
Performance of linear solvers in tensor-train format on
current multicore architectures

Melven Röhrig-Zöllner ∗ Manuel Becklas∗ Jonas Thies †

Achim Basermann ∗

October 24, 2024

Abstract
Tensor networks are a class of algorithms aimed at reducing the computational complex-

ity of high-dimensional problems. They are used in an increasing number of applications,
from quantum simulations to machine learning. Exploiting data parallelism in these algo-
rithms is key to using modern hardware. However, there are several ways to map required
tensor operations onto linear algebra routines (“building blocks”). Optimizing this mapping
impacts the numerical behavior, so computational and numerical aspects must be consid-
ered hand-in-hand. In this paper we discuss the performance of solvers for low-rank linear
systems in the tensor-train format (also known as matrix-product states). We consider
three popular algorithms: TT-GMRES, MALS, and AMEn. We illustrate their computa-
tional complexity based on the example of discretizing a simple high-dimensional PDE in,
e.g., 5010 grid points. This shows that the projection to smaller sub-problems for MALS
and AMEn reduces the number of floating-point operations by orders of magnitude. We
suggest optimizations regarding orthogonalization steps, singular value decompositions, and
tensor contractions. In addition, we propose a generic preconditioner based on a TT-rank-1
approximation of the linear operator. Overall, we obtain roughly a 5x speedup over the
reference algorithm for the fastest method (AMEn) on a current multicore CPU.

∗German Aerospace Center (DLR), Institute of Software Technology
†Delft University of Technology, Delft Institute of Applied Mathematics

1

https://orcid.org/0000-0001-9851-5886
https://orcid.org/0000-0001-9231-9999
https://orcid.org/0000-0003-3637-3231

1 Introduction
Low-rank tensor methods provide a way to approximately solve problems that would otherwise
require huge amounts of memory and computing time. Many ideas in this field arise from
quantum physics. E.g., the global state of a quantum system with N two-state particles can be
expressed as a tensor of dimension 2N . In this setting, interesting states are for example given
by the eigenvectors of the smallest eigenvalues of the Hamiltonian of the system–a Hermitian
linear operator that describes the energy of the system. Therefore, most work focuses on solving
eigenvalue problems for Hermitian/symmetric operators using the DMRG method (Wilson, 1983;
White, 1992; Schollwöck, 2005). However, linear systems in low-rank tensor formats also arise
in interesting applications for example for solving high-dimensional or parameterized partial
differential equations, see, e.g., Kressner and Tobler (2011); Dahmen et al. (2015); Dolgov and
Pearson (2019). In addition, linear solvers and eigenvalue solvers are closely related and many
successful methods for finding eigenvalues are based on successive linear solves. This paper
addresses iterative methods for solving linear systems (symmetric and non-symmetric) in the
tensor-train (TT) format for the case where the individual dimensions are not tiny, i.e., for
systems of dimension nd × nd with n ≫ 2. We employ the TT format (called matrix-product
states in physics) as it is a simple and common low-rank tensor format. Most of the ideas are
transferable to other low-rank tensor formats (at least to loop-free tensor networks). Our work
considers the TT-GMRES algorithm (Dolgov, 2013; Ballani and Grasedyck, 2012), the modified
alternating least-squares (MALS) algorithm (DMRG for linear systems) (Holtz et al., 2012;
Oseledets and Dolgov, 2012), and the Alternating Minimal Energy (AMEn) algorithm (Dolgov
and Savostyanov, 2014). We show numerical improvements and performance improvements of the
underlying operations and focus on a single CPU node. These improvements are orthogonal to the
parallelization for distributed memory systems presented in Daas et al. (2022), so the suggestions
from both Daas et al. (2022) and this paper could be combined in the future. As the resulting
complete linear solver requires a tight interplay of different algorithmic components, we discuss
the behavior of the different numerical methods involved for the TT format. An alternative
class of methods to solve linear systems in TT format consists of Riemannian optimization on
the manifold of fixed-rank tensor-trains, see Kressner et al. (2016). This results in a nonlinear
optimization problem and is therefore not in the scope of this paper. However, it partly requires
similar underlying operations.

The paper is organized as follows: First, we start with required numerical background in
Section 2 and also introduce relevant performance metrics for today’s multicore computers. Then
in Section 3, we discuss the involved high-level numerical algorithms TT-GMRES, MALS, and
AMEn. Based on an example, we illustrate the numerical behavior of these algorithms and
compare their complexity in Section 4. Afterwards, in Section 5, we analyze and optimize the
underlying building blocks. We conclude in Section 6 with a short summary and open points for
future work.

2 Background and notation
In this section, we provide the required background concerning numerics and performance.

2.1 Numerical background
We first introduce required matrix decompositions and a notation for the considered algorithms.

2

2.1.1 Matrix decompositions

As matrix decompositions are heavily used as steps in tensor-train algorithms, we repeat some
basic properties of QR and SVD decompositions from the literature, see e.g., Golub and Van Loan
(2013); Higham (2002).

A QR-decomposition is a factorization of a matrix M ∈ Rn1×n2 with column rank r into a
matrix Q with orthonormal columns and an upper triangular part R:

M = QR, with QT Q = I, Q ∈ Rn1×r, R ∈ Rr×n2 . (1)

For (numerically) rank-deficient M , one can employ a pivoted QR-decomposition

MP = QR, ⇔ M = QRP −1, (2)

where P is a permutation matrix. The pivoted QR-decomposition can be computed in a nu-
merically robust way. However, it cannot (safely) be used to approximate M with a lower rank
matrix based on the size of the pivot elements (diagonal entries of R) by Q:,1:r′R1:r′,:, r′ < r as
the worst case error grows with O(2r), see Higham (1990); Kawamura and Suda (2021).

The singular value decomposition (SVD) in contrast provides the best approximation of lower
rank:

M = USV T ⇒ ∥M − U:,1:r′S1:r′,1:r′V T
:,1:r′∥F = min

M̃,rank(M̃)=r′
∥M − M̃∥F , (3)

where U ∈ Rn1×r, V ∈ Rn2×r are the matrices of the orthonormal left/right singular vectors
and S = diag(s1, s2, . . . , sr) is composed of the singular values s1 ≥ s2 ≥ · · · ≥ sr > 0.

2.1.2 Tensor-train decomposition

In higher dimensions, there is no unique way to decompose a tensor into factors and to define its
rank(s) (variants are e.g., the Tucker and the CANDECOMP/PARAFAC (CP) decompositions,
see the review Kolda and Bader (2009)). We focus on the tensor-train format which decomposes
a tensor X ∈ Rn1×n2×···×nd into d three-dimensional sub-tensors X1, . . . , Xd:

X = X1 ⋊⋉ X2 ⋊⋉ · · · ⋊⋉ Xd with Xk ∈ Rrk−1×nk×rk , r0 = rd = 1. (4)

Here, (· ⋊⋉ ·) is the contraction of the last dim. of the left operand with the first dim. of the right
operand:

Xk ⋊⋉ Xk+1 =
∑

i

(Xk):,:,i(Xk+1)i,:,: ∈ Rrk−1×nk×nk+1×rk+1 . (5)

The TT decomposition of a given tensor is not unique: it is invariant with respect to multiplying
one sub-tensor by a matrix and the next with its inverse. More precisely, for M, NT ∈ Rrk×r′

k

with MN = I:

X̄k ⋊⋉ X̄k+1 = Xk ⋊⋉ Xk+1 for X̄k := Xk ⋊⋉ M, X̄k+1 := N ⋊⋉ Xk+1. (6)

The smallest possible dimensions (r1, . . . rd−1) that allow to represent X denote the TT ranks of
X with the maximal rank r := rank(X) = max(r1, . . . , rd−1). If X has rank-1 in the TT format,
we can also write it as a generalized dyadic product of a set of vectors:

X = (X1)1,:,1 ⊗ (X2)1,:,1 ⊗ · · · ⊗ (Xd)1,:,1.

3

2.1.3 Tensor unfolding and orthogonalities

We define a general reshape operation to reinterpret the entries of a tensor as a tensor of different
dimensions:

reshape
(
X,
(
n̄1 · · · n̄d̄

))
:= X̄ ∈ Rn̄1×···×n̄d̄ with

(X̄)ī1,...,̄id̄
= (X)i1,...,id

for ī1 + ī2n̄1 + ī3n̄1n̄2 + · · · = i1 + i2n1 + i3n1n2 + · · · .

With this, we define the left-unfolding that combines two dimensions of a 3d tensor Xk to obtain
a matrix:

(Xk)left := reshape
(
Xk,

(
rk−1nk rk

))
∈ Rrk−1nk×rk . (7)

Similarly, we define the right-unfolding:

(Xk)right := reshape
(
Xk,

(
rk−1 nkrk

))
∈ Rrk−1×nkrk . (8)

We denote a 3d tensor Xk as left-orthogonal if the columns of the left-unfolding are orthonormal
((Xk)T

left(Xk)left = I) and right-orthogonal if the rows of the right-unfolding are orthonormal
((Xk)right(Xk)T

right = I). From the TT format, we can build an SVD of an unfolding of X ∈
Rn1×n2···×nd into a set of left and right dimensions

USV T = (X)unfoldj := reshape
(
X,
(
n1 · · ·nj nj+1 · · ·nd

))
(9)

by left-orthogonalizing (X1, . . . , Xj) and right-orthogonalizing (Xj+1, . . . , Xd):

X = X̄1 ⋊⋉ · · · ⋊⋉ X̄j︸ ︷︷ ︸
U

⋊⋉ S ⋊⋉ X̄j+1 ⋊⋉ · · · ⋊⋉ X̄d︸ ︷︷ ︸
V T

. (10)

2.1.4 Tensor-train vectors and operators

A tensor-train operator is a tensor in TT format where we combine pairs of dimensions (ni×mi)
with the form A ∈ R(n1×m1)×(n2×m2)×···×(nd×md)

A = A1 ⋊⋉ A2 ⋊⋉ · · ·Ad with Ak ∈ RrA
k−1×nk×mk×rA

k , rA
0 = rA

d = 1 (11)

which defines a linear mapping: A : Rm1×m2×···×md → Rn1×n2×···×nd . For the scope of this
paper, we only consider quadratic regular operators (mk = nk). Again, the sub-tensor dimensions
(rA

1 , . . . rA
d−1) denote the TT ranks of the operator with a maximal rank of rA := rank(A) =

max(rA
1 , . . . rA

d−1). This definition allows an efficient application of a TT operator on a TT
“vector” directly in the TT format:

AX = Y = Y1 ⋊⋉ Y2 ⋊⋉ · · · ⋊⋉ Yn with

Yk := reshape
(∑

i

(Ak):,:,i,:(Xk):,i,:,
(
rA

k−1rk−1 nk rA
k rk

))
. (12)

The resulting TT decomposition has ranks (rA
1 r1, . . . , rA

d−1rd−1) and thus rank(Y) ≤ rAr.
With all these definitions at hand, we can specify the main problem considered in this paper:

Given a low-rank linear operator in TT format ATT := (A1, . . . Ad), a low-rank right-hand side
(RHS) BTT := (B1, . . . , Bd), and a desired residual tolerance ϵtol, find an approximate low-rank
solution XTT := (X1, . . . , Xd) with

∥ATTXTT −BTT∥F ≤ ϵtol. (13)

4

2.2 Performance characteristics on today’s multicore CPU systems
Today’s hardware features multiple levels of parallelism and memory that we need to exploit
to efficiently use the available compute capacity: A supercomputer is composed of a number
of nodes connected by a network (distributed memory parallelism). Each node contains one or
more multicore CPUs with access to a main memory (shared memory parallelism). However,
the different CPUs access different memory domains with different speed (NUMA architecture):
Usually the access to the memory banks directly connected to one CPU is faster. Each CPU
“socket” consists of multiple cores (≲ 100 in 2023) with a hierarchy of caches. Inside one core,
SIMD units perform identical calculations on a small vector of floating-point numbers. We focus
on the performance on a single multicore CPU, but the algorithms considered can also run in
parallel on a cluster (see Daas et al. (2022)). Many supercomputers nowadays use GPUs which
is not discussed further in this paper.

2.2.1 Roofline performance model

To obtain a simpler abstraction of the hardware, we employ the Roofline (Williams et al., 2009)
performance model. The Roofline model distinguishes between computations (floating-point
operations) and data transfers: The maximal performance one can achieve on a given hardware
is Ppeak [GFlop/s]. The bandwidth of data transfers from main memory is bs [GByte/s]. If
all data fits into some cache level, the appropriate cache bandwidth is used instead. These are
the required hardware characteristics. The considered characteristics of one building block of
an algorithm (e.g., one nested loop) are the number of required floating-point operations nflops
and the volume of the data transfers Vread/write. Their ratio is called computational intensity
Ic := nflops/Vread/write [Flop/Byte]. Assuming that the data transfers and operations overlap
perfectly, this results in the following performance:

Proofline = min (Ppeak, Icbs) . (14)

If the compute intensity is low (Ic ≪ Ppeak/bs), the building block is memory bound. If in
contrast the compute intensity is high (Ic ≫ Ppeak/bs), the building block is compute bound. We
specifically split the algorithms considered in this paper into smaller parts (“building blocks”)
because they feature not one dominating operation but are composed of multiple different blocks
with different performance characteristics.

2.2.2 Memory and cache performance

In addition to the model above, some details of the memory hierarchy play a crucial role for the
algorithms at hand (see Hager and Wellein (2010) for more details): First, modifying memory
is often slower than reading it. In order to write to main memory, the memory region is usually
first transferred to the cache, modified there and written back (write-allocate). A special CPU
instruction allows to avoid this and directly stream to memory (non-temporal store). A common
technique to improve the performance of data transfers is to avoid writing large (temporary) data
when the algorithm can be reformulated accordingly (write-avoiding), see Carson et al. (2016).
Second, the CPU caches are organized in cache lines: This means that, e.g., 8 double precision
values are transferred together, always starting from a memory address divisible by the cache
line size. So the data locality–e.g., which index is stored contiguously–is important.

In addition, today’s CPUs use set-associative caches that allow the mapping of one memory
address to a fixed set of cache lines. Due to this, memory addresses with a specific distance
(e.g., 1024 double numbers) are mapped to the same cache set and the cache effectiveness is
dramatically reduced when data is accessed with specific “bad” strides (cache thrashing). This

5

easily occurs for tensor operations if the product of some dimensions is close to a power of two.
A common solution for operations on 2d arrays is padding: adding a few ignored zero rows in
a matrix such that the stride is at least a few cache lines bigger than some power of two. This
becomes more complicated in higher dimensions as one either obtains a complex indexing scheme
or one needs to perform calculations with zeros. This is discussed in more detail in Section 5.3.

3 Numerical algorithms
In this section, we discuss three different methods to approximately solve a linear system in TT
format as in Equation 13. We start with a general purpose (“global”) approach based on Krylov
subspace methods, TT-GMRES (Dolgov, 2013), and present some improvements for the TT
format. Then, we consider the more specialized (“local”) MALS (Holtz et al., 2012; Oseledets
and Dolgov, 2012), which optimizes pairs of sub-tensors similar to DMRG. Afterwards, we discuss
the (“more local”) AMEn (Dolgov and Savostyanov, 2014) method, which iterates on one sub-
tensor after another. Finally, we present a simple yet effective preconditioner in TT format to
accelerate convergence of TT-GMRES.

3.1 Krylov methods: TT-GMRES
All methods that apply the linear operator ATT on linear combinations of previously calculated
directions produce solutions from the Krylov subspace Kk(ATT; VTT) := span

{
VTT,ATTVTT, . . . ,Ak−1

TT VTT
}

where VTT is usually the initial residual of the problem. Different Krylov subspace methods then
select the “best” solution from the subspace Kk according to different definitions of “best”, see
van der Vorst (2003) and Saad (2003) for a detailed discussion. As we usually only approxi-
mate intermediate steps in TT arithmetic, we effectively employ inexact Krylov methods which
are discussed thoroughly in Simoncini and Szyld (2003); van den Eshof and Sleijpen (2004). In
this paper, we consider the TT-GMRES method (Dolgov, 2013) for non-symmetric problems.
For symmetric operators ATT, we simply omit unneeded steps to obtain a MINRES variant.
However, all considerations here effectively hold for other Krylov subspace methods as well.

3.1.1 Arithmetic operations in tensor-train format

Krylov methods require the following operations which can be performed directly in the TT
format (all introduced in Oseledets (2011)): Applying the operator to a vector (YTT ← ATTXTT),
dot products (α← ⟨XTT, YTT⟩) and scaled additions (YTT ← αXTT +YTT) of two tensor-trains.
To reduce the computational complexity, TT truncation (X̃TT ← truncδ(XTT)) approximates a
tensor-train with another tensor-train with lower rank (see TT-rounding algorithm in Oseledets
(2011)):

∥XTT − truncδ(XTT)∥F ≤ δ.

With these operations, we can perform a variant of the GMRES algorithm with additional
truncation operations, see Alg. 1. This idea was first discussed in Ballani and Grasedyck (2012)
for the more general H-Tucker format with a slightly different projection. We employ a variant
based on Dolgov (2013). The numerical stability of TT-GMRES is analyzed in more detail in
Coulaud et al. (2022). We remark that we use a more strict truncation tolerance than suggested
in Dolgov (2013) based on the analysis of inexact Krylov methods in Simoncini and Szyld (2003).
However, in Simoncini and Szyld (2003) only inaccurate applications of the linear operator are
considered (as in line 5 of Alg. 1). We also truncate in each step of the orthogonalization (line 8)

6

Algorithm 1 TT-GMRES with modified Gram-Schmidt
Input: Linear operator ATT : Rn1×···×nd → Rn1×···×nd and RHS BTT ∈ Rn1×···×nd ,

desired tolerance ϵ, max. number of iterations m, estimated condition number c
Output: Approximate solution XTT with ∥BTT −ATTXTT∥F ≲ ϵ ∥BTT∥F

1: γ0 ← ∥BTT∥F

2: VT T,1 ← 1/γ0BTT
3: for i = 1, . . . , m do
4: Choose tolerance δi = 0.5ϵ

cm
γ0

γi−1
(In Dolgov (2013): δi = ϵ γ0

γi−1
)

5: WTT ← trunc0.5δi/(i+1)(ATTVTT,i)
6: for j = 1, . . . , i do
7: hi,j ← ⟨VTT,j , WTT⟩ (MINRES: hi,j = 0, j < i− 1)
8: WTT ← trunc0.5δi/(i+1)(WTT − hi,jVTT,j)
9: end for

10: WTT ← trunc0.5δi(WTT)
11: hi+1,i ← ∥WTT∥F

12: VTT,i+1 ← 1/hi+1,iWTT
13: y ← arg miny ∥Hy − γ0e1∥2 for H = (hk,l), k = 1, . . . , i + 1, l = 1, . . . , i
14: γi ← ∥Hy − γ0e1∥2
15: if γi/γ0 ≤ 0.5ϵ then
16: XTT ← 0
17: for j = 1, . . . , i do
18: XTT ← trunc0.5ϵ/(ci)(XTT + yjVTT,j)
19: end for
20: return
21: end if
22: end for
23: Abort: not converged in m steps!

7

and once afterwards (line 10). We can still express the error as an error in the operator of the
form (see eq. (2.2) in Simoncini and Szyld (2003)):

(A + Ei) vi = Vi+1Hi, i = 1, . . . , m.

We denote the errors of all truncation operations in one Arnoldi iteration with ∆w(0) (line 5),
∆w(j) (line 8) and ∆w(i+1). Then, we obtain for the error:

Eivi = ∆w(i+1) +
i∑

j=0

I −
i∑

k=j+1
vkvT

k

∆w(j).

For orthogonal basis vectors vk of the Krylov subspace, the error of the Arnoldi iteration is
bounded by:

∥Ei∥ ≤ ∥∆w(i+1)∥F +
i∑

j=0
∥∆w(j)∥F ≤ 0.5δi∥w(i+1)∥F +

i∑
j=0

0.5δi

i + 1∥w
(j)∥F ≤ δi∥A∥.

Of course, due to the truncations, one easily looses the orthogonality of the basis vectors vk, see
discussion in Section 3.1.2 below. Suitable tolerances δi require the condition number c = κ(Hm)
that we estimate using the parameter c ≈ κ(A) as suggested in Simoncini and Szyld (2003). So
we obtain the following bound for the difference between the true residual vector r∗ and the
inexact residual vector r̃∗ (see equation (5.8) in Simoncini and Szyld (2003)):

∥r∗ − r̃∗∥F ≤ 0.5ϵ.

The factor 0.5 ensures that the true residual norm is smaller than the desired tolerance:

∥r∗∥ = ∥r∗ − r̃∗ + r̃∗∥ ≤ ∥r∗ − r̃∗∥+ ∥r̃∗∥ ≤ ϵ.

In our experiments, we use an optimized variant (see Section 5.1) of the standard TT truncation
algorithm. An alternative randomized truncation algorithm is presented in Daas et al. (2023)
for truncating sums of multiple tensor-trains (e.g., only truncating in line 10 of Alg. 1 and not
in line 8).

3.1.2 Improved Gram-Schmidt orthogonalization

Above, we assumed that the resulting Krylov basis vectors are orthogonal. However, as the
modified Gram-Schmidt orthogonalization is only applied approximately (truncations in line 8
and 10), this assumption is usually violated. As a result, the true residual norm might not be
smaller than the prescribed tolerance ϵ even though the approximate residuals converge. To
compensate for the inaccurate orthogonalization, one can prescribe a more strict truncation
tolerance as discussed in section 6 of Simoncini and Szyld (2003). Another common approach
consists in re-orthogonalization: We employ the following specialized variant of a modified Gram-
Schmidt iteration.

In the TT format calculating a scalar product is much faster than a truncated scaled addition
(axpby) as discussed in more detail in Section 5. So we can perform additional scalar products to
reorder Gram-Schmidt iterations and perform selective re-orthogonalization as shown in Alg. 2
to increase the robustness. This omits subtracting directions that are already almost orthogonal
in order to avoid growing the TT-ranks. See Leon et al. (2012) and the references therein for a
detailed discussion on different Gram-Schmidt orthogonalization schemes. Here, we again need

8

Algorithm 2 Selective iterated modified Gram-Schmidt (SIMGS) in TT format
Input: Orthonormal previous directions VTT,j , j = 1, . . . , i, new direction WTT,

tolerance δi, max. re-orthogonlization iterations kmax
Output: New normalized direction VTT,i+1 with WTT ≈

∑i+1
j=1 hjVTT,j ,

and |⟨VTT,i+1, VTT,j⟩| ≲ δi, j = 1, . . . , i
1: WTT ← trunc0.5δi/(2i+1) (WTT)
2: hj ← 0, j = 1, . . . i
3: for k = 1, . . . , kmax do
4: Calculate gj ← ⟨VTT,j , WTT⟩/∥WTT∥F , j = 1, . . . i
5: if ∥g∥∞ ≤ δi break
6: for j = arg maxl |gl| and |gj | > δi do
7: β ← ⟨VTT,j , WTT⟩
8: WTT ← trunc0.5δi/(2i+1)(WTT − βVTT,j)
9: hj ← hj + β, gj ← 0

10: end for
11: end for
12: WTT ← trunc0.5δi

(WTT)
13: hi+1 ← ∥WTT∥F , VTT,i+1 ←WTT/hi+1

to use sufficiently small truncation tolerances to fulfill the requirements of the outer inexact
GMRES method. The factor 2i is an estimate for the number of inner iterations (line 9) as
usually orthogonalizing “twice is enough” (Parlett, 1998; Giraud et al., 2005). And we choose
kmax = 4 in all our experiments as this was sufficient for the cases we investigated.

3.1.3 Tensor-train ranks for problems with a displacement structure

Even with truncations after each tensor-train addition, the tensor-train ranks can grow expo-
nentially in the worst case:

rank(VTT,i+1) ≤ rank(ATT) rank(VTT,i) +
i∑

j=0
rank(VTT,j).

We observe only a much smaller growth for some special linear operators ATT. In particular, we
consider linear operators with a displacement/Laplace structure:

(AX)unfoldj
= Aj,leftXunfoldj

+ Xunfoldj
Aj,right, j = 1, . . . , d− 1.

For those operators, the rank of the solution is bounded if the right-hand side also has small rank
as discussed for several tensor formats in Shi and Townsend (2021). We obtain the following
expression for applying the operator k times:

(AkX)unfoldj =
k∑

i=0

(
k

i

)
Ak−i

j,leftXunfoldj Ai
j,right.

Similarly, for any matrix polynomial pk of degree k, we get

(pk(A)X)unfoldj =
k∑

i=0
p̄k−i(Aj,left)Xunfoldj p̂i(Aj,right)

9

with appropriate sets of polynomials p̄i and p̂i.As the jth TT rank is just the rank of the jth
unfolding, this results in at most a linear growth of ranks of Krylov subspace basis vectors:

rank(VTT,i) ≤ (i + 1) rank(VTT,0). (15)
However, we will see in Section 4.1 that this only holds in exact arithmetic. If we do not calculate
the Krylov basis accurately enough, the TT ranks might again grow exponentially.

3.2 Modified Alternating Least-Squares (MALS)
Krylov methods like TT-GMRES consider the linear operator as a black box. However, we can
also exploit the tensor-train structure of the problem and project it onto the subspace of one or
several sub-tensors. This is the idea of the ALS and MALS methods discussed in Holtz et al.
(2012). In principle, MALS is identical to the famous DMRG method (White, 1992; Schollwöck,
2005) for eigenvalue problems from quantum physics. Here, we describe it from the point of view
of numerical linear algebra. Using all but two sub-tensors of the current approximate solution,
we define the operator:

Vj,2 : Rrj−1×nj×nj+1×rj+1 → Rn1×···×nd , with
Vj,2Y = X1 ⋊⋉ · · · ⋊⋉ Xj−1 ⋊⋉ Y ⋊⋉ Xj+2 ⋊⋉ · · · ⋊⋉ Xd. (16)

If sub-tensors (X1, . . . Xj−1) are left-orthogonal and sub-tensors (Xj+2, . . . Xd) are right-orthogonal,
the operator Vj,2 has orthonormal columns: VT

j,2Vj,2 = I. Using Vj,2, we can project the problem
onto the subspace of the sub-tensors {Xk, k < j ∨ k > j + 1}. This results in a smaller problem
of the form:

VT
j,2ATTVj,2Y = VT

j,2BTT. (17)
For s.p.d. operators ATT, this much smaller problem typically has a better condition number
(κ
(
VT

j,2ATTVj,2
)
≤ κ (ATT)), and its solution minimizes the error in the induced operator norm:

Y = arg min
Y
∥Vj,2Y −X ∗

TT∥
2
ATT

for Y =
(
VT

j,2ATTVj,2
)−1 VT

j,2BTT,

where X ∗
TT denotes the true solution. For non-symmetric operators ATT, this projection (Ritz-

Galerkin) is often still successful (Dolgov and Savostyanov, 2014), but one might also consider a
different projection for the left and the right-hand side of the operator (Petrov-Galerkin):

V̄T
j ATTVj,2Y = V̄T

j BTT.

Here, V̄j should have the same dimensions as Vj,2 to ensure that projected problem is square
(and thus usually easier to solve). A possible non-symmetric approach is

V̄jZ ≈ ATTVj,2 with V̄T
j V̄j = I.

This is only possible approximately if V̄j should have low rank in the TT format again. The
solution of the projected problem then approximately minimizes the residual in the Frobenius
norm (similar to GMRES). In this paper, we will not further discuss this approach as we focus
on the performance of the operations involved, but other variants of projections are possible.

To solve the global problem, the MALS algorithm sweeps from the first two to the last two
dimensions and back, see Alg. 3. This can be interpreted as a moving subspace correction as
discussed in Oseledets et al. (2018). In contrast, the ALS algorithm only projects the problem
onto the subspace of all but one sub-tensor. This yields smaller local problems but provides no
mechanism to increase the TT-rank of the approximate solution. So in the simplest form, it
can only converge for special initial guesses that already have the same TT-rank as the desired
approximate solution. In Section 3.3, we discuss a possible way to avoid this problem.

10

Algorithm 3 TT-MALS
Input: Linear operator ATT : Rn1×···×nd → Rn1×···×nd and RHS BTT ∈ Rn1×···×nd ,

initial guess XTT ∈ Rn1×···×nd , desired tolerance ϵ, max. number of sweeps m
Output: Approximate solution XTT with ∥BTT −ATTXTT∥F ≲ ϵ ∥BTT∥F

1: Right-orthogonalize Xd . . . X3
2: for iSweep = 1, . . . , m do
3: jstart ← 1 if iSweep = 1 else 2
4: for j = jstart, . . . , d− 1 do
5: Left-orthogonalize Xj−1 if j > 1
6: Setup projection operator Vj,2 using (16)
7: Solve local problem VT

j,2ATTVj,2Y = VT
j,2BTT with initial guess Xj ⋊⋉ Xj+1

8: Update Xj ⋊⋉ Xj+1 ← Y
9: end for

10: if ∥BTT −ATTXTT∥F ≤ ϵ∥BTT∥ then
11: return
12: end if
13: for j = d− 2, . . . , 1 do
14: Right-orthogonalize Xj+2
15: Setup projection operator Vj,2 using Equation 16
16: Solve local problem VT

j,2ATTVj,2Y = VT BTT with initial guess Xj ⋊⋉ Xj+1
17: Update Xj ⋊⋉ Xj+1 ← Y
18: end for
19: if ∥BTT −ATTXTT∥F ≤ ϵ∥BTT∥ then
20: return
21: end if
22: end for
23: Abort: not converged in m sweeps!

11

3.2.1 Inner solver: TT-GMRES

The projected problem (17) again has a structure similar to (13) but with just two dimensions.
More specifically, after some contractions, the projected operator has the form

VT
j,2ATTVj,2 = Āj−1,left ⋊⋉ Aj ⋊⋉ Aj+1 ⋊⋉ Āj+2,right

with Āj−1,left ∈ Rrj−1×rj−1×rA
j−1 and Āj+2,right ∈ RrA

j+1×rj+1×rj+1 . And the initial guess as well
as the required solution is in the form:

Y = Xj ⋊⋉ Xj+1 ∈ Rrj−1×nj×nj+1×rj+1 .

Using tensor contractions, we can also express the projected right-hand side as:

VT
j,2BTT = B̄j,left ⋊⋉ B̄j+1,right.

As long as the rank of Y during the iteration is much smaller than rj−1nj , respectively nj+1rj+1,
it is usually beneficial to use the factorized form for Y . This results in an inner-outer scheme
with an outer MALS and an inner TT-GMRES algorithm. From our observation, this also yields
slightly smaller ranks in the outer MALS than using standard GMRES with the dense form of
Y and a subsequent factorization.

Remark 1. In the first MALS sweeps, it is not necessary to solve the inner problem very
accurately. So one can use a larger relative tolerance for the inner iteration than for the outer
iteration. The same yields in the last MALS sweeps (close to the solution). Combining both
aspects, we employ a relative tolerance of:

ϵ̄inner = max
(

ϵinner, ϵ
∥BTT∥

∥ATTXTT −BTT∥

)
, with ϵinner :=

√
ϵ.

Remark 2. One might wonder if an inner-outer iteration scheme with outer (flexible) TT-
GMRES and inner MALS (as preconditioner) might also work. In our experiments, this results
in super-linear (up to exponential) growth of the TT-ranks in the Arnoldi iteration. This can be
explained by the fact that the displacement structure of the linear operator is not retained through
this form of a varying preconditioner.

For symmetric problems, our implementation switches to TT-MINRES and for positive defi-
nite problems, one can also employ a tensor-train variant of the CG algorithm.

3.3 AMEn method
For the MALS method above, always two sub-tensors are considered at once in the inner problem.
One can also consider only one sub-tensor (ALS) at a time using the projection operator

Vj,1 : Rrj−1×nj×rj → Rn1×···×nd , with
Vj,1Y = X1 ⋊⋉ · · · ⋊⋉ Xj−1 ⋊⋉ Y ⋊⋉ Xj+1 ⋊⋉ · · · ⋊⋉ Xd. (18)

This results in a smaller local operator. By contracting sub-tensors of Vj,1 and ATT, one obtains:

ĀTT := VT
j,1ATTVj,1 = Āj−1,left ⋊⋉ Aj ⋊⋉ Āj+1,right. (19)

However, one needs a way to adapt the rank of the approximate solution and to ensure conver-
gence. An early approach from physics was just to increase the rank through adding random

12

directions. A more sophisticated method is introduced in Dolgov and Savostyanov (2014) named
AMEn (alternating minimal energy). The main idea is to enrich the subspace after each inner
iteration with directions obtained from the current residual tensor. For this, the current resid-
ual tensor is projected onto the subspace of the left sub-tensors of the current approximation
when sweeping left-to-right, respectively the right sub-tensors when sweeping right-to-left. The
corresponding projection operators are given by:

Vj,d−j : Rrj−1×nj×···×nd → Rn1×···×nd , with Vj,d−jY = X1 ⋊⋉ · · · ⋊⋉ Xj−1 ⋊⋉ Y,

V1,j : Rn1×···×nj×rj+1 → Rn1×···×nd , with V1,jY = Y ⋊⋉ Xj+1 ⋊⋉ · · · ⋊⋉ Xd. (20)

For s.p.d. operators, this results in a steepest descent step for which global convergence is shown in
Dolgov and Savostyanov (2014). In practice, it is often sufficient to approximate a few directions
of the residual tensor and add them to the current subspace to obtain fast convergence. The
standard form of the AMEn algorithm is depicted in Alg. 4 (based on the SVD variant in Dolgov
and Savostyanov (2014)). The step to update the residual RTT = ATTXTT (line 9) requires

Algorithm 4 TT-AMEn
Input: Linear operator ATT, RHS BTT and initial guess XTT, desired tolerance ϵ,

max. number of sweeps m, number of enrichment directions k
Output: Approximate solution XTT with ∥BTT −ATTXTT∥F ≲ ϵ ∥BTT∥F

1: Right-orthogonalize Xd . . . X2
2: Calculate residual RTT ← ATTXTT −BTT
3: Right-orthogonalize Rd . . . R2 and let ZTT ← RTT
4: for iSweep = 1, . . . , m do
5: for j = 1, . . . , d− 1 do
6: Setup projection operators Vj,1,Vj,d−j using (18) and (20)
7: Solve local problem VT

j,1ATTVj,1Y = VT
j,1BTT with initial guess Xj

8: Update Xj ← Y
9: Update Rj s.t. RTT = ATTXTT −BTT

10: if ∥RTT∥F ≤ ϵ∥BTT∥ then
11: return
12: end if
13: Update Zj , s.t. Zj ⋊⋉ · · · ⋊⋉ Zd = VT

j,d−jRTT
14: Left-orthogonalize Xj (updating Xj+1 s.t. Xj ⋊⋉ Xj+1 remains the same)
15: Left-orthogonalize Zj w.r.t. Xj

16: Append Z:,:,1:k ⋊⋉ 0 to Xj ⋊⋉ Xj+1
17: end for
18: Similarly sweep from d to 2.
19: end for
20: Abort: not converged in m sweeps!

saving all intermediate matrices from left- respectively right-orthogonalization of the sub-tensors
of RTT. To calculate k suitable directions to enrich the subspace in the left-to-right sweep
(line 15), we left-orthogonalize Zj w.r.t. Xj , such that:

USV T = (I − (Xj)unfoldl
(Xj)T

unfoldl
)(Rj)unfoldl

, (Zj)unfoldl
= U.

This results in the method AMEn+SVD from Dolgov and Savostyanov (2014). To append the
directions (line 16), we concatenate the tensors, such that r̄j = rj + k and (X̄j):,:,rj+1:rj+k =

13

Z:,:,1:k and (X̄j+1)rj+1:rj+k,:,: = 0. The same is done in the right-to-left sweep with mirrored
dimensions.

As can be seen from Alg. 4, calculating the required directions from the residual mostly in-
volves updating the sub-tensors of the residual in every step of the sweep. This is not significantly
more work than calculating the residual in the first place. Still, the complete algorithm is so
cheap that the residual calculation accounts for a significant part of the overall runtime. That is
why Dolgov and Savostyanov (2014) discusses several more heuristic ways to determine suitable
enrichment directions.

3.3.1 TT-AMEn+ALS

The most promising variant from Dolgov and Savostyanov (2014) is based on an ALS-like ap-
proximation of the residual. As the resulting complete algorithm is not explicitly shown there,
we illustrate the required steps Alg. 5 and discuss important implementation details.

First, to really decrease the work, one needs a way to check the error without using the global
residual norm. In Dolgov and Savostyanov (2014), this is not further discussed but in the code
used for the numerical experiments of Dolgov and Savostyanov (2014), the global residual error
is estimated using the projected residuals (before solving the local problem), assuming that

1
2
√

d− 1
max

j

(∥∥VT
j,1(ATTXTT −BTT)

∥∥
F

)
)
≲ ∥ATTXTT −BTT∥ .

The factor 1/2 is just a heuristic way to ensure that the global residual norm is smaller than the
tolerance.

Second, one needs a cheap way to enrich the subspace. For this, a rough approximation of
the residual is usually sufficient which can be obtained by a fixed-rank ALS iteration (ALS(l)).
This results in the following update of the j-th subtensor of the current approximation of the
residual R̃TT:

R̃′
j :=WT

j,1 (ATTXTT −BTT) =WT
j,1ATTXTT −WT

j,1BTT, where (21)
Wj,1 : Rl×nj×l → Rn1×···×nd , Wj,1Y = R̃1 ⋊⋉ · · · R̃j−1 ⋊⋉ Y ⋊⋉ R̃j+1 ⋊⋉ · · · ⋊⋉ R̃d. (22)

Here, R̃1, . . . , R̃j−1 must be left-orthogonal and R̃j+1, . . . , R̃d right-orthogonal. We remark that
the approximation R̃TT cannot be used to check convergence as ∥R̃TT∥F ≤ ∥RTT∥F . As for the
projected local problem, the required additional terms can be updated successively in each step
of the sweep. In our implementation, we use BTT as initial guess for the approximate residual
R̃TT and truncate it, respectively extend it by random directions to obtain the desired rank l.
In Section 5.5, we show numerical experiments with both the full AMEn and the AMEn+ALS
algorithm.

3.4 Preconditioning
For iterative solvers of linear systems, it is a common approach to employ a preconditioner to ob-
tain much faster convergence. Of course, we can precondition all previously discussed algorithms.
However, some additional aspects should be considered when preconditioning linear solvers in
the TT format. On the one hand, for MALS and AMEn, we can employ local preconditioners
for the projected operators VT

j ATTVj . In this case,

• one needs to calculate a different preconditioner in every step of the sweep,

• often only a few local iterations are performed,

14

Algorithm 5 TT-AMEn+ALS
Input: Linear operator ATT, RHS BTT, initial guess XTT, desired tolerance ϵ,

max. number of sweeps m, enrichment rank k, inner tolerance ϵinner, approx. residual rank l
Output: Approximate solution XTT with ∥BTT −ATTXTT∥F ≲ ϵ ∥BTT∥F

1: Right-orthogonalize Xd . . . X2
2: Initialize approx. residual R̃1, . . . , R̃d with rank l
3: Right-orthogonalize R̃d . . . R̃2 and let Z̃TT ← R̃TT
4: for iSweep = 1, . . . , m do
5: for j = 1, . . . , d do
6: Setup projection operators Vj,1,Vj,d−j using (18) and (20)
7: if iSweep = 1 ∨ j ̸= 1 then
8: Calculate local residual norm: δj ← ∥VT

j (ATTXTT −BTT)∥F

9: Adapt tolerance: ϵ̄inner,abs ← max(δj ϵinner, ∥VT
j BTT∥F ϵ/(2

√
d− 1))

10: Approximately solve local problem VT
j,1ATTVj,1Y = VT

j,1BTT
with initial guess Xj up to abs. tolerance ϵ̄inner,abs

11: Update Xj ← Y
12: Setup residual projection operator Wj,1 using (22)
13: Update R̃j ←WT

j,1(ATTXTT −BTT)
14: end if
15: if j < d then
16: Update Z̃j , s.t. Z̃j ⋊⋉ · · · ⋊⋉ Z̃d = VT

j,d−jR̃TT

17: Left-orthogonalize R̃j (updating R̃j+1 s.t. R̃j ⋊⋉ R̃j+1 remains the same)
18: Left-orthogonalize Xj (updating Xj+1 s.t. Xj ⋊⋉ Xj+1 remains the same)
19: Left-orthogonalize Z̃j w.r.t. Xj

20: Append Z̃:,:,1:k ⋊⋉ 0 to Xj ⋊⋉ Xj+1
21: end if
22: end for
23: if maxj(δj) ≤ ϵ

2
√

d−1 then
24: return
25: end if
26: Similarly sweep from d to 1 and check convergence.
27: end for
28: Abort: not converged in m sweeps!

15

• one may need to contract VT
j ATTVj = Āj−1,left ⋊⋉ Aj ⋊⋉ Āj+1,right (costly).

On the other hand, we could employ a global preconditioner which is

• either applied to tensor-train “vectors” (TT-GMRES),

• or directly to the tensor-train operator ATT (TT-GMRES, MALS, AMEn),

• but is not tailored to the local problems for MALS/AMEn.

Furthermore, a global preconditioner (and also local precondioners for MALS) should retain the
low-rank of the solution and right-hand side. To emphasize this: just the fact that κ(PATT)≪
κ(ATT) does not imply that rankTT(PBTT) ≤ rankTT(BTT) for left-preconditioning with P.
And similarly the same problem occurs for the approximate solution XTT for right-preconditioning.

3.4.1 TT-rank-1 preconditioner

Considering the desired properties, we suggest a simple, global rank-1 preconditioner that usually
is cheap to calculate (for operators of sufficiently low rank). The two-sided variant can be
constructed as follows: First, approximate the operator with a tensor-train of rank 1 using TT-
truncation: ÃTT = Ã1 ⊗ Ã2 ⊗ · · · ⊗ Ãd = truncr=1(ATT). Then, perform an SVD for each
sub-matrix (UjSjV T

j = Ãj , j = 1, . . . , d) to construct the TT operators for the left and the right:

PTT,left = (S−1/2
1 UT

1)⊗ · · · ⊗ (S−1/2
d UT

d), PTT,right = (V1S
−1/2
1)⊗ · · · ⊗ (VdS

−1/2
d).

This yields the preconditioned system:

(PTT,leftATTPTT,right) YTT = PTT,leftBTT with XTT = PTT,rightYTT.

For a symmetric operator ATT where for each sub-tensor (Aj):,k,l,: = (Aj):,l,k,:, the precondi-
tioned operator is still symmetric. And as the preconditioner has rank one, it does not lead to
higher ranks for the right-hand side or the exact solution XTT. However, if the operator has a
displacement structure, this is not preserved for the preconditioned operator.

4 Comparison of algorithms
In the following we present numerical experiments for linear systems in TT format. We use the
pitts library (Röhrig-Zöllner and Becklas, 2024) which also contains the setup and output for
all results shown in this paper. For illustrating the numerical behavior, we consider a simple
multidimensional convection-diffusion equation. It is discretized using a finite difference stencil,
e.g., in 1d the operator is

tridiag(−1, 2,−1)
h2

j

+ c√
d

tridiag(0, 1,−1)
hj

, for hj = 1
nj + 1 .

Here, c denotes a convection constant and the convection direction is diagonal through all di-
mensions. As right-hand side, we use a vector of all ones (rank 1) or just a tensor-train with
chosen rank and random sub-tensors. All cases use double-precision calculations and a desired
residual tolerance of ϵ = 10−8.

16

0

50

100

150

200

250

300

20 40 60 80 100 120

m
ax

.
T

T
-r

an
k

#iteration

SIMGS
MGS

restarted, SIMGS
precond., SIMGS

naive MGS
(k + 1)rB
rV0 + krX0

(a) Krylov basis ranks for TT-GMRES

0

10

20

30

40

50

60

0 100 200 300 400 500 600 700 800

m
ax

.
T

T
-r

an
k

inner iteration

Krylov basis
solution

(b) Ranks for precond. MALS with inner TT-
GMRES

Figure 1: Tensor-train ranks for the Krylov basis, respectively the approximate solution for a
2010 convection-diffusion problem (c = 10) and RHS BTT of ones. For TT-GMRES (left), both
MGS variants lead to inaccurate solutions that are not within the desired residual tolerance in
contrast to all cases with SIMGS. Overall, more accurate orthogonalization (SIMGS) without
restart and preconditioning features the lowest maximal ranks during the calculation. For MALS
(right), the solution ranks only increase slowly with each sweep (as intended), but the Krylov
basis vectors of the inner iteration again yield higher ranks.

17

4.1 Behavior of tensor-train ranks in the calculation
First, to understand the computational complexity of the different methods, we show the behavior
of the TT ranks during the calculation. As shown in Fig. 1a, the improved orthogonalization
in the TT-GMRES algorithms (SIMGS, Alg. 2) results in slightly slower rank growth in the
Krylov basis than standard MGS; Both show the expected linear growth (for operators with a
displacement structure). A naive MGS implementation (all truncations performed with tolerance
δi in Alg. 1) results in exploding ranks after a few iterations. Furthermore, the calculated
solutions of the MGS variants are not within the desired residual tolerance (with ∥ATTXTT −
BTT∥F ≈ 10ϵ). With the TT-rank-1 preconditioner, the algorithm converges after less than half
the number of iterations, but higher ranks occur (as the preconditioned operator does not have
a displacement structure). Similarly, a GMRES restart also results in higher TT ranks. Overall,
the TT-GMRES has a computational complexity that is cubic in the maximal TT rank (rmax)
of the Krylov basis: O(dnr3

max + dn2r2
max(rA)2). For the MALS method, we observe a (linearly)

growing rank of the approximation solution in the iteration up to the rank (r) of the resulting
approximate solution, see Fig. 1b. However, in the inner TT-GMRES iterations, the Krylov
basis ranks behave like after a GMRES restart after the first sweep. So significantly higher ranks
occur in the inner iteration. The effect on the computational complexity is only quadratic for
MALS (only two sub-tensors in the inner problem): O(dnrr2

max + dn2rrmax(rA)2). The behavior
of the rank of the approximate solution for AMEn is similar to MALS. But as the local problem
consists only of one sub-tensor, no higher intermediate ranks can occur in the inner iteration. So
only O(dnr3 +dn2r2(rA)2) operations are needed assuming that the enrichment rank k is chosen
appropriately.

4.2 Computational complexity of the different methods
The TT ranks explain the results in Fig. 2: TT-GMRES needs 10-100× more operations than
MALS. MALS needs 10-100× more operations than AMEn. For larger individual dimensions
(nj), MALS with inner TT-GMRES needs fewer operations than with inner MALS. In addition,
applying the operator becomes more costly, and it is beneficial to use a sparse matrix format
for the sub-tensors of the operator (sparse TT-Op variant in Fig. 2a). We also measured the
behavior using the quantics TT format (QTT, Khoromskij (2011)) where we just convert the
operator to a 2d̄ tensor. For our test case here, QTT-MALS needs fewer operations than TT-
MALS (ranks in inner iteration can grow at most by a factor of 2). However, QTT-AMEn needs
more operations than TT-AMEn here. Looking at the approximate solution, it has TT ranks
(. . . , r, 2r, 3r, 4r, . . . , 4r, 3r, 2r, r, . . .) where r is the rank of the approximate solution without
transformation to QTT format. So the QTT format is not beneficial here as the solution is not
well approximable with small QTT ranks.

5 Performance of algorithmic building blocks
In the following, we discuss the required basic tensor-train operations (“building blocks”) for the
algorithms from Section 3. We focus on the node-level performance on a single multicore CPU
with some remarks for a distributed parallel implementation. We only consider those opera-
tions where we see a significant improvement over the standard implementation as introduced in
Oseledets (2011). These are in particular left-/right-orthogonalization with/without truncation,
TT addition with subsequent truncation (TT-axpby+trunc), and faster contractions.

18

106

108

1010

1012

1014

1016

2010 4010 6010 8010 10010

to
ta

lF
lo

p

dimension

TT-GMRES
MALS with GMRES

MALS with TT-GMRES
AMEn

AMEn (sparse TT-Op)

(a) Varying dimensions (RHS BTT of ones)

106

107

108

109

1010

1011

1012

1013

1014

1 2 3 4 5

to
ta

lF
lo

p

RHS rank

TT-GMRES
MALS with GMRES

MALS with TT-GMRES
AMEn

AMEn (sparse TT-Op)

(b) Random RHS BTT with varying ranks (dimen-
sion 2010)

Figure 2: Number of floating-point operations measured using likwid (Treibig et al., 2010) for a
convection-diffusion problem (c = 10). Dashed lines use the TT-rank-1 preconditioner. Dotted
lines first transform the problem to the QTT format (Khoromskij, 2011). In all cases, AMEn
requires orders of magnitude fewer operations than MALS and TT-GMRES.

5.1 Replacing costly SVDs and pivoted QR decompositions with faster
but less accurate alternatives

In Röhrig-Zöllner et al. (2022), the authors present a significantly faster implementation for
decomposing a large dense tensor in the TT format (TT-SVD) using a Q-less tall-skinny QR
(TSQR) algorithm. For the TT-SVD, one starts with a decomposition of the form:

min
B,QT

∥∥(X)unfoldd−1 −BQT
∥∥

F
with QT Q = I.

(X)unfoldd−1 is a tall-skinny matrix, and the standard algorithm uses a truncated SVD to build
B and Q:

(X)unfoldd−1 = USV T and B = U:,1:r1S1:r1,1:r1 , Q = V:,1:r1 .

The optimized algorithm uses the following steps instead (grayed-out matrices are not calculated):

(X)unfoldd−1 = Q̄R, R ≈ ŪSV T , and B = (X)unfoldd−1V:,1:r1 , Q = V:,1:r1 .

As V has orthonormal columns, the matrix B can be calculated accurately this way.
For the left-/right-orthogonalization (see first loop in TT-rounding in Oseledets (2011)), we

unfortunately need slightly different operations, e.g., in the left-to-right QR sweep:

(Xj)left = QB, and (X ′
j)left = Q, X ′

j+1 = B ⋊⋉ Xj+1.

And very similarly for a left-to-right SVD sweep:

min
Q,B
∥(Xj)left −QB∥F and (X ′

j)left = Q, X ′
j+1 = B ⋊⋉ Xj+1.

19

The only difference is that the pure orthogonalization is exact up to the numerical rank whereas
the truncation intentionally cuts off with a given tolerance. We can use the same trick as for the
TT-SVD in a slightly different way here. For the orthogonalization, one obtains with pivoting
matrix P :

(Xj)leftP = QR and X̃ ′
j = Xj ⋊⋉ (PR−1), X ′

j+1 = (RP T) ⋊⋉ Xj+1. (23)

And again similarly for the truncation:

(Xj)left = QR, R = USV T and X̃ ′
j = Xj ⋊⋉ (V S−1), X ′

j+1 = (SV T) ⋊⋉ Xj+1. (24)

There is a difference to the TT-SVD here: in both cases, the faster formulation might introduce
a significant numerical error (∥X̃ ′

j−X ′
j∥F). For κ(R)≫ 1, respectively κ(S)≫ 1, applying R−1,

respectively V S−1, can be numerically unstable. For the SVD-sweep, one can see that the error is
only large in “unimportant” directions and should not affect the accuracy of the complete tensor-
train: Assuming X1, . . . , Xj−1 are left-orthogonal and Xj+1, . . . , Xd right-orthogonal, then:

∥X̃TT −XTT∥F = ∥(X̃ ′
j −X ′

j) ⋊⋉ X ′
j+1∥F = ∥(X̃ ′

j −X ′
j) ⋊⋉ S∥F .

This is not ensured for the orthogonalization step. However, this shows that the error should be
weighted by the singular values of the corresponding unfolding of the approximated tensor. So
for the truncation, the left-to-right QR sweep is followed by a right-to-left SVD sweep with:

X̃ ′′
j = X̃ ′

j ⋊⋉ (Ū S̄), for Ū S̄V̄ T = (X̄j+1)right.

We suggest checking the error a posteriori using the orthogonalization error weighted by the
singular values of the j-th unfolding:∥∥S̄2 − (X̃ ′′

j)T
left(X̃ ′′

j)left
∥∥

∞
?
≈ ϵ.

In our numerical tests this was always the case even if ∥I − (X̃ ′
j)T

left(X̃ ′
j)left∥∞ ≫ ϵ. If this a

posteriori check fails, one can still recalculate the orthogonalization with the standard algorithm.

5.2 Exploiting orthogonalities in TT-axpby+trunc
To add tensors in TT format (ZTT = αXTT + βYTT = Z1 ⋊⋉ · · · ⋊⋉ Zd), one combines their
sub-tensors:

(Z1)1,:,: =
(
(X1)1,:,: (Y1)1,:,:

)
,

(Zj):,i,: =
(

(Xj):,i,: 0
0 (Yj):,i,:

)
, for i = 1, . . . , nj , j = 2, . . . , d− 1

(Zd):,:,1 =
(

α(Xd):,:,1
β(Yd):,:,1

)
.

This operation is needed in the TT-GMRES algorithm as well as in MALS and the standard
AMEn. For AMEn, the operation is performed step-by-step in each step of a sweep. In all cases,
the sub-tensors of XTT and YTT are already left- or right-orthogonal. And after the addition,
one performs a left- or right-orthogonalization of the ZTT for a subsequent truncation step. We
can exploit the block non-zero structure and pre-existing orthogonalities. In the following, we
assume rankTT(XTT) ≥ rankTT(YTT) and that X1, . . . , Xd−1 are left-orthogonal. Then, we can

20

compute left-orthogonal sub-tensors for Z̄1, . . . , Z̄d−1 with smaller QR-decompositions Q1R1,
. . . , Qd−1Rd−1 than for the standard algorithm. For the first sub-tensor, we obtain:

(Z1)1,:,: =
(
(X1)1,:,: Q1

)︸ ︷︷ ︸
(Z̄1)1,:,:

(
I M1
0 R1

)
with M1 = (X1)T

left(Y1)left,

Q1R1 = (I − (X1)left(X1)T
left)(Y1)left. (25)

For the next sub-tensors j = 2, . . . , d− 1, we obtain:

(Z ′
j):,i,: =

(
I Mj−1
0 Rj−1

)(
(Xj):,i,: 0

0 (Yj):,i,:

)
for i = 1, . . . , nj

=
(

(Xj):,i,:
0 (Qj):,i,:

)
︸ ︷︷ ︸

(Z̄j):,i,:

(
I Mj

0 Rj

)
with Mj = X̄T

j Ȳj , (26)

QjRj = (I − X̄jX̄T
j)Ȳj ,

where we simplified the notation by introducing:

X̄j :=
((

I
0

)
⋊⋉ Xj

)
left

, Ȳj =
((

Mj−1
Rj−1

)
⋊⋉ Yj

)
left

.

The last sub-tensor simply results in:

(Z̄d):,:,1 =
(

I Md−1
0 Rd−1

)(
α(Xd):,:,1
β(Yd):,:,1

)
. (27)

5.2.1 Stable residual calculation with inaccurate orthogonalization

For (standard) AMEn and MALS, we update a left- respectively right-orthogonal representation
of ATTXTT =: YTT in each step and calculate the residual BTT − YTT from it reusing the
orthogonality. This is susceptible to numerical errors as for the solution all directions should
cancel out. More specifically, we observed relative errors of up to ϵ = ∼10−3 when the residual
norm was close to the machine precision.

In general, when combining inaccurate orthogonalization with the optimized TT-axpby+trunc
algorithm, we need to adjust the formulas in (25) and (26) to compensate for the loss of orthog-
onality. Assuming X̄T

j X̄j ≈ I, we suggest to employ a Cholesky decomposition to correct the
projection in (26) (and similarly in (25)) by using:

Q′
jR′

j =
(
I − X̄j(LjLT

j)−1X̄T
j

)
Ȳj , with LjLT

j = X̄T
j X̄j . (28)

This emulates re-orthogonalization but is faster if Ȳj has fewer columns than X̄j as re-orthogonalization
would require to update the matrix X̄ ′

j = X̄j(Lj)−T instead.

5.3 Faster contractions: inner iteration of AMEn
In AMEn, one needs to apply the projected TT operator from (19) to a dense tensor:

Z = ĀTT,jY with ĀTT,j = Āj−1,left ⋊⋉ Aj ⋊⋉ Āj+1,right, Y, Z ∈ Rrj−1×nj×rj .

21

We can calculate this with the following contractions assuming that the ordering of dimensions
denoted by : is equal on the left- and right-hand sides of the equations:

(Y ′):,:,:,: ←
∑

i

(Āj+1,right):,:,iY:,:,i,

(Y ′′):,:,:,: ←
∑
i1,i2

(Aj):,:,i1,i2(Y ′)i2,:,:,i1 ,

Z:,:,: ←
∑
i1,i2

(Āj−1,left):,i1,i2(Y ′′)i2,:,:,i1 .

If we reorder the array dimensions of the sub-tensors of ĀTT appropriately and let (Â1, Â2, Â3)
denote the reordered tensors, we can use the following steps instead:

(Ŷ ′):,:,:,k ←
∑

i

(Â3):,i,kY:,:,i for k = 1, . . . , rA
j ,

(Ŷ ′′):,:,:,k ←
∑
i1,i2

(Â2):,i1,i2,k(Ŷ ′):,:,i1,i2 for k = 1, . . . , rA
j−1,

Z:,:,: ←
∑
i1,i2

(Â1):,i1,i2(Ŷ ′′):,:,i1,i2 .

The benefit of this reordering is that we can combine the contracted and “free” dimensions ((i1, i2)
and (:, :)) to obtain fewer large dimensions which reduces overhead in the implementation. In
addition, we employ a column-major storage with a padding to obtain array strides that are
multiples of the cache line length but not high powers of 2 to avoid cache thrashing. Another
approach consists in using optimized tensor contractions as discussed in detail in Springer and
Bientinesi (2018) which may reduce the overhead due to several small dimensions.

5.4 Resulting building block performance
Here, we show experiments on a single CPU socket of an AMD EPYC 7773X (“Zen 3 V-Cache”)
with 64 cores and the Intel oneMKL (Intel, 2023) as underlying BLAS / LAPACK library.1 We
use the Q-less TSQR implementation discussed in Röhrig-Zöllner et al. (2022).

Fig. 3a shows timings for different variants of the TT-axpby+trunc operation. We observe
significant speedup through replacing SVDs and pivoted QR decompositions by a fast Q-less
TSQR implementation: For the QR orthogonalization sweep alone, the runtime improves by a
factor of ∼4.5 for the largest case (difference between colored an black lines). For the subsequent
SVD sweep, the runtime improves by a factor of ∼2.5. Overall speedup is about ∼3.5. We
only see a small effect through reusing the orthogonality in the example here. It uses random
tensor-trains as inputs, so the rank of the result is the sum of the individual ranks. In practice,
e.g., for the Arnoldi iteration or for calculating the residual in AMEn, the rank of the resulting
tensor-train is often smaller which leads to less work in the SVD sweep and thus a bigger effect
through reusing orthogonalities in the preceding QR sweep.

For the contraction in the inner iteration of AMEn, we illustrate the performance of different
variants in Fig. 3b. The operation consists of 3 tensor contractions, one of them is memory-bound
and the other two are compute-bound for the chosen dimensions (for r ≳ 100). The dotted line
shows the performance of 3 equivalent matrix-matrix multiplications (GEMM). In particular

1We also obtain qualitatively similar results on a 16-core Intel Xeon Gold 6246. We use a workaround for
running Intel oneMKL on AMD hardware defining the function mkl_serv_intel_cpu_true as discussed in https:
//danieldk.eu/Posts/2020-08-31-MKL-Zen.html.

22

https://danieldk.eu/Posts/2020-08-31-MKL-Zen.html
https://danieldk.eu/Posts/2020-08-31-MKL-Zen.html

0

2

4

6

8

10

12

14

16

0 100 200 300 400 500 600 700

ti
m

e
[s

]

TT-rank (rY)

standard
with TSQR

TSQR+reusing orthog.
SVD-sweep (no TSQR)

SVD-sweep (with TSQR)

(a) Timings for the truncated addition of two tensor-
trains (dim. 5010, ranks rX = 50 and rY =
1, . . . , 700).

0

500

1000

1500

2000

2500

3000

3500

4000

0 100 200 300 400 500 600 700

Ppeak

3 GEMMs

P
er

fo
rm

an
ce

[G
F
lo

p/
s]

First/last Op. dimension (r)

standard (Eigen+MKL)
standard (torch.einsum)

standard (MKL only)
optimized (Eigen+MKL)

optimized (MKL only)

(b) Performance of the contractions for multiplying
a 3d TT-operator with a dense tensor (dim.: r ×
50 × r)

Figure 3: Effect of building block optimizations: For adding two tensors in the tensor-train
format (left), we obtain a speedup of ∼3.5 by mapping the calculation onto faster linear algebra
operations as explained in Section 5.1 and Section 5.2. For applying the linear operator of the
inner problem in AMEn (right), we obtain a speedup of ∼3 through directly calling optimized
BLAS routines and through reordering array dimensions.

23

0

100

200

300

400

500

600

700

5 10 15 20 25 30 35 40 45 50

70 140 210 280 350 420 490 560 630 700

ti
m

e
[s

]

RHS rank

approx. solution rank

standard
opt. axpby.

opt. axpby/QB
opt. axpby/QB/apply

(a) Full variant (AMEn+SVD)

0

50

100

150

200

250

300

350

5 10 15 20 25 30 35 40 45 50

70 140 210 280 350 420 490 560 630 700

ti
m

e
[s

]

RHS rank

approx. solution rank

ttpy (ALS(k))
standard (ALS(k))

standard (ALS(k+5))
opt. QB (ALS(k+5))

opt. QB/apply (ALS(k+5))

(b) ALS variant (AMEn+ALS)

Figure 4: Timings for TT-AMEn for solving a linear system from a 5010 convection-diffusion
problem (c = 10) and random RHS BTT with varying ranks. Dashed lines use the TT-rank-
1 preconditioner. Dotted black lines illustrate the asymptotic complexity using the formula
c(0.35(r/700)3 + 0.65(r/700)2). The heuristic ALS variant (right) is about twice as fast as
the full variant (left). For both variants, the time-to-solution is reduced by a factor of ∼5 by
combining all suggested optimizations.

for small dimension r, there is a significant improvement through reordering and combining the
dimensions as discussed in Section 5.3. Without appropriate padding, there are performance
drops whenever the r is close to a number dividable by, e.g., 128 (not shown here). Overall,
there is also a significant difference between using Eigen (Guennebaud et al., 2010) with MKL as
backend and directly calling MKL through the cblas interface, possibly because Eigen explicitly
initializes the result to zero. The standard implementation used here loops over a lot of possibly
small GEMM operations. We also show results using the function torch.einsum in pytorch
(Paszke et al., 2019, version 2.4.0) with opt_einsum (Smith and Gray, 2018) for the unoptimized
ordering of dimensions with MKL 2022.1 as backend. The function torch.einsum results in
similar performance to the unoptimized variant with Eigen and MKL. This underlines that we
choose the optimal contraction order and that the suggested optimization of the data layout
speeds up the computation further compared to common tensor libraries such as pytorch.

5.5 Complete TT-AMEn algorithm
For the complete algorithm for solving a linear system, we focus on the AMEn method as it
needs at least an order of magnitude fewer operations than the other methods. As shown in
Fig. 4, the full AMEn variant needs approximately twice the time of the ALS variant. This is
due to calculating the global residual ATTXTT − BTT which is almost as costly as calculating
XTT itself. We also show timings obtained with the ttpy implementation (ALS variant) from
Dolgov and Savostyanov (2014) for which we linked with Intel MKL for the underlying operations.
Through using optimized building blocks and the suggested TT-rank-1 preconditioner, we speed
up the calculation by a factor of ∼5 for both the full and the ALS variants. In our tests with

24

the ALS variant, we obtain better convergence and time-to-solution by using a slightly better
approximation of the residual (cases with ALS(k + 5) where k denotes the AMEn enrichment
rank and k = rank(BTT)). The TT-rank-1 preconditioner reduces the required number of inner
GMRES iterations by about a factor of two here: from ∼1530 to ∼750 for the SVD variant and
from ∼1580 to ∼850 for the ALS variant for the largest case. However, the number of outer
iterations (sweeps) stays the same and a significant part of the runtime is spent in the outer
iteration. Therefore, the preconditioner only speeds up the total runtime by about a factor of
1.2–1.5.

6 Conclusion and future work
In this paper, we discussed the complexity and the performance of linear solvers in tensor-train
format. In particular, we considered three different common methods, namely TT-GMRES,
MALS (DMRG approach for linear systems) and AMEn, and tested their behavior for a simple,
non-symmetric discretization of a convection-diffusion equation. Concerning the complexity in
terms of floating-point operations, we illustrated that AMEn can be about 100× faster than
MALS, which in turn can be about 100× faster than TT-GMRES. These results already include
an optimized orthogonalization scheme for the Arnoldi iteration in the TT-GMRES method
which is also used as inner iteration of the MALS method.

Concerning the performance, we focussed on the required building blocks on a many-core
CPU. We suggested three improvements over the standard implementation: (a) exploiting or-
thogonalities in the TT-addition with subsequent truncation, (b) using a Q-less tall-skinny QR
(TSQR) implementation to speed up costly singular value and QR decompositions, and (c) op-
timizing the memory layout/ordering of required tensor-contraction sequences for applying the
tensor-train operator in the inner iteration. As improvements (a) and (b) lead to less robust
underlying linear algebra operations, we discussed their accuracy in the context of the required
tensor-train operations. In addition, we presented a simple generic preconditioner based on a
tensor-train rank-1 approximation of the operator. Overall, we obtained a speedup of about 5×
over the reference implementation on a 64-core CPU.

For future work, we want to investigate building block improvements for other tensor-network
algorithms which are often based on very similar underlying operations.

References
Ballani J and Grasedyck L (2012) A projection method to solve linear systems in tensor format.

Numerical Linear Algebra with Applications 20(1): 27–43. DOI:10.1002/nla.1818.

Carson E, Demmel J, Grigori L, Knight N, Koanantakool P, Schwartz O and Simhadri HV (2016)
Write-avoiding algorithms. In: 2016 IEEE International Parallel and Distributed Processing
Symposium (IPDPS). IEEE, pp. 648–658. DOI:10.1109/ipdps.2016.114.

Coulaud O, Giraud L and Iannacito M (2022) A robust gmres algorithm in tensor train format
DOI:10.48550/ARXIV.2210.14533.

Daas HA, Ballard G and Benner P (2022) Parallel algorithms for tensor train arithmetic. SIAM
Journal on Scientific Computing 44(1): C25–C53. DOI:10.1137/20m1387158.

Daas HA, Ballard G, Cazeaux P, Hallman E, Międlar A, Pasha M, Reid TW and Saibaba AK
(2023) Randomized algorithms for rounding in the tensor-train format. SIAM Journal on
Scientific Computing 45(1): A74–A95. DOI:10.1137/21m1451191.

25

Dahmen W, DeVore R, Grasedyck L and Süli E (2015) Tensor-sparsity of solutions to high-
dimensional elliptic partial differential equations. Foundations of Computational Mathematics
16(4): 813–874. DOI:10.1007/s10208-015-9265-9.

Dolgov S and Pearson JW (2019) Preconditioners and tensor product solvers for optimal control
problems from chemotaxis. SIAM Journal on Scientific Computing 41(6): B1228–B1253. DOI:
10.1137/18m1198041.

Dolgov SV (2013) TT-GMRES: solution to a linear system in the structured tensor format.
Russian Journal of Numerical Analysis and Mathematical Modelling 28(2). DOI:10.1515/
rnam-2013-0009.

Dolgov SV and Savostyanov DV (2014) Alternating minimal energy methods for linear systems
in higher dimensions. SIAM Journal on Scientific Computing 36(5): A2248–A2271. DOI:
10.1137/140953289.

Giraud L, Langou J, Rozložník M and Eshof Jvd (2005) Rounding error analysis of the classical
gram-schmidt orthogonalization process. Numerische Mathematik 101(1): 87–100. DOI:10.
1007/s00211-005-0615-4.

Golub GH and Van Loan CF (2013) Matrix computations. Johns Hopkins studies in the mathe-
matical sciences, fourth edition edition. Baltimore: The Johns Hopkins University Press. ISBN
9780898713619. DOI:10.56021/9781421407944. Literaturangaben.

Guennebaud G, Jacob B et al. (2010) Eigen v3. http://eigen.tuxfamily.org. Version 3.3.9.

Hager G and Wellein G (2010) Introduction to High Performance Computing for Scientists and
Engineers. CRC Press. DOI:10.1201/ebk1439811924.

Higham NJ (1990) Analysis of the Cholesky decomposition of a semi-definite matrix. Oxford
science publications. Oxford: Clarendon Press. ISBN 978-0-19-853564-5, pp. 161–185.

Higham NJ (2002) Accuracy and stability of numerical algorithms. Number 80 in Other ti-
tles in applied mathematics, 2nd ed edition. Philadelphia, Pa.: Society for Industrial and
Applied Mathematics (SIAM, 3600 Market Street, Floor 6, Philadelphia, PA 19104). ISBN
9780898718027. System requirements: Adobe Acrobat Reader.

Holtz S, Rohwedder T and Schneider R (2012) The alternating linear scheme for tensor optimiza-
tion in the tensor train format. SIAM Journal on Scientific Computing 34(2): A683–A713.
DOI:10.1137/100818893.

Intel (2023) Intel(R) oneAPI Math Kernel Library (oneMKL). https://www.intel.com/
content/www/us/en/developer/tools/oneapi/onemkl.html. Version 2023.2.

Kawamura H and Suda R (2021) Least upper bound of truncation error of low-rank matrix
approximation algorithm using QR decomposition with pivoting. Japan Journal of Industrial
and Applied Mathematics 38(3): 757–779. DOI:10.1007/s13160-021-00459-x.

Khoromskij BN (2011) O(d log N)-quantics approximation of n-d tensors in high-dimensional
numerical modeling. Constructive Approximation 34(2): 257–280. DOI:10.1007/
s00365-011-9131-1.

Kolda TG and Bader BW (2009) Tensor decompositions and applications. SIAM Review 51(3):
455–500. DOI:10.1137/07070111x.

26

http://eigen.tuxfamily.org
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html

Kressner D, Steinlechner M and Vandereycken B (2016) Preconditioned low-rank riemannian
optimization for linear systems with tensor product structure. SIAM Journal on Scientific
Computing 38(4): A2018–A2044. DOI:10.1137/15m1032909.

Kressner D and Tobler C (2011) Low-rank tensor krylov subspace methods for parametrized
linear systems. SIAM Journal on Matrix Analysis and Applications 32(4): 1288–1316. DOI:
10.1137/100799010.

Leon SJ, Björck Å and Gander W (2012) Gram-Schmidt orthogonalization: 100 years and more.
Numerical Linear Algebra with Applications 20(3): 492–532. DOI:10.1002/nla.1839.

Oseledets IV (2011) Tensor-train decomposition. SIAM Journal on Scientific Computing 33(5):
2295–2317. DOI:10.1137/090752286.

Oseledets IV and Dolgov SV (2012) Solution of linear systems and matrix inversion in the TT-
format. SIAM Journal on Scientific Computing 34(5): A2718–A2739. DOI:10.1137/110833142.

Oseledets IV, Rakhuba MV and Uschmajew A (2018) Alternating least squares as mov-
ing subspace correction. SIAM Journal on Numerical Analysis 56(6): 3459–3479. DOI:
10.1137/17m1148712.

Parlett BN (1998) The Symmetric Eigenvalue Problem. Society for Industrial and Applied Math-
ematics. ISBN 9781611971163. DOI:10.1137/1.9781611971163.

Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N,
Antiga L, Desmaison A, Köpf A, Yang E, DeVito Z, Raison M, Tejani A, Chilamkurthy S,
Steiner B, Fang L, Bai J and Chintala S (2019) PyTorch: an imperative style, high-performance
deep learning library. Red Hook, NY, USA: Curran Associates Inc. URL https://dl.acm.
org/doi/10.5555/3454287.3455008.

Röhrig-Zöllner M and Becklas MJ (2024) PITTS - Parallel Iterative Tensor-Train Solvers. DOI:
10.5281/zenodo.13762681. URL https://github.com/melven/pitts.

Röhrig-Zöllner M, Thies J and Basermann A (2022) Performance of the low-rank TT-SVD for
large dense tensors on modern MultiCore CPUs. SIAM Journal on Scientific Computing 44(4):
C287–C309. DOI:10.1137/21m1395545.

Saad Y (2003) Iterative Methods for Sparse Linear Systems. Society for Industrial and Applied
Mathematics. DOI:10.1137/1.9780898718003.

Schollwöck U (2005) The density-matrix renormalization group. Reviews of Modern Physics
77(1): 259–315. DOI:10.1103/revmodphys.77.259.

Shi T and Townsend A (2021) On the compressibility of tensors. SIAM Journal on Matrix
Analysis and Applications 42(1): 275–298. DOI:10.1137/20m1316639.

Simoncini V and Szyld DB (2003) Theory of inexact Krylov subspace methods and applications
to scientific computing. SIAM Journal on Scientific Computing 25(2): 454–477. DOI:10.1137/
s1064827502406415.

Smith DGA and Gray J (2018) opt_einsum - a python package for optimizing contraction order
for einsum-like expressions. Journal of Open Source Software 3(26): 753. DOI:10.21105/joss.
00753.

27

https://dl.acm.org/doi/10.5555/3454287.3455008
https://dl.acm.org/doi/10.5555/3454287.3455008
https://github.com/melven/pitts

Springer P and Bientinesi P (2018) Design of a high-performance GEMM-like tensor–tensor
multiplication. ACM Transactions on Mathematical Software 44(3): 1–29. DOI:10.1145/
3157733.

Treibig J, Hager G and Wellein G (2010) LIKWID: A lightweight performance-oriented tool suite
for x86 multicore environments. In: 2010 39th International Conference on Parallel Processing
Workshops. IEEE. DOI:10.1109/icppw.2010.38.

van den Eshof J and Sleijpen GLG (2004) Inexact krylov subspace methods for linear sys-
tems. SIAM Journal on Matrix Analysis and Applications 26(1): 125–153. DOI:10.1137/
s0895479802403459.

van der Vorst HA (2003) Iterative Krylov Methods for Large Linear Systems. Cambridge Uni-
versity Press. DOI:10.1017/CBO9780511615115.

White SR (1992) Density matrix formulation for quantum renormalization groups. Physical
Review Letters 69(19): 2863–2866. DOI:10.1103/PhysRevLett.69.2863.

Williams S, Waterman A and Patterson D (2009) Roofline: An insightful visual performance
model for multicore architectures. Communications of the ACM 52(4): 65–76. DOI:10.1145/
1498765.1498785.

Wilson KG (1983) The renormalization group and critical phenomena. Reviews of Modern
Physics 55(3): 583–600. DOI:10.1103/RevModPhys.55.583.

28

	Introduction
	Background and notation
	Numerical background
	Matrix decompositions
	Tensor-train decomposition
	Tensor unfolding and orthogonalities
	Tensor-train vectors and operators

	Performance characteristics on today's multicore CPU systems
	Roofline performance model
	Memory and cache performance

	Numerical algorithms
	Krylov methods: TT-GMRES
	Arithmetic operations in tensor-train format
	Improved Gram-Schmidt orthogonalization
	Tensor-train ranks for problems with a displacement structure

	Modified Alternating Least-Squares (MALS)
	Inner solver: TT-GMRES

	AMEn method
	TT-AMEn+ALS

	Preconditioning
	TT-rank-1 preconditioner

	Comparison of algorithms
	Behavior of tensor-train ranks in the calculation
	Computational complexity of the different methods

	Performance of algorithmic building blocks
	Replacing costly SVDs and pivoted QR decompositions with faster but less accurate alternatives
	Exploiting orthogonalities in TT-axpby+trunc
	Stable residual calculation with inaccurate orthogonalization

	Faster contractions: inner iteration of AMEn
	Resulting building block performance
	Complete TT-AMEn algorithm

	Conclusion and future work

