elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Performance of linear solvers in tensor-train format on current multicore architectures

Röhrig-Zöllner, Melven und Becklas, Manuel Joey und Thies, Jonas und Basermann, Achim (2024) Performance of linear solvers in tensor-train format on current multicore architectures. International Journal on High Performance Computing Applications. SAGE Publications. ISSN 1094-3420. (eingereichter Beitrag)

[img] PDF - Preprintversion (eingereichte Entwurfsversion)
967kB

Kurzfassung

Tensor networks are a class of algorithms aimed at reducing the computational complexity of high-dimensional problems. They are used in an increasing number of applications, from quantum simulations to machine learning. Exploiting data parallelism in these algorithms is key to using modern hardware. However, there are several ways to map required tensor operations onto linear algebra routines ("building blocks"). Optimizing this mapping impacts the numerical behavior, so computational and numerical aspects must be considered hand-in-hand. In this paper we discuss the performance of solvers for low-rank linear systems in the tensor-train format (also known as matrix-product states). We consider three popular algorithms: TT-GMRES, MALS, and AMEn. We illustrate their computational complexity based on the example of discretizing a simple high-dimensional PDE in, e.g., $50^{10}$ grid points. This shows that the projection to smaller sub-problems for MALS and AMEn reduces the number of floating-point operations by orders of magnitude. We suggest optimizations regarding orthogonalization steps, singular value decompositions, and tensor contractions. In addition, we propose a generic preconditioner based on a TT-rank-1 approximation of the linear operator. Overall, we obtain roughly a 5x speedup over the reference algorithm for the fastest method (AMEn) on a current multicore CPU.

elib-URL des Eintrags:https://elib.dlr.de/208115/
Dokumentart:Zeitschriftenbeitrag
Titel:Performance of linear solvers in tensor-train format on current multicore architectures
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Röhrig-Zöllner, MelvenMelven.Roehrig-Zoellner (at) dlr.dehttps://orcid.org/0000-0001-9851-5886NICHT SPEZIFIZIERT
Becklas, Manuel JoeyManuel.Becklas (at) icloud.comNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Thies, JonasJ.Thies (at) tudelft.nlhttps://orcid.org/0000-0001-9231-9999NICHT SPEZIFIZIERT
Basermann, AchimAchim.Basermann (at) dlr.dehttps://orcid.org/0000-0003-3637-3231NICHT SPEZIFIZIERT
Datum:2024
Erschienen in:International Journal on High Performance Computing Applications
Referierte Publikation:Nein
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Verlag:SAGE Publications
ISSN:1094-3420
Status:eingereichter Beitrag
Stichwörter:low-rank tensor algorithms, node-level performance, tensor-train format, matrix-product states, linear solvers
HGF - Forschungsbereich:keine Zuordnung
HGF - Programm:keine Zuordnung
HGF - Programmthema:keine Zuordnung
DLR - Schwerpunkt:Quantencomputing-Initiative
DLR - Forschungsgebiet:QC AW - Anwendungen
DLR - Teilgebiet (Projekt, Vorhaben):QC - QuTeNet
Standort: Köln-Porz
Institute & Einrichtungen:Institut für Softwaretechnologie
Institut für Softwaretechnologie > High-Performance Computing
Hinterlegt von: Röhrig-Zöllner, Melven
Hinterlegt am:28 Nov 2024 14:21
Letzte Änderung:28 Nov 2024 14:21

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.