

00000000

Conclusion

Underlying building blocks
[e]e]

0008000000

Underlying building blocks: exploiting pre-existing orthogonalities

Setting: TT-axpby
(e.g., needed for residual Bt — At X71T)

Irr=aX71+B8Yrr =L X D2 X - X Zy
with
(Zr: = (K1 (YOu),
N (COINE 0 C i _
(Z).j,: = (0 (Yi).. NV, i=2,...,d—1,

@0 = (500

Then orthogonalize Zt.

i DLR

Idea: X; usually already left-/right-orthogonal

= blocks in Z; already orthogonal.
Assuming left-orthogonal X+, calculate

QR = (I-X:XT)Y;:

in each step i =2,...,d — 1 with

_ | > M;_1
/ 0 ! left ! Rj—1 g left

Introduction High-level tensor algorithms Underlying building blocks Conclusion
00000000 00000 0000@00000 oo

Underlying building blocks: truncation in linear solvers

Required operation
For X = X1 X5 with X2TX2 = I, we need:
(with X1 € R™™, X, € R™K m < n= k)

IX1 — @Bllr <7

X[=Q
Xy = BXa
Standard: truncated SVD Optimized: Q-less (TS)QR + SVD
UsvT = Xy QR=X;, USVT =R
X« U X] = X, Vs~1
XQI — SVTX2 X2/ — SVTX2
Costs: > 7nm? + 2nmr flop, > 2n(m+ r) data transfers Costs: 2nm? + 4nmr flop, nm + 2n(m + r) transfers

As before: X] less accurate in “unimportant” directions

Introduction
00000000

High-level tensor algorithms
00000

Truncated TT-axpby performance

Setup & results

» Add 2 tensor-trains (Xt1, X7T) of dim.
5010,
TT-rank rx = 50, varying ry

» both XtT, Xy1 previously
left-orthogonal

» 64-core AMD EPYC 7773X
(“Zen 3 V-Cache”)

» Operations needed for Byt — A1t X717
— Roughly 4x speedup

time [s]

16

14

12

10

Underlying building blocks
0000080000 [e]e]

T T T
standard

I
with TSQR ———

TSQR+reusing orthog.
SVD-sweep (no TSQR)
SVD-sweep (with TSQR) --------

100 200 300 400 500 600 700

TT-rank (ry)

Conclusion

Introduction High-level tensor algorithms Underlying building blocks Conclusion
00000000 00000 0000008000 [e]e)

Underlying building blocks: tensor contractions

Required operations Optimizations
» Most costly part of inner solver (GMRES): > Reorder array dimensions
Apply TT operator to dense array — combine several small dimensions
» Easily sub-optimal array accesses (cache thrashing) > Padding (first dim.) to avoid bad strides

» Required contractions:
(with e.g. Ay € R™OpX"X1X10p)

(Zl):,:,:,: <~ Z(A3):,:,ixz,:,i
22,,,<—Z(A2,,,121;,,,: _>
i Z(Al i (22))5,

A1,A2,A3) X =y

EDLR / e

Introduction High-level tensor algorithms
00000000 00000

Tensor contractions performance

Setup & results

» Operator dimension r x 50 X r

» 64-core AMD EPYC 7773X
(“Zen 3 V-Cache”)

» Comparison to 3 GEMMS of similar
dimensions

Remark

» Uses loop-over-GEMM with MKL
GEMM

» More sophisticated implement. possible
([Springer 2018], no maintained library
available?)

i DLR

Performance [GFlop/s]

4000

3500

3000

2500

2000

1500

1000

500

Underlying building blocks Conclusion
O000000e00 [e]e]

T T T
— optimized (MKL only)

optimized (Eigen+MKL)
— standard (MKL only)
standard (Eigen+MKL)

3 GEMMs
-]
- MN',,,,A\M\,-W"‘“’ [

0 100 200 300 400 500 600 700

First/last Op. dimension (r)

Introduction High-level tensor algorithms Underlying building blocks Conclusion
00000000 00000 0000000080 [e]e]

Complete TT-AMEn performance [Réhrig-Zéliner, 2023]

approx. solution rank approx. solution rank

70 140 210 280 350 420 490 560 630 700 70 140 210 280 350 420 490 560 630 700
600 T T T T T T 1 300 T T T T T T 1
standard ——— ttpy (ALS variant) —e——o
500 — opt. axpby. —&— 250 — standard ——+—

opt. axpby/QB ——— opt. QB ——
opt. axpby/QB/apply opt. QB/apply

400 200

o o
300 150 +
£ 2
= =1
200 100
-
100 50 i
0 0
5 10 15 20 25 30 35 40 45 50 5 10 15 20 25 30 35 40 45 50
RHS rank RHS rank

5010 conv.-diff. operator, random RHS, dashed lines with TT-rankl preconditioner, AMD EPYC 7773X
left: “full” SVD variant, right: ALS/simplified variant
E DLR

Introduction High-level tensor algorithms Underlying building blocks Conclusion
00000000 00000 000000000 e [e]e)

Background: self-implemented kernels

Unfortunately, optimizations need some “non-standard” operations. . .

Q-less (tall-skinny) QR Memory-bound (fused) operations
» Never stores Q » Just to optimize mem.-accesses
> Implementation based on [Demmel, 2012] (same distribution on cores for each call)
» First parallelize over blocks of rows > Fused dense axpy+-dot, axpy-+norm, tall-skinny
. . GEMM (TSMM) + reshape
» Reduction parallelized over columns

» In-place triangular solve for very

Background: e.g., n/64 X m not so tall-skinny
rectangular/tall-skinny matrices

v

Recursive blocking over columns

i DLR

Introduction High-level tensor algorithms Underlying building blocks Conclusion
00000000 00000 0000000000 [Je]

Tensor operations mapping problem

Optimization steps
1. Reformulate tensor algorithm: actually required operations (often # standard LAPACK operations)
. Consider special properties/requirements: e.g., pre-existing orthogonalities, block-structure

. Map required operations onto suitable building blocks

~ W N

. Optimize data layout: rearrange dimensions & padding
(really crucial: e.g. if n mutliple of 4, unpadded n? leads to bad strides)

5. Implement required “non-standard” kernels (like e.g., Q-less QR)

— High speedups possible! (as illustrated)

Unfortunately, | don't see a generic/automated approach here (except for domain-specific algorithms)

5

Introduction High-level tensor algorithms Underlying building blocks Conclusion
00000000 00000 0000000000

Conclusion

Summary

» Optimized tensor-train/MPS decomposition (TT-SVD): ~ 50X speedup
» Optimized tensor-train/MPS linear solver: ~ 5x speedup

> Key ingredient: mapping of tensor algorithm onto (very) “rectangular” matrix operations

Possible next steps

» Other tensor-train/MPS algorithms (similar “rectangular” operations for n; > 2)

» Extension to tree tensor-networks

0000000

Literature

Roéhrig-Zéliner; Thies & Basermann: “Performance of the Low-Rank TT-SVD for Large Dense Tensors on
Modern MultiCore CPUs”, SISC, 2022

Roéhrig-Zéliner; Becklas; Thies & Basermann: “Performance of linear solvers in tensor-train format on
current multicore architectures”, submitted to SISC, 2023

Oseledets: “Tensor-Train Decomposition”, SISC, 2011

Dolgov & Savostyanov: “Alternating Minimal Energy Methods for Linear Systems in Higher Dimensions”,
SISC, 2014

Demmel et.al.: “Communication-optimal Parallel and Sequential QR and LU Factorizations”, SISC, 2012

Williams et.al.: “Roofline: An Insightful Visual Performance Model for Multicore Architectures”, Comm. of
the ACM, 2009

Anderson et.al.: “"LAPACK Users’ Guide"”, SIAM, 1999

Springer & Bientinesi: “Design of a High-Performance GEMM-like Tensor-Tensor Multiplication”, ACM
TOMS, 2018

O®@00000

TT-AMEn: alternative projection for non-symmetric systems

1600 T T T T T T T T T T T T
1400
»
2
£ 1200
@
g
{1000
(%]
Setup: & 800
» TT-AMEn with inner GMRES 3
. 5 600 [—
> varying asymmetry 2
f 400 standard (VT AV)
. . 2 B non-symmetric (W7 AV) 7]
Observations: (work-in-progress!) 2
] . . O 200 precond. standard — — _|
> alternative projection beneficial for strongly precond. non-symmetric — —
non-symmetric problems 0 vl vl L1

1 10 100 1000

convection to diffusion ratio

! Inner iterations for a 2
DLR

010

conv.-diff. problem with RHS ones.

[e]e] lelelele)

TT-SVD: Building blocks (TSQR and TSMM-+-reshape)

T L B R T T T T
120 120 —
bs, stream_mem
100 100
o W
v v
s 80 s 80
o0 m
9, o,
% 60 f: 60
2 3
2 2
8 40 S 40
20 20 TSMM-+-reshape
MKL dgemm
0 1 1 IIIIIII ‘I‘I'—'—I-&III 0 1 IIIIIII 1 1 IIIIIII 1 1 1 11111
1 10 100 10 100 1000
#columns #columns

((~ 25 - 10°%) x m matrix in double-precision (0.2m GB); 16-core Intel Cascadelake Gold 6242.)

&

Comparison of methods: overview

000@e000

method idea properties/problems
GMRES global,
TT-GMRES adaptive truncation tolerance large intermediate ranks
TT-ALS projection onto Xj, predefined rank,

(alternating least squares)

TT-MALS
(modified ALS)

TT-AMEn
(alternating minimal energy)

Riemannian optimization
methods

solve for k =1,...,d

projection onto (Xi X Xk+1),
solve for k=1,...,d —1

ALS + enrich basis

fixed rank — smooth submanifold,
search direction in tangent space

stuck in local minima

rank-adaptive,
larger local problem

rank-adaptive

global, needs
special preconditioner

Riemannian optimization not further discussed here (but promising for some applications!)

i DLR

a——

e,

0000800

Comparison of methods: results for varying dimension n

5000 | | |]
4500 [AMEn —— 101
w MALS with TT-GMRES ——s—
S 4000 |- -
9 MALS with GMRES
S 3500 TT-GMRES ' 1012
=
jf 3000 o
L o
£ 2500 ST
v
v} 2 AMEn
—~ 2000 2)
5 MALS with TT-GMRES ——s—
£ 1500 108 MALS with GMRES ~—#— g
T 1000 TT-GMRES —&—]
2 1 ; . AMEn (sparse TT-Op)
500 = 7 10 QTT MALS with GMRES —e— &
0 = | | | | | 3
2010 4010 6010 8010 10010 2010 4010 6010 8010 10010
dimension dimension

(Conv.-diff. problem with RHS ones and conv.-diff. ratio n/2. Dotted line with TT-rank1-preconditioner.)

4#7 s

0000080

Comparison of methods: results for varying #dimensions d

T T T 1o
1400 — AMEn ——— — "
" MALS with TT-GMRES ——— 10
c —_—
o 1200 - MALS with GMRES =~ —— m B T
8 TT-GMRES —&— 5
£ 1000
H* 101!
£ % -, — — —X— — — ¥ - — =
& 800 [10 -]
g -1 -
o 3 3
- 600) . : :]
c b ol =
£ 3
< 400 | 108 AMEn —+— 7
= MALS with TT-GMRES —— J
2 500 1 w0 L MALS with GMRES ———
E TT-GMRES —&— 3
0 106 C | | |]
200 208 2010 2012 2014 200 208 2010 2012 20t
dimension dimension

(Conv.-diff. problem with RHS ones and conv.-diff. ratio 10. Dotted line with TT-rankl-preconditioner.)

000000e

Comparison of methods: results for varying rank rg (and rx)

total (inner) GMRES #iterations

2000

1500

1000

500

T T T 1o
AMEn —— "
MALS with TT-GMRES —— 10
MALS with GMRES —— r 102
TT-GMRES
10*
o
9
L om0
3
]
10°
AMEn
108 .
MALS with TT-GMRES
107 MALS with GMRES ——%—
TT-GMRES —&—
106 | | |
1 2 3 4 5
RHS rank RHS rank

(Conv.-diff. problem with random RHS and conv.-diff. ratio 10. Dotted line with TT-rank1-preconditioner.)

	Introduction
	Goal
	Problem definitions
	Tensor-train format and tensor network notation
	Tensor networks
	Performance of linear algebra operations

	High-level tensor algorithms
	TT-SVD
	TT-AMEn

	Underlying building blocks
	Conclusion
	Appendix

