Siegl, Pia und Wassing, Simon und Mieth, Dirk Markus und Langer, Stefan und Bekemeyer, Philipp (2024) Solving Transport Equations on Quantum Computers - Potential and Limitations of Physics-Informed Quantum Circuits. CEAS Aeronautical Journal. Springer. doi: 10.1007/s13272-024-00774-2. ISSN 1869-5590.
PDF
- Verlagsversion (veröffentlichte Fassung)
2MB |
Offizielle URL: https://link.springer.com/article/10.1007/s13272-024-00774-2
Kurzfassung
Quantum circuits with trainable parameters, paired with classical optimization routines can be used as machine learning models. The recently popularized physics-informed neural network (PINN) approach is a machine learning algorithm that solves differential equations by incorporating them into a loss function. Being a mesh-free method, it is a promising approach for computational fluid dynamics. The question arises whether the properties of quantum circuits can be leveraged for a quantum physics-informed machine learning model. In this study, we compare the classical PINN-ansatz and its quantum analog, which we name the physics-informed quantum circuit (PIQC). The PIQC simulations are performed on a noise-free quantum computing simulator. Studying various differential equations, we compare expressivity, accuracy and convergence properties. We find that one-dimensional problems, such as the linear transport of a Gaussian-pulse or Burgers’ equation, allow a successful approximation with the classical and the quantum ansatz. For these examples, the PIQC overall performs similarly to PINN and converges more consistently and for Burgers’ equations even faster. While this is promising, the chosen quantum circuit approach struggles to approximate discontinuous solutions which the classical PINN-ansatz can represent. Based on this comparison, we extrapolate that the required number of qubits for solving two-dimensional problems in aerodynamics may already be available in the next few years. However, the acceleration potential is currently unclear and challenges like noisy circuits and approximations of discontinuous solutions have to be overcome.
elib-URL des Eintrags: | https://elib.dlr.de/207964/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||
Titel: | Solving Transport Equations on Quantum Computers - Potential and Limitations of Physics-Informed Quantum Circuits | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | 30 Oktober 2024 | ||||||||||||||||||||||||
Erschienen in: | CEAS Aeronautical Journal | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||
DOI: | 10.1007/s13272-024-00774-2 | ||||||||||||||||||||||||
Verlag: | Springer | ||||||||||||||||||||||||
ISSN: | 1869-5590 | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | Quantum Machine Learning, Physic_Informed Neural Networks, Quantum Computing, Solving, Differential Equations | ||||||||||||||||||||||||
HGF - Forschungsbereich: | keine Zuordnung | ||||||||||||||||||||||||
HGF - Programm: | keine Zuordnung | ||||||||||||||||||||||||
HGF - Programmthema: | keine Zuordnung | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Quantencomputing-Initiative | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | QC AW - Anwendungen | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | QC - ToQuaFlics | ||||||||||||||||||||||||
Standort: | Dresden | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Softwaremethoden zur Produkt-Virtualisierung Institut für Aerodynamik und Strömungstechnik | ||||||||||||||||||||||||
Hinterlegt von: | Siegl, Pia | ||||||||||||||||||||||||
Hinterlegt am: | 04 Nov 2024 21:24 | ||||||||||||||||||||||||
Letzte Änderung: | 04 Nov 2024 21:24 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags