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Abstract: The development of new turbomachinery designs requires numerous time-consuming
and computationally intensive computational fluid dynamics (CFD) calculations. However, most of
the generated high spatial resolution data remain unused at later development steps. That is also
the case with automated optimization processes that use only a few integral values to determine
objectives and constraints. To make further use of this vast amount of CFD data a data-driven AI
model based on the Transformer architecture is developed and trained using the available CFD data.
The presented method subsequently provides a fast approximation of the 3D flow for new designs.
In this paper, the structure of the developed AI model is presented and the approximation quality is
analyzed using a complex, state-of-the-art compressor test case. It is shown that the AI model can
reproduce many characteristics of the 3D flow of new designs, and performance measures such as
efficiency can be derived from these flow predictions. In addition, the complex test case revealed
that greater design variation reduces the AI approximation quality which can lead to undesirable
exploratory behavior in an optimization setup. Overall, the test case has shown promising results
and has provided hints for further improvements to the AI model.

Keywords: AI for 3D CFD; turbomachinery; compressor design; aerodynamic optimization;
transformer network; deep neural network

1. Introduction

The development of AI for flow approximation is still a young field of science com-
pared to many decades of CFD research. Many approaches have already been pursued and
some applications demonstrate the potential of AI methods in forecasting relevant flows in
aerospace. Some methodologies abstain from employing AI models for the direct approxi-
mation of flow, instead utilizing them to enhance the CFD process [1]. Conversely, other
strategies, such as Physics-Informed Neural Networks (PINNs), directly solve the flow
equations [2,3], requiring no training database and yielding physically accurate solutions.
PINNs can also complement measurement data. In [4], the flow field was reconstructed us-
ing a PINN. Additionally, PINNs have successfully addressed internal flow configurations,
solving the steady-state Euler equations in two dimensions for forward and inverse prob-
lems [5]. Furthermore, PINNs have been applied to solve incompressible Navier–Stokes
equations. In a separate work [6], a PINN was utilized to simulate laminar and turbulent
flow. The PINN approach was extended to three dimensions in another study [7]. In this
context, the same PINN was enhanced using a data-driven approach, incorporating param-
eters that describe boundary conditions. The resulting hybrid data-PINNs approach allows
for the flexible utilization of various boundary conditions. However, calculating partial
differential equations (PDEs) using an AI model is computationally expensive in terms of
both time and memory. Consequently, neural networks with relatively few parameters and
a simple, typically fully connected structure are chosen. This makes the PINN approach
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challenging to implement for high-dimensional input spaces, such as design spaces of
multi-stage compressors. Additionally, complex AI structures, such as those significantly
contributing to the success of Large Language Models (LLMs), cannot be employed.

Other AI models are more oriented towards image recognition and use techniques like
convolutional layers [8]. They require an ordered input, similar to the pixels in an image.

Graph Neural Networks (GNNs), use the computational mesh of the CFD simu-
lations [9,10]. They utilize the relationships between adjacent cells to create the flow
approximation. This is similar to the successful approach of CFD simulations. GNNs have
been successfully used for determining flow quantities in 2D [11] and 3D [12]. However,
due to the large memory requirements during training, they are limited by the graph size.
Various approaches allow GNNs to be applied to larger CFD networks. In reference [12],
the CFD network is divided into sub-meshes. Communication between the sub-meshes
occurs through the boundaries with so-called halo cells. Recent methods follow approaches
similar to the multigrid approach in CFD solvers [13], enabling the application of GNNs to
CFD meshes with industry-relevant resolution.

The presented method avoids some of the limitations of other AI models by employing
the transformer architecture [14] to approximate the three-dimensional, frictional and
compressible flow in compressors.

Compared to PINNs, a high-dimensional input can be used. This allows for a complex
CFD setup to be provided as input. Changes in geometry and boundary conditions
are directly reflected in the input of the AI model. The degrees of freedom exceed the
capabilities of PINNs significantly. As a result, the trained AI model can be used for a
wide range of different compressor designs and boundary conditions. Additionally, the AI
model employs state-of-the-art architectures with a large number of parameters, which is
not possible in the PINN approach.

Moreover, there is no requirement for a CFD grid, as seen in GNNs, to perform the
flow approximation. The approximation of the flow at a given point is derived directly
from the boundary conditions, which include the geometry and flow boundary conditions
for the corresponding operating point. The CFD grid is not incorporated into the AI model,
thereby eliminating any memory issues associated with large CFD grids.

Since the structure and resolution of the CFD mesh are not utilized by the AI model,
various grid topologies can be employed for training.

Furthermore, the underlying Transformer architecture enables the exchange of in-
formation between distant points in the compressor almost directly. Information is not
relayed through neighboring points. For example, a separation in the last stage could be
communicated immediately to the first stage without requiring any workarounds. This
represents a natural advantage of the Transformer architecture.

However, it is not clear whether the abandonment of the neighborhood relationship
between the grid cells impairs the approximation quality compared to Graph Neural
Networks. In addition, a suitable training database is needed compared to PINNs and the
AI approximations can become unphysical.

In summary, this led to the development of a rapid and adaptable AI model capable
of generating a comprehensive 3D flow approximation. These flow approximations do
not achieve the physical “correctness” of a CFD simulation in terms of the governing
differential equations. However, they enable a quick evaluation of an unknown design.
These characteristics are comparable to other surrogate models used in the design process of
turbomachinery. Surrogate models can showcase their advantages here, as the aerodynamic
design of a turbomachinery component, like a compressor stage, is a complex task that
requires numerous design variations. Nowadays, automated optimization processes are
often used for this design purpose and the generated designs are evaluated and rated
using time-consuming CFD simulations. Sophisticated optimization methods reduce the
number of required CFD simulations by the intensive use of surrogate models [15–17].
These methods significantly speed up the optimization process by making a quite cheap
pre-selection of particularly promising candidates in terms of the integral values defining
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the objectives and constraints. As a result, extensive design analyses with a large number
of design variables became possible [17–19].

However, these conventional surrogate models, like Gaussian processes [15,17], or
Radial Basis Function Networks [16], only processes and predicts independent scalar-
valued results from a specific optimization setup with a fixed set of free variables. This
means that the surrogate models have to be built from scratch for each optimization if there
is any change in geometry parameterization or in CFD settings, boundary conditions
or post-processing to calculate the important evaluation criteria. This paper describes a
way to extend the existing surrogate approach which approximates the whole process-
chain from design variables to scalar-valued performance criteria, by providing a new AI
method that approximates the CFD process and maps the three-dimensional geometry
and the respective boundary conditions to the resulting three-dimensional flow. This AI
model is able to process the flow of information from millions of cells in a CFD simulation.
Compared to many other data-driven surrogate models, this results in a huge knowledge
base that can be exploited by the AI model. In addition, the new model can be used flexibly
for different compressors and different operating points and it is not tied to a specific design
setup. This means that a new design process can be started with an already-trained model.
The AI model is able to approximate the 3D flow of newly generated designs in the initial
optimization phase.

The possible application of this approach is illustrated in Figure 1. The left column of
Figure 1 illustrates how CFD results from previous optimizations are collected and then
used to train the AI (middle column) for the support of the next upcoming optimization.

Figure 1. Illustration of application of AI model as fast surrogate for new optimizations, exploiting
existing optimization databases.

The structure of the paper is as follows. First, the developed AI model is described
in detail in Section 2. Then the creation of the training database is explained and the
compressor which was analyzed here is presented (Section 3). The concrete application
together with the optimization setup is discussed in Section 4. The results of the different
optimization loops and some aerodynamic details are discussed in Sections 5 and 6. Finally,
a brief summary and an outlook are provided in Section 7.

2. AI Model Structure

The AI model is structured in such a way that input and output are identical to CFD
simulations. This means that CFD data can be used directly to train the AI model. Using
the CFD data, the AI model learns the relationship between the input boundary conditions
(3D geometry coordinates, flow boundary conditions, rotational speed) and the 3D flow
(velocities in xyz direction, pressure and density) for any points in the flow.
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The AI model is a deep neural network. It uses standardized input and output
quantities. This means that all variables have an expected value of zero and a variance of
one. Thus, it can be assumed that all input variables have a similar influence on the output
of the AI model. This would not be expected for input variables with very different ranges
of values. Standardization of the outputs (zero mean, variance one), on the other hand,
means that they have a comparable influence on the loss function. Otherwise, outputs
with a wide range of values, such as pressure, could dominate the loss function. The loss
function is the mean squared error (MSE) of all the output points. Each output point
contains the five quantities x, y, and z velocity, density, and pressure. The AI basic structure
consists of different modules: a pre-processing module, repeating data processing modules
and an interpolation module (Figure 2).

Figure 2. Basic structure of the AI model.

First, the input data are pre-processed. The number of geometry points is reduced
to a predetermined number to reduce the memory requirements of the AI model. This is
achieved by randomly selecting the surface points of the CFD mesh (Figure 3).

(a) CFD mesh surface points (b) Randomly selected points
Figure 3. Reduction in geometry surface points. (a) 135768 solid body surface points (b) 2 * 4096
randomly chosen surface points.

Typically, blade geometries are described by a limited number of design variables
(<100). This means that the blade design can be completely described by a small number of
parameters. Consequently, a single design variable changes a large number of geometry
points. The influence of a design variable can be fully described by a subset of these
geometry points. The number of randomly selected points has been chosen to be sufficiently
large for this purpose. The fan stage in Figure 3 is from a data set described by 64 design
parameters. Each parameter change will alter the coordinates of a large number of the 4096
randomly selected points in a row. Depending on the application and the choice of design
variables, a different number of randomly selected points may be appropriate. However,
a certain degree of universality can be expected. The advantage of using CFD meshes is
that they have a very fine resolution in sensitive regions with high flow gradients. On the
other hand, uncritical areas can be represented with fewer cells. Therefore, a random
selection of points ensures that the distribution of points remains comparable: Areas that
are represented by a high resolution in the CFD mesh remain more finely resolved.

After geometry points are chosen randomly, the turbomachinery compressor is divided
into individual blade rows. This enables the use of an AI row model. The AI row model
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creates an approximation of the 3D flow of one blade passage. As input, it requires the 3D
surface coordinates of the blade geometry, the hub and the casing geometry, the rotational
speed and the inlet and outlet boundary conditions at the blade row interfaces. This
approach allows the AI row model to be used flexibly. The same AI row model can
be trained on different compressors with different numbers of stages, blades and vanes
because most compressors can be divided into individual blade rows. Figure 4 shows the
AI approximated flow of a 3.5-stage low-pressure compressor (left) and a single-stage fan
(right), both of which can be used for training not only the same AI row model, but the
entire AI Model.

(a) (b)
Figure 4. Same AI Model used for different applications; AI approximated flow; same legend
in m/s for both cases. (a) Multi-stage low pressure compressor. (b) Fan stage (three slices of the
3D approximation).

The goal is to learn from different CFD data and apply them to new applications.
Within a single application, this approach results in an enhanced data set for the AI row
model: The number of training samples increases with each additional row of blades and
vanes in the compressor.

However, to determine the flow in a blade row, the inlet and outlet boundary con-
ditions at the blade row interfaces are required. These are not known everywhere in a
multi-row configuration in advance. Therefore, an AI interface model is implemented to
approximate the boundary conditions at all interfaces. The AI interface model receives
the compressor inlet and outlet conditions as well as the approximations from the AI row
model for all compressor stages. This allows flow changes in individual blades and changes
in the compressor inlet and outlet to be communicated to all rows. The AI interface model
and the AI row model are called iteratively (Figure 5).

Figure 5. Interaction between different AI sub models.
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Initially, the AI interface model contains CFD cell coordinates of all interfaces. This
location information is used to derive the effects of the compressor inlet and outlet boundary
conditions on the interface positions. Each blade row is initially represented by its geometry
and rotational velocity. This information is used to initialize the boundary conditions of
all interfaces, labeled as “Flow Repr.” in Module 1 of Figure 5. The AI row model is then
called separately for each blade row. It also receives the initial geometry and rotational
speed as input. In addition, the AI interface model’s initial estimates of the flow boundary
conditions at the blade row interfaces are used. As a result, the AI row model provides an
initial flow representation for each blade row. The sequence of AI interface and AI row
Model is repeated ten times to increase the degree of freedom and the depth in the AI
model. A greater depth of an AI model often enhances the ability to generalize in many
cases. However, this has not yet been investigated here.

The sequence commences with an initial setup involving the original geometry and
rotational speed. The AI interface models then receive the flow representations from the AI
row model, while the row model adopts the boundary conditions from the interface model.
Consequently, the boundary conditions at the interfaces and the flow representations
undergo iterative updates. In the last step, the flow representation of the AI model is used
to approximate the 3D flow. This is conducted using an AI interpolation model.

Due to memory and computational limitations, the AI model cannot use the same
number of cells as the CFD mesh for its flow representations. Therefore, the AI model
generates an abstract representation of the flow with 4096 points for each row of blades
or vanes. Each of these points contains 256 floating-point numbers for storage. In total,
the flow in a blade row is represented by 1,048,576 float values. This information is used
in the AI interpolation model to interpolate the flow onto the cells of the CFD mesh.
Consequently, the AI interpolation model receives the cell-centered coordinates in addition
to the flow representations from the AI row model (Figure 6).

Figure 6. Interpolation of AI flow representations to CFD mesh.

All AI sub-models described above use the Transformer architecture [14]. In order
to increase the stability during training, a modified version has been implemented [20].
The attention mechanism of the transformer is used in two different ways. Cross-attention
is used to add information from other tensors. Self-attention is used to exchange informa-
tion within a tensor. In the AI interpolation model, only cross-attentions are used to extract
the required information from the AI flow representation and to generate the flow approxi-
mations for each cell independently. In the cross-attention mechanism, no information is
exchanged between the cells, which are the input of the query tensor. For this reason, it is
possible to subdivide the cell-centered points of the CFD mesh into any number of subsets.
These subsets can be approximated individually. This avoids memory problems even with
large CFD meshes.

Interpolation onto the CFD meshes and writing of common CFD file formats (e.g.,
CGNS) allows the same post-processing to be used as in the CFD process chain. The AI
model can, therefore, be used as a plug-and-play replacement for CFD simulations in
optimization process chains (Figure 7).
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Figure 7. Typical process chain in a design process. The AI model can directly replace the CFD
Process. All other processes remain unchanged.

A Transformer call returns an updated query tensor. The key tensor is used to decide
which information from the value tensor is relevant [14]. In Figure 8 the Transformer calls
of the AI row model are displayed. The input elements follow the well-known attention
mechanism within the Transformer architecture. They are divided into query, key and
value tensors (tensors are multidimensional arrays in this case).

Figure 8. Transformer architecture of AI row Model. Q, K and V stand for Query, Key and Value of
the attention mechanism.

Most layers use 256 units in the last dimension. Exceptions are a layer in the trans-
former, where the units are increased to 1024, and the input and output layers. The number
of units determines the degree of freedom in the AI model. The choice of 256 units results
in a total of approx. 47 million trainable parameters.

The AI model is programmed in Python. To implement the AI routines, TensorFlow is
used as a library.

3. Training of the AI Model

The training data originates from a design optimization of a three-and-a-half-stage
low-pressure compressor. The aim of the optimization was to extend the compressor map
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at lower speeds and keep the efficiency at the design point. For the compressor map
calculation a through-flow method, described in [19], was used. Additionally, several
operating points throughout the map were constantly checked during the optimization
using a RANS solver. The RANS calculations were performed with the DLR in-house solver
TRACE [21,22].

A total of 198 parameters were used to modify compressor geometry and operating
points; 110 parameters were used to describe hub and casing contours as well as blade axial
chords (Figure 9). In addition, 73 airfoil parameters were used to define five airfoil sections
for each blade. The airfoil parameters are typical for a throughflow solver. Parameters
used for the rotor airfoil sections are stagnation pressure ratio, thickness-to-chord ratio and
design incidence and for the stator sections thickness-to-chord ratio, outflow angle and
design incidence. The remaining parameters include blade numbers, mass flow at ADP,
shaft speed and twist angles for the vane schedule at part speed.

x

r

Figure 9. Design of hub, housing, leading and trailing edge of blades using splines. Black solid lines
represent hub and casing contours as well as blade leading and trailing edges (with extrapolation out
of the flow path). Colored squares represent spline construction points.

The RANS simulations of this optimization are used as training data for the AI model.
The total number of CFD simulations used is 500 and in addition, data augmentation
is applied to increase the number of training samples. This is conducted by randomly
and independently rotating each blade row in the circumferential direction. The entire
compressor is also randomly shifted in the axial direction. These operations do not change
the solutions of the CFD simulations, since the data used are stationary, circumferentially
periodic RANS simulations. For the AI model, however, new geometries are introduced as
input. These extend the training database and should lead to a better generalization of the
AI model. This way, the number of training samples is increased to 1500. Training with this
database takes 4 days (one GPU, NVIDIA RTX A6000, 48 GB). The development of the loss
function, explained in Section 2, during the training process, is shown in Figure 10 where
the loss over each sample (Mean Squared Error of a single CFD simulation at randomly
selected grid points) is plotted, rather than the loss over the epochs as is usually the case.

The plot shows the variation in the MSE of the samples due to the different geometries
and operating points. Only one sample is used in each training iteration. This is due to the
memory requirements of both the samples and the AI model. In order to be able to use ar-
bitrary mini-batch sizes, a gradient accumulation method was implemented. The gradients
from each training iteration are summed up and the result is stored. The actual gradient
step to update the parameters of the AI model takes place after a given number of training
iterations, in this case, every 16 iterations. As only one sample is used in each iteration,
the mini-batch size is also 16.
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Figure 10. Loss function of training data set.

4. Optimization Setup

As described in the previous sections the AI model can be used to predict flow fields,
even if there are changes in geometry parameterization, CFD settings, boundary conditions,
or post-processing. Here, it is used to demonstrate how a data set from an early-stage
design optimization with typical design parameters of a throughflow method can be used to
train an AI model to provide fast predictions for a more detailed CFD design optimization.

The previous throughflow-based setup is adapted for a full 3D RANS CFD optimiza-
tion. The objectives were reduced to maximizing efficiency at the design point. The different
operating points were retained for comparison between CFD simulation and AI approxi-
mation but were not included in the objectives.

The 73 airfoil parameters from the through-flow optimization are omitted. Instead,
155 typical design variables such as stagger angles, leading/trailing edge angles, lead-
ing/trailing edge radii and De Boor point coordinates for suction and pressure sides are
introduced. In total, this optimization setup has 280 free parameters. To limit the number
of RANS calculations, only two simulations on each of the four speed lines are carried out,
as marked in Figure 11.
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Figure 11. Simulated operating points of the optimization.
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The choice of training data ensures that the AI model is based on data that is close to
the use case. The new parameterization requires the AI model to extrapolate to unknown
geometry variations. Figure 12 shows the geometric differences between a through-flow
parameterized training design and an optimization design using the detailed parameteriza-
tion described above.

Figure 12. Geometry differences between a training design (grey) and an optimization
design (orange).

The design space is already limited by the preliminary design. Local design changes
are evaluated with the time-consuming and costly CFD process chain. However, these have
a significant overall effect on the flow in the compressor. Larger design changes result from
the vane schedule. This can be clearly seen on the inlet guide vane (IGV) and stator 1 in
Figure 12. In total, the design variations extend over the entire compressor.

The high number and the variation of design parameters have the following con-
sequences: surrogate models that are only trained during the three-dimensional CFD
optimization (e.g., Kriging models) cannot yet deliver reliable results at the beginning of
this optimization due to missing data. On the other hand, the pre-trained AI model does
not receive the design parameters as direct input but creates the flow solution directly based
on the geometries, interfaces and boundary conditions. The AI model does not establish a
direct correlation between design parameters and flow solutions. The AI model is, therefore,
intended to complement, rather than replace, established optimization surrogate models
such as Gaussian processes.

The optimization setup was chosen such that the optimization surrogate models did
not play a role in this analysis, as only the initial phase of an optimization was considered.
In these studies, the optimizations were terminated after 100 successful runs of the process
chain (geometry generation, mesh generation, CFD simulations or AI approximations, post-
process). Two independent optimizations were carried out, one was purely CFD-based
and the other purely AI-based. The databases were then recalculated and compared using
the other model. The CFD optimization should demonstrate that the AI model can deliver
meaningful results for the initial phase, a “typical” optimization database. The optimization
based on the AI model, on the other hand, could exploit the weaknesses of the model and
specifically favor designs with errors in the AI approximation.

Run times for the CFD operating points were between 5 and 15 min (2 CPUs, Advanced
Micro Devices, Inc. (AMD), Santa Clara, CA, USA, EPYC 7601, 32 cores, 2.2 GHz). The AI
approximation of an operating point took 10 to 15 s (one GPU, NVIDIA, Santa Clara, CA,
USA, RTX A6000, 48 GB). With finer CFD meshes, the speed advantage of the AI model
would probably increase further. In addition, the AI approximations naturally do not show
any convergence problems compared to CFD solvers.

5. Results

To gain an initial impression of the extent to which the model can approximate the
flow physics learned from the RANS simulations, Figure 13 shows a comparison of the flow
velocities in the axial direction for the aerodynamic design point at 100% rotational speed.
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Figure 13. 100% speed, design point, vx section in m/s of the 3D solution. Design generated in
CFD optimization.

A design from the initial phase of the CFD optimization process was selected for
this comparison and recalculated with the AI model. A meridional section through the
three-dimensional flow solution is presented to facilitate a comparison between CFD and
AI flow. Therefore, the axial velocity is depicted.

Qualitatively, the AI approximation seems to provide a sufficiently accurate represen-
tation of the flow field. The overall velocity level remains consistent. The flow surrounding
the blades is illustrated, and the shock system is clearly visible. Significant deviations are
observed in rotor 2, where the AI model fails to clearly delineate the shock. Generally, the AI
model tends to blur the sudden change in the velocity at the shock position, generating a
large local error (Figure 14).

Figure 15 presents a different operating point on the working line at 70% part speed.

Figure 14. (a) AI flow approximation of rotor 1 and stator 1 (b) CFD result (a,b) vx in m/s (c) Difference
between AI and CFD in abs (m/s).
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Figure 15. 70% speed, working line, vx in m/s, design generated in CFD optimization.

The alteration in the velocity field, induced by the reduced shaft rotation, is portrayed
by the AI model. In general, the flow across all operating points is depicted with comparable
quality. Stagnation points and wakes are distinctly visible.

The AI model approximates the velocities, density, and pressure. All quantities are
represented with similar quality. This is exemplified by the approximation of the density in
Figure 16.

Figure 16. 100% speed, design point, density section in kg/m3 of the 3D solution.

The AI model was trained to minimize the mean squared error (MSE) between the
AI approximation and CFD simulations of the complete flow field. This enables the AI
model to reproduce many of the characteristics in the flow pattern. However, what is
particularly important for an optimization setup is how the discrepancies between CFD
and AI flow solutions influence the integral quantities of the optimization. For example,
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small differences in the flow can have a major influence on the efficiency, which is used as
an objective function in almost all aerodynamic compressor optimizations and should be
maximized. Such integral quantities were not explicitly taken into account in the training
of the AI model but would be automatically reproduced if the AI approximations were of
sufficient accuracy. Deviations in the AI approximations as shown in Figures 13 and 15
suggest, however, that a sensitive variable such as efficiency could not be reproduced
accurately. This assumption is confirmed in Figure 17. It is important to note that the
isentropic efficiency of a compressor (see [23] for the definition of compressor performance
parameters) is calculated solely from inlet and outlet flow quantities (total pressure and
total temperature), while the loss function of the AI model is based on the reproduction
of entire flow field. This means that even very small changes in the total temperature at
the compressor outlet have a very strong effect on the efficiency, but hardly any effect on
the loss function of the AI model. Consequently, this performance parameter represents a
significant challenge for the AI model. Nevertheless, it is typically incorporated into the
majority of compressor optimization processes.

Figure 17. Design point efficiency development in the CFD optimization setup.

Within an optimization process, surrogate models are typically used to quickly evalu-
ate new designs. Therefore, the representation of the optimization progress was chosen
here. This is intended to illustrate whether the AI model could be used to filter out a newly
generated design.

The isentropic efficiencies of the optimization designs, calculated by conventional post-
processing of the respective CFD or AI flow solution, are represented over the optimization
progress. This axis is determined by the order in which the designs were calculated.
The further to the right a design is on the progress axis, the later it was generated. Later
designs benefit from already calculated designs. Thus, promising designs can inherit
their parameters.

Designs that did not successfully pass through the process chain have been sorted
out in this representation. CFD and AI results with the same value on the optimization
progress axis refer to the same design.

It is immediately apparent that the efficiencies calculated from the AI approxima-
tion are generally approx. 1% too high (the negative values of the efficiency are plotted
because fitness functions are minimized in the optimization). An error of one percent
in efficiency is generally significant when optimizing a compressor. Because often the
efficiency can only be increased slightly. A positive evaluation by the AI model could,
therefore, be solely due to the inaccuracy of the model.

Within an optimization, however, the absolute values of the designs are of less interest.
It is more important that the relative position of the designs to each other in the objective
function and constraint space matches and thus the ranking remains correct. Accordingly,
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in order to be able to superimpose the efficiencies, it is necessary to determine the efficiencies
on different axes for the AI and CFD (Figure 18). Furthermore, the figure was magnified
to provide a more comprehensive overview, with only the second half of the generated
designs displayed.

Figure 18. Comparison of the relative positions of the efficiencies in the CFD optimization setup and
the AI recalculations; CFD outliers “identified” by AI model circled in orange.

The general trend of increasing efficiency during that phase in the CFD optimization is
also reflected in the AI recalculations, indicated by the blue straight line in Figure 18. In ad-
dition, most CFD “outliers”, circled in orange with their corresponding AI recalculations
can also be identified. It can be posited that although the discrepancies in the efficiency
target function are considerable, crucial information in the CFD database is also contained
in the AI recalculations. The error in the AI approximations is primarily a general bias.
Consequently, the quality of the designs, as determined by the Pareto rank, is largely pre-
served in the AI approximations. A comparability of the designs is, therefore, given. This
has a lot of potential for accelerating the optimization. For example, a Pareto rank criterion
could be specified based on AI approximations to reduce the complex validations through
CFD simulations. It could be required that the designs shown in Figure 18 must have rank
1 in the AI Pareto rank determination. In that case, only the two outliers at the bottom left
would have been validated by CFD simulations. All other CFD simulations would have
been omitted without a design being wrongly sorted out. The time and computational
savings would be enormous.

However, this criterion only applies because of the two outliers. In general, the determi-
nation of the Pareto rank by the AI model is not accurate enough to use such a strict criterion.
Therefore, a Pareto rank criterion would have to be chosen as a compromise. On the one
hand, as many less promising designs as possible should be sorted out. On the other hand,
no designs should be wrongly sorted out. In the database shown in Figure 18, however,
a less strict criterion would also have led to great time and computational cost savings.

In the second study, designs were generated in the optimization setup using the AI
model as a CFD replacement. This is of course the toughest test for the model, as it opti-
mizes for small total pressure increases and total temperature decreases at the compressor
outlet and thus, the optimizer can move into unknown regions of the design space for
which the model has not been trained. But by using the model in this way, the time and
computational savings would be maximized. However, this requires an AI model that
accurately represents the CFD process in a quantitative manner.

The recalculation of 100 AI-based designs in the second optimization revealed that the
optimization is convergence-driven. This means that many designs do not have a solution
in the CFD simulation. These designs fail in the process chain. On the other hand, the AI
model always generates a flow approximation, even for unphysical boundary conditions.
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This means that major design changes can be made without violating the success of the
process chain. The designs are no longer bound to the design space in which the CFD
simulations converge. This results in only 8 of the 100 AI-generated designs having a
converged solution in the CFD simulation. It is probable that the eight converged designs
exhibit greater design variations than the training database, which would necessitate an
extrapolation of the AI model.

Figure 19 shows a flow comparison between an AI-optimized design and CFD recalculation.

Figure 19. 100% speed, design point, AI-generated design.

It is noticeable that the deviations are greater than in the reverse case, the comparison
between CFD design and AI recalculation (Figure 13). These deviations are not particularly
noticeable at a specific point but are distributed across the flow field. The entire shock
system is blurred. Details are hardly reproduced. This underlines the assumption that
major design modifications have been made and the training database does not sufficiently
represent these variations.

6. Discussion

The present paper demonstrates that the AI model can learn from CFD simulations
that have already been carried out and transfer this knowledge to a newly parameterized
optimization. In the AI recalculations of the hundred first optimization designs of a CFD
optimization, the trend and some outliers of the optimization database could be reproduced
in terms of integral performance parameters. For this purpose, the efficiency, a particularly
sensitive target function that reacts sensitively to flow changes, was analyzed. In the
opposite case, an optimization-based solely on AI as a CFD replacement, the weaknesses of
the AI approach were identified. For example, AI designs were generated for which the
CFD simulation did not find a solution. For an optimization that suffers from convergence
problems in the CFD process, further measures should be taken to counteract this. For ex-
ample, a similar problem arose when generating the training database for the AI model.
Here, the design generation was based on a through-flow method, which also generated
designs that did not converge in higher-order recalculations. This was countered with re-
strictions on deviations from individual CFD recalculations. Such a procedure could also be
a possibility for the usage of the AI model during optimizations. The second optimization
also showed that the effects of major design changes could not be adequately reproduced
by the AI model. A larger training database with more diverse design variations should
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help here. This should make the AI model generally more robust with regard to design
changes within optimizations.

7. Conclusions/Outlook

The successful transformer architecture could be transferred to an AI model for approx-
imating 3D flows. This leads to the fact that the memory and computational requirements
of the AI model do not directly depend on the CFD grid. Thus, the AI model can be
trained with very large CFD meshes of various topologies and provide approximations.
For this purpose, a complex use case was chosen that demonstrates the ability to process
large CFD grids. Furthermore, this use case shows that the AI model is able to process a
comprehensive setup consisting of geometry and boundary conditions. Thus, the same AI
model is capable of providing approximations for a variety of compressor configurations.
The structure of the AI model, which includes a module for individual blade rows, helps
with this. The functionality of this model was demonstrated using the multi-stage use
case. This module can be applied to the individual blade rows of different compressors to
increase the generalization capabilities of the AI model.

The AI model is currently undergoing analysis and improvement in other ongoing
projects. A multi-fidelity approach, in which the AI model serves as a low-fidelity process,
is being considered. Furthermore, the flexibility of the AI model is being enhanced: The
same AI model can be utilized for a diverse range of compressors, fans, and even industrial
blowers including a far-field. Further work is being conducted on the AI model with the
objective of integrating it into applications across various subject areas.
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