elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Data-Driven AI Model for Turbomachinery Compressor Aerodynamics Enabling Rapid Approximation of 3D Flow Solutions

Aulich, Marcel und Goinis, Georgios und Voß, Christian (2024) Data-Driven AI Model for Turbomachinery Compressor Aerodynamics Enabling Rapid Approximation of 3D Flow Solutions. Aerospace. Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/aerospace11090723. ISSN 2226-4310.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
3MB

Offizielle URL: https://www.mdpi.com/2226-4310/11/9/723

Kurzfassung

The development of new turbomachinery designs requires numerous time-consuming and computationally intensive computational fluid dynamics (CFD) calculations. However, most of the generated high spatial resolution data remain unused at later development steps. That is also the case with automated optimization processes that use only a few integral values to determine objectives and constraints. To make further use of this vast amount of CFD data a data-driven AI model based on the Transformer architecture is developed and trained using the available CFD data. The presented method subsequently provides a fast approximation of the 3D flow for new designs. In this paper, the structure of the developed AI model is presented and the approximation quality is analyzed using a complex, state-of-the-art compressor test case. It is shown that the AI model can reproduce many characteristics of the 3D flow of new designs, and performance measures such as efficiency can be derived from these flow predictions. In addition, the complex test case revealed that greater design variation reduces the AI approximation quality which can lead to undesirable exploratory behavior in an optimization setup. Overall, the test case has shown promising results and has provided hints for further improvements to the AI model.

elib-URL des Eintrags:https://elib.dlr.de/208109/
Dokumentart:Zeitschriftenbeitrag
Titel:Data-Driven AI Model for Turbomachinery Compressor Aerodynamics Enabling Rapid Approximation of 3D Flow Solutions
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Aulich, MarcelMarcel.Aulich (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Goinis, GeorgiosGeorgios.Goinis (at) dlr.dehttps://orcid.org/0000-0002-1455-7673NICHT SPEZIFIZIERT
Voß, ChristianChristian.Voss (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:September 2024
Erschienen in:Aerospace
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
DOI:10.3390/aerospace11090723
Verlag:Multidisciplinary Digital Publishing Institute (MDPI)
ISSN:2226-4310
Status:veröffentlicht
Stichwörter:AI for 3D CFD; turbomachinery; compressor design; aerodynamic optimization; transformer network; deep neural network
HGF - Forschungsbereich:keine Zuordnung
HGF - Programm:keine Zuordnung
HGF - Programmthema:keine Zuordnung
DLR - Schwerpunkt:Digitalisierung
DLR - Forschungsgebiet:D CPE - Cyberphysisches Engineering
DLR - Teilgebiet (Projekt, Vorhaben):D - HyOpt
Standort: Köln-Porz
Institute & Einrichtungen:Institut für Antriebstechnik > Fan- und Verdichter
Hinterlegt von: Aulich, Marcel
Hinterlegt am:11 Nov 2024 17:10
Letzte Änderung:21 Nov 2024 13:14

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.