Aulich, Marcel und Goinis, Georgios und Voß, Christian (2024) Data-Driven AI Model for Turbomachinery Compressor Aerodynamics Enabling Rapid Approximation of 3D Flow Solutions. Aerospace. Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/aerospace11090723. ISSN 2226-4310.
PDF
- Verlagsversion (veröffentlichte Fassung)
3MB |
Offizielle URL: https://www.mdpi.com/2226-4310/11/9/723
Kurzfassung
The development of new turbomachinery designs requires numerous time-consuming and computationally intensive computational fluid dynamics (CFD) calculations. However, most of the generated high spatial resolution data remain unused at later development steps. That is also the case with automated optimization processes that use only a few integral values to determine objectives and constraints. To make further use of this vast amount of CFD data a data-driven AI model based on the Transformer architecture is developed and trained using the available CFD data. The presented method subsequently provides a fast approximation of the 3D flow for new designs. In this paper, the structure of the developed AI model is presented and the approximation quality is analyzed using a complex, state-of-the-art compressor test case. It is shown that the AI model can reproduce many characteristics of the 3D flow of new designs, and performance measures such as efficiency can be derived from these flow predictions. In addition, the complex test case revealed that greater design variation reduces the AI approximation quality which can lead to undesirable exploratory behavior in an optimization setup. Overall, the test case has shown promising results and has provided hints for further improvements to the AI model.
elib-URL des Eintrags: | https://elib.dlr.de/208109/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||
Titel: | Data-Driven AI Model for Turbomachinery Compressor Aerodynamics Enabling Rapid Approximation of 3D Flow Solutions | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | September 2024 | ||||||||||||||||
Erschienen in: | Aerospace | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Ja | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||
DOI: | 10.3390/aerospace11090723 | ||||||||||||||||
Verlag: | Multidisciplinary Digital Publishing Institute (MDPI) | ||||||||||||||||
ISSN: | 2226-4310 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | AI for 3D CFD; turbomachinery; compressor design; aerodynamic optimization; transformer network; deep neural network | ||||||||||||||||
HGF - Forschungsbereich: | keine Zuordnung | ||||||||||||||||
HGF - Programm: | keine Zuordnung | ||||||||||||||||
HGF - Programmthema: | keine Zuordnung | ||||||||||||||||
DLR - Schwerpunkt: | Digitalisierung | ||||||||||||||||
DLR - Forschungsgebiet: | D CPE - Cyberphysisches Engineering | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | D - HyOpt | ||||||||||||||||
Standort: | Köln-Porz | ||||||||||||||||
Institute & Einrichtungen: | Institut für Antriebstechnik > Fan- und Verdichter | ||||||||||||||||
Hinterlegt von: | Aulich, Marcel | ||||||||||||||||
Hinterlegt am: | 11 Nov 2024 17:10 | ||||||||||||||||
Letzte Änderung: | 21 Nov 2024 13:14 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags