Fediukov, Vladyslav und Huhne, Jana und Dietrich, Felix und Buse, Fabian (2024) Uncertainty quantification for wheeled locomotion machine learning predictions on soft soil. In: 21st International and 12th Asia-Pacific Regional Conference of the ISTVS. 21st International and 12th Asia-Pacific Regional Conference of the ISTVS, 2024-10-28 - 2024-10-31, Yokohama, Japan. doi: 10.56884/6VTE9FAQ.
PDF
- Nur DLR-intern zugänglich
956kB |
Offizielle URL: https://2024.istvs.org/submissions/papers/9028
Kurzfassung
Surrogate modeling with machine learning (ML) techniques is becoming increasingly popular in engineering and physical fields. Models based on statistical inference often lack uncertainty measures, which are crucial for comprehensive predictions. Uncertainty quantification (UQ) addresses these challenges, especially in tasks lacking analytical solutions or extensive experimental data, such as modeling wheel locomotion on soft soils. High-fidelity data from real experiments or precise particlelevel simulations are scarce, adding inherent uncertainty to statistical models. In our paper we analyzed the UQ aspect of the terramechanical surrogate modeling. Our surrogate model leverages the probabilistic nature of Gaussian processes to facilitate uncertainty calculation and make further analysis easier. We extend UQ analysis into a new multi-fidelity model for wheel locomotion. Our work aims to improve the model’s interpretability and optimization through uncertainty propagation, sensitivity analysis and uncertainty decomposition.
elib-URL des Eintrags: | https://elib.dlr.de/208069/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Poster) | ||||||||||||||||||||
Titel: | Uncertainty quantification for wheeled locomotion machine learning predictions on soft soil | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 10 Juni 2024 | ||||||||||||||||||||
Erschienen in: | 21st International and 12th Asia-Pacific Regional Conference of the ISTVS | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||
DOI: | 10.56884/6VTE9FAQ | ||||||||||||||||||||
Herausgeber: |
| ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | Rover locomotion, Surrogate modeling, Machine learning, Multi-fidelity, Uncertainty quantification | ||||||||||||||||||||
Veranstaltungstitel: | 21st International and 12th Asia-Pacific Regional Conference of the ISTVS | ||||||||||||||||||||
Veranstaltungsort: | Yokohama, Japan | ||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
Veranstaltungsbeginn: | 28 Oktober 2024 | ||||||||||||||||||||
Veranstaltungsende: | 31 Oktober 2024 | ||||||||||||||||||||
Veranstalter : | International Society for Terrain-Vehicle Systems | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Robotik | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R RO - Robotik | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Terramechanik, R - Maschinelles Lernen | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Systemdynamik und Regelungstechnik > Raumfahrt-Systemdynamik | ||||||||||||||||||||
Hinterlegt von: | Fediukov, Vladyslav | ||||||||||||||||||||
Hinterlegt am: | 13 Jan 2025 09:44 | ||||||||||||||||||||
Letzte Änderung: | 13 Jan 2025 09:44 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags