
Vol.:(0123456789)

CEAS Aeronautical Journal
https://doi.org/10.1007/s13272-024-00774-2

ORIGINAL PAPER

Solving transport equations on quantum computers—potential
and limitations of physics‑informed quantum circuits

Pia Siegl1 · Simon Wassing2 · Dirk Markus Mieth1 · Stefan Langer2 · Philipp Bekemeyer2

Received: 16 February 2024 / Revised: 30 August 2024 / Accepted: 16 September 2024
© German Aerospace Center 2024

Abstract
Quantum circuits with trainable parameters, paired with classical optimization routines can be used as machine learning
models. The recently popularized physics-informed neural network (PINN) approach is a machine learning algorithm that
solves differential equations by incorporating them into a loss function. Being a mesh-free method, it is a promising approach
for computational fluid dynamics. The question arises whether the properties of quantum circuits can be leveraged for a
quantum physics-informed machine learning model. In this study, we compare the classical PINN-ansatz and its quantum
analog, which we name the physics-informed quantum circuit (PIQC). The PIQC simulations are performed on a noise-free
quantum computing simulator. Studying various differential equations, we compare expressivity, accuracy and convergence
properties. We find that one-dimensional problems, such as the linear transport of a Gaussian-pulse or Burgers’ equation,
allow a successful approximation with the classical and the quantum ansatz. For these examples, the PIQC overall performs
similarly to PINN and converges more consistently and for Burgers’ equations even faster. While this is promising, the chosen
quantum circuit approach struggles to approximate discontinuous solutions which the classical PINN-ansatz can represent.
Based on this comparison, we extrapolate that the required number of qubits for solving two-dimensional problems in
aerodynamics may already be available in the next few years. However, the acceleration potential is currently unclear and
challenges like noisy circuits and approximations of discontinuous solutions have to be overcome.

Keywords  Quantum machine learning · Physics informed neural network · Variational quantum circuit · Differential
equations

1  Introduction

Computational fluid dynamics (CFD) is an essential tool
for many applications in science and industry. Conventional
methods, such as finite volume and finite element, rely on
the discretization of time and space and require an increasing
number of degrees of freedom for high Reynolds number
flows. To this day, the application of scale resolving sim-
ulations (like direct numerical simulation and large eddy

simulation) is infeasible in an industrial aerospace context
due to the billions of points that are required to obtain accu-
rate physical models of turbulent flows [1]. Quantum com-
puting is a potentially disruptive technology that may be able
to accelerate previously expensive computational tasks, as
solving non-linear differential equations [2–5].

In this context, it is crucial to develop and assess novel
simulation algorithms which are compatible with faulty
quantum hardware. To make a step in this direction, in
this work, we consider one approach, namely the physics-
informed quantum circuits and draw the comparison to its
classical variant, the physics informed neural network.

1.1 � Physics‑informed neural networks

Supervised deep learning has become ubiquitous for applica-
tions, such as computer vision and natural language process-
ing. In computational physics, however, purely data-driven
models are oftentimes unsuitable because they may not
respect physical laws, e.g. due to noisy data. Ideally, we

Pia Siegl, Simon Wassing have contributed equally to this work.

 *	 Pia Siegl
	 pia.siegl@dlr.de

1	 Institute of Software Methods for Product Virtualization,
German Aerospace Center (DLR), Zwickauerstraße 46,
01069 Dresden, Germany

2	 Institute for Aerodynamics and Flow Technology,
German Aerospace Center (DLR), Lilienthalplatz 7,
38108 Braunschweig, Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s13272-024-00774-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s13272-024-00774-2&domain=pdf

	 P. Siegl et al.

want to leverage the physical knowledge available in the
form of partial differential equations (PDEs), to enhance a
machine learning model. One method to reach this goal, is
the physics-informed neural network (PINN). This method
approximates the solution to a differential equations with a
neural network. The differential equation is incorporated into
a loss function used for training and the required derivatives
are calculated using automatic differentiation. The initial and
boundary conditions are typically incorporated into the loss
function via additional loss terms. Therefore, PINNs refor-
mulate boundary value problems as optimization problems.
Here, the neural network acts as a global continuous ansatz
for the solution which distinguishes the method from clas-
sical methods, based on discretization in space and time.
PINNs can be used as a deep learning-based PDE solver
for forward problems. This is the purpose for which they
are used in this work. The training of PINNs is typically
significantly slower than solving the PDE with a classical
solver. However, contrary to classical solvers, they offer the
advantage that additional solution data (e.g. from measure-
ments or other simulations) can be incorporated into the
loss. This makes them applicable to tackle certain inverse
problems [6–8]. Furthermore, they may be used to solve
parametric forward problems by approximating the solu-
tion in a continuous parameter space. Once the network is
trained, it can be evaluated quickly and solutions for differ-
ent parameter values can be retrieved. Originally proposed
in the 90s by works of Dissanayake and Phan-Thien [9] and
later Lagaris [10], the approach has recently gained sub-
stantial interest after a series of papers by Raissi et al. [6,
11, 12] where the method is applied to a variety of forward
and inverse problems, coining the term physics-informed
neural network. Subsequently, numerous variants and exten-
sions have been proposed and the method was shown to be
effective in a wide variety of scenarios. For a thorough over-
view the interested reader is referred to [13]. In particular,
PINNs have been applied to fluid dynamics [14]. So far,
the complexity of analyzed problems is limited to simple,
two-dimensional flows. However, initial steps towards higher
complexity problems with relevance for aerospace science
are made. In the following, some notable examples are
listed. Jin et al. [15] solve the incompressible Navier-Stokes
equations for laminar flows and turbulent channel flows at
Reynolds number Re = 1000 . Eivazi et al. [16] solve the
incompressible Reynolds-averaged-Navier-Stokes equations
for zero and adverse pressure gradient boundary layers and
a NACA 0012 airfoil. Raissi et al. [8] reconstruct full flow
fields for Navier-Stokes equations based on noisy measure-
ments of a passive scalar which is advected by the flow.
The compressible Euler equations have been considered
for supersonic two-dimensional cases such as an oblique
shock wave or expansion wave for forward [17] and inverse
problems [7, 17]. Wassing et al. [18] show parametric PINN

simulations of the compressible Euler equations for sub- and
supersonic flows in two dimensions.

1.2 � Variational quantum algorithms

Next to machine learning, quantum computing is a further
promising future technology. In the context of fluid dynam-
ics we often face the challenge of non-linearity of the gov-
erning equations and non-hermicity of diffusion [19] hinder-
ing a straight forward implementation in terms of quantum
gates. However, various ideas on how to tackle these prob-
lems were developed and are currently investigated. We will
shortly outline some key resources. For a more detailed dis-
cussion, we refer the interested reader to [19]. Many legacy
CFD methods, like finite volumes or finite elements, rely on
a discretization of the spatial fields allowing for a lineariza-
tion of the equations. This linear formulation enables the use
of quantum linear solvers like the Harrow-Hassidim-Lloyd
algorithm [20] and its improvements [21, 22]. With this tech-
niques the scaling of a quantum finite element routine [23]
was studied and a finite difference scheme solving the wave
equation [24] implemented. Moreover, Lattice–Boltzmann
routines are under active consideration [25–27] and Carle-
man-Linearization seems to be a possible tool [28]. Fur-
thermore, quantum computers seem to be well suited for
probability density function methods and ensemble simula-
tions [29] as those require linear differential equations to
be solved.

Most of the aforementioned approaches require a large
number of qubits and error-corrected operations. Hence,
they are not yet applicable for real use-cases on quantum
computing hardware which is still prone to noise and limited
in the number of available qubits and connectivity [30]. First
doubts if the mentioned approaches designed for fault-toler-
ant computers allow for quantum advantages are raised [31].

In this early stage of quantum computing, promising
candidates are variational quantum algorithms (VQA) that
combine trainable quantum circuits with classical optimiza-
tion routines [32–35]. Following the variational approach,
Syamlal et al. published a preprint with first evidence for
beneficial scaling of a variational quantum lattice boltzmann
method [36] for CFD applications. Quantum Reservoir Com-
puting is under consideration to capture thermal convec-
tive [37] and turbulent flows [38]. Further works introduced
VQAs that focus on solving linear [39, 40] and non-linear [3,
4] differential equations. In this context, Lubasch et al. intro-
duced a variational approach using amplitude encoding and
finite differences that allows to solve non-linear differen-
tial equations. The method relies on the paradigm of ten-
sor networks, which showed to be suitable for flow simula-
tions [41, 42]. This approach was extended to treat different
boundary conditions [43] and space-time methods [44].
VQAs are further an important building block for quantum

Solving transport equations on quantum computers—potential and limitations of physics‑informed…

machine learning (QML) algorithms and researchers study
the quantum potential in nearly all areas of classical machine
learning (ML). For example, there are experimental studies
on quantum convolutional ML [45] and quantum reinforce-
ment learning, as well as theoretical work, trying to identify
generalization bounds [46] and quantify quantum circuit
expressivity [47–49].

Kyriienko et al. proposed the quantum version [4] of the
physics-informed neural network algorithm [12] for solv-
ing PDEs. They show the general feasibility to solve one-
dimensional non-linear differential equations by training the
parameters of a quantum circuit with a loss function that
incorporates the differential equations. To this aim, they
compare different handling strategies of the input encod-
ing and the boundary treatment. Using a hardware-efficient
ansatz together with different feature maps, they study the
performance on two different differential equations with
continuous solutions. In following works, they expand their
understanding of the feature maps and their application to
stochastic PDEs [50]. While they show the general ability
of the quantum approach in [4], they do not perform any
comparison to classical PINNs and they leave the question
of current limits of the quantum approach open.

Our work performs a direct comparison of the classi-
cal and quantum approach, for different relevant PDEs of
different complexity. We use a different circuit ansatz that
relies on data reuploading [51] as it allows us to solve a
broader variety of problems. In analogy to PINNs, we name
the quantum approach physics-informed quantum circuit
(PIQC) throughout this work. While our PIQC-ansatz is
able to approximate continuous solutions to all considered
differential equations, both the ansatz presented in [4, 51]
fail to capture discontinuous solutions. Our work illustrates
when PIQCs show a comparable or even beneficial behav-
iour over classical PINNs. Furthermore, it pin-points that
the presented ansatzes are incapable of finding flow solu-
tions with discontinuities, an important phenomena in many
industry-relevant flow applications. Many studies that claim
advantage of QML and classical ML are currently criticized
[52, 53] for using data which is down-sampled beyond rec-
ognition and choosing particularly bad-performing archi-
tectures of the classical neural networks. The focus of our
work is an empirical study as well. However, we choose our
problems as broad as possible to allow for a fair comparison.
We further use neural network architectures, that work well
for PINNs and do not hide results that are not beneficial for
the PIQC.

During the publishing process of this work, Paine et al.
released a preprint on physics-informed quantum machine
learning, with a different procedure of information encod-
ing [54].

1.3 � Scope and structure of this work

This work is devoted to the evaluation and comparison
between PINNs and PIQC. We share experimental expe-
riences comparing the convergence speed and accuracy.
Furthermore, current limitations are discussed, occurring
due to the missing availability of quantum computers with
large qubit numbers and the infeasibility of simulating them.
This paper is structured as follows. First, we will give an
introduction into physics-informed neural networks and
variational quantum algorithms. Next, we will present the
differential equations studied. First an ordinary differential
equation (ODE), second a linear transport equations, and
third a non-linear Burgers’ equations. The last problem, i.e.
the transport of a shock, is only well captured by the PINN,
showcasing the limitations of the currently used quantum
circuit ansatz.

2 � Physics‑informed neural networks

Physics-informed neural networks are a deep learning-based
method using classical neural networks for differential prob-
lems such as solving partial differential equations. PINNs
incorporate differential terms into the loss function which is
minimized during the training of the neural network.

Let us consider a one-dimensional initial-boundary value
problem:

for an unknown solution u(x, t) in space x ∈ Ω and in the
time interval t ∈ [0, T) . Here, D is a general differential
operator and I and B are initial and boundary conditions,
respectively. To approximate a solution u(x, t) with a PINN,
we use a neural network û

�
(x, t) as the global ansatz function

û
�
(x, t) ≈ u(x, t) . The neural network acts as a parametric

ansatz function for the solution. Since neural networks are
universal function approximators [55], a sufficiently large
network is theoretically able to capture continuous solutions
at arbitrary precision. Empirical result show that even dis-
continuous functions can be approximated [12]. However,
to find such good approximations, one has to find a global
optimum of a non-convex optimization problem to deter-
mine the parameters of the network, which in general can
be an NP-hard problem [56].

A fully connected feed-forward neural network is
obtained by a repeated composition of parametric vector-
valued linear functions and non-linear activation functions.
It can be expressed as follows:

(1)

�u

�t
−D(u) =0 (x, t) ∈ Ω × (0, T)

I(u(x, 0), x) =0 x ∈ Ω

B(u(x, t), x, t) =0 (x, t) ∈ �Ω × (0, T)

	 P. Siegl et al.

Each composition of one parametric linear function and the
non-linear activation function �(⋅) is called a layer. Nk is the
dimension of the k-th layer. The input vector
r = (x0

1
, x0

2
,… , x0

N0
) and the output vector xM

j
 determine the

dimensions of the domain and codomain of the network. All
other layers are called hidden layers and the network has a
depth of M layers. The values of each layer k only depends
on the function values of the previous layer k − 1 and w and
b are the parameters of the network, called weights and
biases. Since this architecture is inspired by brain neurons,
the individual outputs xk

j
 at each layer are often called neu-

rons. For an in-depth explanation of classical neural network
architectures, consider for example [57]. For physics-
informed neural networks, a typical activation function is
the hyperbolic tangent �(⋅) = tanh(⋅).

The optimization or training of the network weights
and biases requires the construction of a loss function L .
For regression problems, this loss is most commonly the
mean squared error between network predictions and target
data. However, for physics-informed neural networks, we
construct a composite loss function which consists of three
terms:

The first term on the right hand side is the residual loss. It
directly incorporates the differential equation and its magni-
tude measures the residual of the predicted solution,

Backpropagation methods use reverse mode automatic dif-
ferentiation to calculate derivatives of a loss function L with
respect to parameters of the network. Similarly, we can use
reverse mode automatic differentiation to calculate deriva-
tives of the network output û

�
 with respect to its input r .

This essentially exploits the chain rule of derivatives in a
hardware-efficient manner to calculate the derivatives of a
particular evaluation of the network. Firstly, the network
is evaluated and the prediction û

�
 is obtained. The opera-

tions, performed on the inputs by the neural network to
obtain the prediction, are stored in a computational graph.

(2)

û(r) ∶ ℝ
N0

⟶ ℝ
NM

ûj ≡ xM
j
, j = 1…NM

r =
(
x0
1
, x0

2
,… , x0

N0

)

xk
j
= 𝜎

(
Nk−1∑

i=1

wk−1
i,j

xk−1
i

− bj

)
,

j = 1…Nk, k = 1…M.

(3)L = LRes + �ILI + �BLB.

(4)
LRes =

1

NRes

NRes∑

i=1

(
𝜕û

�

𝜕t
(xi, ti)−D(û

�
(xi, ti))

)2

,

xi ∈ Ω ;ti ∈ (0, T).

Subsequently, by stepping back through the network from
the last to the first layer, we can calculate the desired deriva-
tives by iteratively applying the chain rule, one layer at a
time using the computational graph. For more details, see
for example [57]. In practice, we can use third-party librar-
ies such as PyTorch [58] to implement these routines in a
straightforward manner.

The second and third term of the loss function penalize dif-
ferences between the predicted solution and the given initial
condition and boundary condition, respectively,

Note that these loss terms are required to avoid convergence
to a trivial solution of the differential equation. For all fol-
lowing experiments, we set the scalar weighting factors
�I = �B = 1 . The training points (xi, ti) inside of the domain
and on the boundary can be randomly sampled. Thus, we can
train the model using only information of the solution given
by the boundary conditions and without additional solution
data in the interior of the domain. Using the loss function
Eq. (3) we can formulate the optimization problem for the
trainable parameters as:

where � is the vector containing all trainable parameters of
the neural network (weights and biases in Eq. (2)) and np
is the number of parameters in the network. A schematic
explanation of the PINN method is shown in Fig. 1.

3 � Variational quantum algorithms

A variational quantum algorithm (VQA) is a hybrid quan-
tum-classical approach that consists of a quantum circuit
with trainable parameters and an optimization routine that
runs on a classical computer.

In the following, we will shortly deepen the idea of this
hybrid quantum-classical approach.

The VQA can be split into a quantum part and a classi-
cal part. Let us first consider the classical neural network-
based approach in Fig. 1. For the VQA approach, the neural
network in this picture is replaced by a quantum circuits
which also acts as the global ansatz function. We use the
measurement results of the quantum circuit to define the
function value u. The computation of the loss, as well as the

(5)LI =
1

NI

NI∑

i=1

I(û
�
(xi, 0))

2, xi ∈ Ω,

(6)
LB =

1

NB

NB∑

i=1

B(û
�
(xi, ti))

2,

xi ∈ 𝜕Ω ;ti ∈ (0, T).

(7)arg min
�∈ℝnp

(
L(û

�
)
)
,

Solving transport equations on quantum computers—potential and limitations of physics‑informed…

optimization routine remain on the classical computer and
work equivalently to the classical PINNs. To find the optimal
set of trainable parameters for the PINN and PIQC, we rely
on gradient-based optimization. To make use of these rou-
tines, the quantum circuit needs to be differentiable so that
gradients of the loss with respect to the trainable parameters
inside of the circuit can be calculated.

For all gates and measurements used throughout this work,
it is well known how to compute the derivatives of the quan-
tum circuit. On real quantum hardware, this is possible, with
the help of the parameter-shift rule [32, 59] and its generali-
zations [60, 61]. In this work, using noise-free simulators of
quantum hardware, the gradients were computed analytically.
The differentiability of the circuit is further required to com-
pute the residual needed for the loss function in Eq. (3) which
in our examples includes derivatives of the form �u

�x
 , �u
�t

 and �
2u

�x2
 .

The used quantum circuits consist of three main building block
(see Fig. 2). First, there is an encoding layer for feeding in the
inputs, second, the trainable layer aimed to be optimized, and
last, the measurement layer, necessary to extract the output-
data from the quantum computer. For simplicity, we will intro-
duce each of these building blocks separately. In practice, they
can occur multiple times.

3.1 � Rotational gates

Rotational gates play an important role for data encoding, as
well as for the trainable layers of the VQC. They are param-
eterized single-qubit operations that implement a rotation of
the single-qubit state on the Bloch sphere [62]. The rotational
gates, which are unitary operations and implement a rotation
around the respective axis, can be expressed in matrix repre-
sentation as

The angle � ∈ ℝ can take the value of an input datum or act
as a trainable parameter.

3.2 � Data encoding

In general, there are various possibilities for how to encode
information into a gate-based quantum computer. Here, we
will restrict ourselves to the rotational encoding. A detailed
description of other important encoding schemes as bit-
encoding or amplitude encoding can be found in [63]. We

(8)

Rx(�) =

(
cos �∕2 −i sin �∕2

−i sin �∕2 cos �∕2

)
,

Ry(�) =

(
cos �∕2 − sin �∕2

sin �∕2 cos �∕2

)
,

Rz(�) =

(
exp−i�∕2 0

0 exp i�∕2

)
.

Fig. 1   Schematic depiction of
the PINN approach. The neural
network is trained using a
composite loss function which
measures the agreement of the
neural network with the residual
and initial and boundary
conditions. Partial derivatives
are calculated using automatic
differentiation

	 P. Siegl et al.

use the rotation gates to encode one real number per qubit
and gate. For example, applying Ry(x) on the state �0⟩ yields

This allows for an efficient data-encoding without expen-
sive state preparation routines. In combination with Pauli-
measurements it further ensures the differentiability of the
quantum circuit. The rotational encoding is well suited for
problems with small input dimension.

3.3 � Trainable layers

Rotation gates are also used in the trainable layer, shown in
Fig. 2. Here, the gate R(�i, �j, �k) = Rx(�i)Ry(�j)Rz(�k) refers
to a rotation around all three axes in the Bloch sphere. In
the trainable layers, the rotational angles are the trainable
parameters � . Hence, they are determined by solving the
optimization problem Eq. (7) with a classical training rou-
tine. Additionally, two-qubit gates like the CNOT gate are
used to create entanglement. This enhances the expressivity
of the quantum circuit.

3.4 � Measurement and output

Measurement is required to extract the information of inter-
est into a format that we can process. Here, we perform a
Pauli measurement in the z-basis on each qubit and sum over
these values to obtain our approximation

The index i refers to the i-th qubit.

(9)Ry(x)�0⟩ = cos (x∕2)�0⟩ − sin (x∕2)�1⟩.

(10)û
�
(x) =

�

i

⟨Sz
i
⟩.

3.5 � Quantum circuit ansatz

For real applications, the quantum circuit is usually more
complex than the simplified version shown in Fig. 2. There
are various possibilities to increase the expressivity, i.e.
enhance the number and the complexity of functions the cir-
cuit can represent. One possibility to increase the expressiv-
ity is the ansatz presented by Kyriienko in [4], which repeats
the trainable layer multiple times. They furthermore apply a
feature map on the input values, to increase the complexity.

A different ansatz was presented by Schuld et al. in [51].
Their quantum circuit consists of alternating repetitions of
encoding layers and trainable layers, as shown in Fig. 3. In
comparison to the simple ansatz in Fig. 2 and the ansatz pre-
sented by Kyriienko in [4], this ansatz starts and ends with a
trainable layer. Schuld et al. show that their quantum mod-
els can be written as partial fourier series in the data [51].
The accessible range of fourier frequencies in the model
increases with increasing number of qubits and/or layers.

With this alternating ansatz we were able to approximate
a broader variety of functions, than with the ansatz presented
by Kyriienko in [4], see Appendix 6.3 for more details. For
all results shown in the following, we used the alternating
circuit ansatz introduced by Schuld et al.

4 � Experiment

In this section, we will show a comparison between training
a classical PINN and a PIQC by means of various exam-
ples. In all experiments, the PINN and the PIQC share the
same cost-function, training routine and are implemented
in the same Software framework SMARTy [64]. The quan-
tum computations are implemented by using Pennylane [65]
and performed on a simulator. Studying the effect of noise

Fig. 2   Example of a variational quantum circuit with three qubits. It
consists of three main parts. First, the encoding (purple), where input
information x is encoded via rotation gates. Second, the trainable
layer, where rotation gates contain trainable parameters � . Their val-
ues are to be determined by solving the optimization problem Eq. (7).

The trainable layer further contains two-qubit gates that create entan-
glement. Third, there is the measurement procedure. Here, we con-
sider a Pauli measurement in the z-basis on each qubit. The measured
results are summed up to the model approximation û

�(x)

Solving transport equations on quantum computers—potential and limitations of physics‑informed…

and errors is beyond the scope of the current work and will
be addressed in the future. Simulators (as well as currently
available real quantum hardware) only allow to study cir-
cuits with a very limited number of qubits and layers. This
also limits the size and complexity of problems, that can be
treated. Thus, we decide to focus on simple problems and
extensive parameter studies for the design of the circuits/
networks dimensions. This allows for the simulation of many
different circuit shapes in parallel. The used values can be
found in Tab. 2.

4.1 � Problems

In this paper, we study four different problems with increas-
ing complexity and known analytical solution. Problem I is
a simple ODE

in the domain x ∈ [−1, 1] and boundary conditions
u(−1) = u(1) = 0 , with a square function as analytical
solution

Second, we study the linear transport equation

where the analytical solution is

and I is the initial condition. As Problem II, we select a
Gauss pulse as the initial condition:

with periodic boundary conditions in the domain
x × t ∈ [−1, 1] × [0, 0.5] and a transport velocity c = 0.5.

(11)d2u

dx2
= 1,

(12)u(x) =
1

2

(
x2 − 1

)
.

(13)
�u

�t
+ c

�u

�x
= 0,

(14)u(x, t) = I(x − ct)

(15)I(x) = exp(−x2∕0.1),

Next, as problem III we study the one dimensional
Burgers’ equation which is a non-linear PDE and a fre-
quently used test case for fluid flow applications

We consider the domain x × t ∈ [−1, 1] × [0, 1] and a viscos-
ity of � = 0.01 . One can show that an analytical solution to
this equation is given by [66]

with t0 = exp 1∕(8�) . The initial and boundary conditions
follow from the analytical solution. Problem I–III share the
advantage that the function to be approximated, is continu-
ous and smooth. In real fluid fields, however, we need to
handle complex situations, like the chaotic nature of turbu-
lence and the appearances of shocks. In this part, we study
the capability of the PIQC and the PINN to approximate
a shock. Therefore, for problem IV, we again consider the
linear transport Eq. (13) with a step-function as the initial
condition

which models a fully-developed shock. For the boundary we
choose Dirichlet conditions u(x = −1, t) = 0, u(x = 1, t) = 1
and as the transport velocity c = 0.5.

4.2 � Optimization

To optimize the parameters of the neural network and the
quantum circuit, we use the low memory Broyden-Fletcher-
Goldfarb-Shanno quasi-Newton algorithm (L-BFGS) [67].
Empirically, we have observed most success with this algo-
rithm for optimizing PIQCs compared to first-order stochas-
tic gradient methods. This may be due to the fact that, as a

(16)�u

�t
+ u

�u

�x
= �

�
2u

�x2
.

(17)u(x, t) =

x

t+1

1 +
√

t+1

t0
exp

(
x2

4�(t+1)

) ,

(18)I(x) =

{
0, if x ≤ 0

1, if x > 0,

Fig. 3   Circuit ansatz used for
the performed PIQC-experi-
ments with varying number of
qubits and layers. Each layer
consists of a trainable (orange),
and an encoding (purple) part.
The repeated encoding leads
to a higher expressivity of the
quantum circuit. This ansatz
was proposed and analyzed in
[51]

	 P. Siegl et al.

quasi-Newton method, the algorithm requires comparatively
less iterations than first-order methods. For the PIQC we
are severely limited in the number of iterations, due to the
significant cost of simulating the quantum circuit. In addi-
tion, L-BFGS is also a popular choice for PINN optimiza-
tion, especially for fine-tuning models after an initial train-
ing stage with stochastic gradient descend variants (see for
example [7, 15, 17, 18]). For a fair comparison we use the
implementation of PyTorch [58] for both approaches with
the same hyperparameters (see the Appendix 6.2 or further
details).

4.3 � Quantum circuit and neural network shapes

The performance of the PINNs and PIQC on a specific
problem depends on the dimensions of the selected ansatz
function because it determines the number of trainable
parameters. Hence, the dimensions of the parametric ansatz
determine the expressivity. Since the fundamental nature of
the parametric functions is different, we compare the results
based on the number of trainable parameters, which can eas-
ily be determined on both cases.

For the neural network, we fix the number of neurons per
hidden layer Nk = Nhidden for all layers. We then repeat each
training run for different numbers of neurons per hidden
layer Nhidden and different numbers of layers M. In addition,
since the performance of PINNs can be inconsistent, depend-
ing on the random initialization of the trainable parameters
at the beginning of the training, we repeat each run with
different random initializations of the parameters. This gives
a rough estimate of how consistently PINN performs. For
the quantum circuit, we choose various layouts in terms of
number of qubits and layers. The selected layouts for the
PINN and the PIQC are depicted in Figs. 11, 12, 13 and 14.
Due to the computational effort of the PIQC simulation (see
Appendix 6.2.1 for more details), the runs are not repeated.

4.4 � Studied quantities

For the comparison, we are interested in the convergence
speed and the overall accuracy for each differential equa-
tion. For the accuracy we consider the mean absolute error
(MAE):

where Nval is the number of validation points, û
�
(x, t) is the

approximated solution of the PINN or the PIQC, and u(x, t)
is the analytical solution. To assess the accuracy, we look at
the � values which is reached after a fixed amount of epochs

(19)𝜀 =
1

Nval

Nval∑

i=1

|||û�

(
xi, ti

)
− u

(
xi, ti

)|||,

nepoch = 50 . For the convergence speed, we select a certain
value for �th for each problem. Then we count the num-
ber of epochs nepochs needed, to reach the threshold 𝜀 < 𝜀

th
(c.f. Table 2). Note that the set of validation points is differ-
ent from the set of training point.

4.5 � Results

In the following, we compare the approximation perfor-
mance of the PINN and the PIQC for problems I–IV.

4.6 � Number of training epochs

We start with comparing the convergence speed for prob-
lem I and problem II, where the solution can be approxi-
mated well by both the quantum circuit and the neural
network. For both problems we observe that the PINN
and PIQC are able to reach the designated accuracies �th
within 50 epochs, as long as the number of parameters
is sufficient (see Figs. 4, 5). In that case, both methods
generally require less than 10 epochs for problem I and
II. For the PINN we observe that it may perform rather
inconsistently over a wide range of parameter numbers.
For problem II, even for more than 300 parameters, the
network is occasionally unable to converge. Looking at
the runs that fail, we see that this is usually the case if the
number of neurons per layer is low. Even a high number of
layers can not make up for a layer width of less than five
neurons. For the PIQC on the other hand, we see that as
long as a certain number of parameters is available (about
25 for problem I and about 120 for problem II), it is able
to approximate the solution well. Overall, both methods
perform similarly and can find reasonably accurate solu-
tions at similar numbers parameters as long as the neural
network is not too narrow.

For problem III for the PINN method, we see that it
performs extremely inconsistently for the entire parameter
range and is unable to reliably reach the designated �th in
less than 50 epochs, as shown in Fig. 6. PINNs require a
larger number of training epochs for this particular prob-
lem. For the PIQC method however, we see that for suf-
ficiently large circuits with more than 300 parameters, the
method converges again reliably and for more than 400
parameters it takes less than 10 epochs to converge to �th .
For both, problem II and III, the PIQC shows the much
clearer trend of the number of required epochs than the
PINN. While low-parameter runs do not converge at all
within 50 epochs, we see a steady decrease of the number
of epochs with increasing number of trainable parameters
after a critical size is reached.

Solving transport equations on quantum computers—potential and limitations of physics‑informed…

4.7 � Accuracy

Next, we compare the accuracy of both approaches after a
limited number of 50 L-BFGS iterations (see Figs. 7, 8).

For problems I and II we generally observe no significant
changes in loss and validation errors after more than 30
epochs. Therefore, this comparison gives an assessment
of the accuracy that can be reached with both approaches

Fig. 4   The number of train-
ing epochs nepoch required to
decrease the mean absolute
error below �th = 10−3 in
dependence of the number of
trainable parameters nparam .
Trained is a a classical PINN
and b a PIQC to find a solution
to the ODE Eq. (11). Both
approaches quickly converge
over the whole range of nparam ,
but the PINN needs slightly less
epochs to reach �th

Fig. 5   The number of training epochs nepoch required to decrease
the mean absolute error below �th = 3 × 10−3 in dependence of the
number of trainable parameters nparam . Trained is a a classical PINN
and b a PIQC to find a solution to the transport equation of a Gauss
pulse Eq. (13) and Eq. (15). The red vertical lines are positioned at
nparam = 10, 300 and help to visualize the different range and scaling

of nparam for both approaches. For problem II, the PINN shows a fast
convergence for most runs but also training inconsistencies over the
whole range of nparam . The PIQC instead requires a minimal amount
of nparam ≈ 150 to converge but then shows a clear dependence of
nepoch on nparam

Fig. 6   The number of training epochs nepoch required to decrease the
mean absolute error below �th = 5 × 10−3 in dependence of the num-
ber of trainable parameters nparam . Trained is a a classical PINN and b
a PIQC to find a solution to Burgers’ equation (16). The PINN shows

converging and non-converging runs over the whole range of param-
eters without a visible dependence on nparam . Instead, the PIQC does
show a clear dependence of nepoch on nparam and allows for a faster
convergence for nparam > 380

	 P. Siegl et al.

for the given number of training points. The test is again
repeated for various neural network and quantum circuit
dimensions. Each PINN network shape run is repeated with
random initializations (five times for problem I and three
times for problem II).

For problem I, the PIQC and PINN both achieve an accu-
racy of � ≈ 10−5 for the best runs. The PIQC shows to have
an optimal size for nepoch = 25 − 60 . For more trainable
parameters, the requires number of epochs does increase
again. The PINN seems to be less dependent on the num-
ber of trainable parameters. It shows similar values over the
whole range of nparam . For problem II we see similar accura-
cies for both approaches. But in this case, the PIQC is more
consistent and we observe no random training instabilities.
This is in contrast to the PINN which is more prone to ran-
dom training instability for narrow networks. For realistic
usage of PINNs one would reduce the initial step size (the
learning rate) to avoid such instabilities. This would however
result in slower convergence for the PINN.

For problem III no accuracy plot has been created, as each
epoch of the high-parameter runs is computationally very
expensive in terms of wall-clock time (see Appendix 6.2.1
for details). Hence, not all runs were trained up to 50 epochs,

which would be required to allow for a fair comparison. For
each problem, an example of the approximation with the
corresponding reached accuracy is given in Appendix 6.1.

4.8 � Representing shocks

Problem IV allows us to study the capacity to represent
shocks, with PINNs and PIQCs. In Fig. 9 the approximation
of the step-function with a PINN and a PIQC is depicted.
The PIQC with nparam = 480 is not able to accurately rep-
resent the step. Instead, it shows an oscillating behaviour
around the shock. Meanwhile, the PINN with a compara-
ble amount of training parameters is capable to approxi-
mate the step and reaches error values of � = 1 × 10−3 .
The PINN shows superior results for the entire range of
nparam ∈ [0, 4771] compared to the PIQC. A total of five of
the analyzed 60 PINN runs did not converge, which can be
attributed to the relatively high learning rate that is used.
The PIQC shows an improvement in the solution for an
increased circuit size. However, the simulations cost limits
the possible size and the number of training epochs.

Fig. 7   Mean absolute error �
in dependence of the num-
ber of trainable parameters
nparam . Trained is a a PINN
and b a PIQC for 50 epochs to
approximate the solution of the
ODE in Eq. (11). The PINN
reaches accuracies between
� = 10−5 − 10−4 for most runs.
The PIQC shows a broader
range of � = 10−5 − 10−3 for
most runs, the best accuracy is
reached around nparam = 50

Fig. 8   Mean absolute error � in dependence of the number of train-
able parameters nparam . Trained is a a PINN and b a PIQC for 50
epochs to approximate the solution of the transport of a Gauss pulse
Eq. (11) and Eq. (15). When the PINN converges, most runs reach

accuracies around � = 10−3 . However, as seen already in Fig. 5 not
all runs converge. The PIQC shows a steady decrease of � with nparam ,
reaching accuracies better than � = 10−3 for nparam > 200

Solving transport equations on quantum computers—potential and limitations of physics‑informed…

4.9 � Discussion

Overall, our results show that for smooth problems the PIQC
approach indeed performs similar to classical PINN methods
on simple PDEs in terms of convergence speed and accuracy.
For certain problems, as the Transport of the Gauss Pulse
and the Burgers’ equation, we even observe more consistent
convergence and for the Burgers’ equations a faster conver-
gence speed given enough training parameters. This gives
a first indication that the PIQC method may indeed be a
reasonable candidate for solving PDEs on quantum hard-
ware. However, it has to be clearly stated that the presented
results are nothing more than an initial assessment of the
approach. At this point of time, with quantum computing
in its infancy, the complexity of possible experiments is
severely limited. Due to computational effort (see Appen-
dix 6.2.1 for more details) that is required for the simulation
of quantum circuits on classical hardware, the extend of the
current experiments is restricted in multiple ways. Firstly,
the PIQC can only be trained for very few epochs within a
reasonable simulation time for the considered problems. For
more complex problems (see for example [15, 16, 18]), clas-
sical PINNs are usually trained with variants of stochastic
gradient descent such as ADAM for thousands of epochs
followed by a second training phase with a quasi-Newton
optimizer such as L-BFGS. Secondly, our experiments were
limited in the number of training points that the model is
evaluated on. Lastly, we can only consider small models
with parameter numbers on the order of nparam ≈ 102 . State
of the art PINN models typically require thousand or even
ten-thousand of parameters.

Moreover, we observe that the currently used circuit
ansatz seems less suitable to approximate discontinous
solutions.

For a linear advection equation, the PINN is able to
capture the discontinuity without any additional measures
while the PIQC approach fails as evident by Fig. 9. Hence,
we conclude that the native shock-capturing capabilities of
PINNs are superior to the chosen PIQC ansatz. However, for
non-linear conservation laws such as the inviscid Burgers’
equation or Euler equations, the PINN method requires addi-
tional measures [17, 18, 68, 69] such as adaptive point dis-
tributions or artificial viscosity to accurately capture shocks.
These shock capturing methods might also be applicable to
the PIQC approach. For now it is unclear how PIQCs behave
for large amount of epochs, and whether further convergence
after initial training plateaus occur, as often observed for
PINNs.

Due to the current restrictions on our quantum circuit
simulations, we are unable to reliably asses the performance
of the PIQC approach on more complex problems. Assum-
ing that the shown trend of similar performance at similar
numbers of parameters extends even to higher complexity
problems, we can make a rough estimate for the circuit sizes
that are required to solve such problems. We consider two
publications which used PINNs to solve two-dimensional
aerodynamic flows. Eivazi et al. [16] solve the incompress-
ible Reynolds-averaged Navier Stokes equations using net-
works with 8 layers and 20 neurons per layer which results
in 3063 trainable parameters. Wassing et al. [18] solve the
compressible Euler equations in a parametric formulation
using a maximum of 8 layers of 40 Neurons. This results
in 11764 trainable parameters. The number of parameters
nparam in the presented circuit ansatz can be computed as
nparam = 3 ⋅ (nlayers + 1) ⋅ nqubits , where nlayers , nqubits is the
number of layers and qubits respectively. Hence, the number
of trainable parameters can be increased by either increasing
the number of qubits and/or the number of layers. Assuming

Fig. 9   a Approximation of the transported shock with a PINN
and a PIQC after training for 50 epochs. Trained are a PIQC with
nparam = 480 and a PINN with nparam = 415 . While the PINN approxi-
mates the step nicely, the PIQC exhibits oscillations around the step
position. b History of � during training for the PIQC and PINN runs
in (a) as well as the median PINN prediction and the prediction range

(0.1 to 0.9 quantile) over all analyzed network shapes (c.f. Fig. 14).
Five of the 60 runs did not converge or diverged. Hence, we con-
sider the median and quantile predictions to account for outliers. The
PINN performs significantly better than the PIQC. The median PINN
reaches an accuracy between 10−3 − 10−2 if trained for 50 epochs

	 P. Siegl et al.

that PIQCs would require a similar number of parameters,
we can estimate that this would require for example a cir-
cuitof of 30 qubits and 33 layers to reach 3036 trainable
parameters and of 60 qubits and 65 layers for 11764 train-
able parameters. If we double the number of qubits, the num-
ber of layers can be approximately halved. For even more
complex, industry-relevant problems like three dimensional,
high Reynolds number flows, the requirements in terms of
circuit size would be even further increased. However, tak-
ing into account that Kim et al. [70] present first successfully
experiments on a 127 qubit quantum computer from IBM,
the required circuit sizes for more complex problems will
probably be in reach within the next years. Furthermore,
due to the fact that the state space of quantum circuits grows
exponentially with the number of qubits, it may be possi-
ble to approximate more complex problems with relatively
few qubits and thus fewer parameters than for the classical
equivalent.

Besides the current limit on circuit size, we assumed
ideal quantum circuits for our experiments. Current genera-
tion quantum computers are prone to noise which imposes
a limit on the circuit depth and is expected to further reduce
accuracy.

5 � Conclusion and outlook

In this work, we compared empirically the convergence
speed and accuracy of PINNs and PIQCs on the basis of
various differential equations. Starting with an ODE, we
increased the complexity by looking at the linear transport
equation, and by finally studying the non-linear viscous
Burgers’ equation. For problem I-III the solution could be
represented with both, PINN and PIQCs. For problem I and
II we observe convergence to the selected accuracy threshold
�
th in less than 10 epochs for both models, given sufficiently

large networks/quantum circuits. For the PINN however,
we observe occasional instability due to the relatively large
optimization step size that we selected for both models. In
comparison, the PIQC performs consistently well. For prob-
lem III the PIQC converges far more reliably and faster in
terms of the number of epochs than the PINN given a suffi-
cient number of parameters. It would be interesting to study,
whether this trend of faster convergence of the PIQC persists
or even increases for more complex problems with smooth
solutions. In terms of accuracy, we observe similar precision
for the best runs of both models on problem I and II. Again
the PINN models may perform inconsistently and randomly
fail for certain shapes and initializations, mostly for narrow
network shapes. The PIQC was unable to approximate prob-
lem IV, i.e. the transport of a shock with the current circuit
ansatz. This is in contrast to the classical PINN which is able
to find more accurate approximations of the solution for all

analyzed network shapes. It is necessary, to further study the
impact of the circuit ansatz, to allow for an approximation of
discontinuous problems with the PIQC. An interesting next
step to tackle the shock-capturing possibilities, would be to
further investigate the data-reuploding ansatz in this work,
combined with the feature map approach [4, 50]. Includ-
ing expressivity measures [47–49] and analytical methods
for comparison [52, 71], could deepen the understanding of
the impact of the circuit ansatz. The ultimate aim of using
quantum computers for solving partial differential equations
is to reduce the required time for numerical simulations.
Therefore, future investigations will also need to address the
question, whether the PIQC approach can result in reduced
wall clock times, compared to classical computing. An
important next step is to port the algorithm on real quantum
hardware. First, this allows us to study the impact of noise
and errors on its success and second enables a direct com-
parison between PINNs and PIQC with respect to wall clock
times and energy consumption per run.

Appendix

Approximations

In Fig. 10, the analytical solution of problem I–III is depicted
as well as exemplary approximations with PINN and PIQC.
For problem I we used a PINN with 8 neurons and 1 layer
and a PIQC with 2 qubits and 3 layers. Problem II is solved
with a a PINN with 15 neurons and 2 layers and a PIQC
with 8 qubits and 10 layers and problem III with a PINN
with 11 neurons and 4 layers and a PIQC with 10 qubits and
15 layers. The reached accuracies of these runs are given in
Table 1. Both approaches are capable to approximate the
solutions of all three problems.

Training details

In the following we provide details on the training val-
ues, as number of epochs, number of training points and
the chosen value of �th for all problems, see Table 2. We
further introduce the design of experiment, i.e. the num-
ber of neurons/qubits and the number of layers for the
experiments see Figs. 11, 12, 13 and 14. For problem III,
not all possible combinations of number of qubits and
layers where computed in the considered range, as each
simulation in the high-parameter regime is time intensive
(see 6.2.1 for time examples). For all PyTorch operations,
double-precision floating point numbers were used for all
PINN experiments, while floating point precision was used
for the PIQC experiments to reduce the wall-clock time.

The training points were sampled, using the low-dis-
crepancy Halton sequence to obtain a uniform distribution

Solving transport equations on quantum computers—potential and limitations of physics‑informed…

of quasi-random points [72]. The validation points are
equidistant.

The PyTorch [58] implementation of the L-BFGS opti-
mization algorithm [67] was used. In terms of hyperpa-
rameters of the optimizer, we mainly applied the default
parameters suggested by PyTorch. However, to decrease
computational efforts for problem III and IV we decreased
the history size. This has shown to be possible without
a significant loss in accuracy. Furthermore, we disabled
the termination limits for these problems (i.e. set them to
a negative value). For all four individual problems, the
specified hyperparameters were used both by the PINN
and the PIQC. An overview of the optimizer parameters
is shown in Table 3.

Computational Effort

The classical simulation of a general quantum computer
is only feasible for small numbers of qubits. The size of
the vector representing the quantum state, as well as the
matrices representing the operations, increase exponentially
with the number of qubits. Here, we give some examples
of the computation times of certain runs. Note, that this is

Fig. 10   Comparison of ana-
lytical solutions and exemplary
PINN and PIQC predictions
for a problem I, b prob-
lem II and c problem III. Both
approaches are capable to
capture the solutions of all three
problems

Table 1   Accuracy of the approximation with the PINN or the PIQC
after training for 50 epochs. The runs where performed with a PINN
with problem I) 8 neurons, 1 layer, problem II) 15 neurons, 2 layers
and problem III) 11 neurons, 4 layers; and a PIQC with problem I) 2
qubits and 3 layers, problem II) 8 qubits and 10 layers and problem III
10 qubits and 15 layers

PINN PIQC

Problem I 2.29 × 10−5 1.59 × 10−5

Problem II 1.07 × 10−3 3.99 × 10−4

Problem III 1.41 × 10−3 2.68 × 10−3

Table 2   Information on the training variables of problems I–IV 

Given is the threshold mean absolute error �th used for the conver-
gence experiments, the number of training points ntraining , the number
of validation points nvalidation and the maximal number of epochs max
nepoch , used for the accuracy experiments

�
th

ntraining nvalidation max nepoch

Problem I 1 × 10−3 30 30 50
Problem II 3 × 10−3 100 100 50
Problem III 5 × 10−3 200 100 50
Problem IV 6 × 10−3 200 100 50

Fig. 11   Summary of analyzed
neural network dimensions (a)
and quantum circuit dimensions
(b) for ODE (problem I)

	 P. Siegl et al.

not a detailed study on simulation time but only meant to
allow the reader to develop a rough idea of the computa-
tional effort. Naturally, all training values, like the number
of training points and the circuit size influence the duration
of one epoch. Each quantum simulation was run on DLR’s
high performance computing cluster CARA, consisting of
2x AMD EPYC 7601 (32 cores; 2,2 GHz) processors with
128 GB DDR4 (2666 MHz) RAM per node [73]. In Table 4,
the training time per epoch for various sample runs is given.

As expected, we see that an increased number of qubits and
layers increase the computing time. Fine-tuning the simula-
tion framework would allow for certain limited simulation
speed-ups. For example, we did not implement paralleliza-
tion. However, the overall problem to simulate large quan-
tum circuits can not be circumvented.

In comparison, the classical PINN runs take between
4 ⋅ 10−3 s for one epoch on problem I and about 0.5 s for

Fig. 12   Summary of analyzed
neural network dimensions (a)
and quantum circuit dimensions
(b) for linear transport equation
(problem II)

Fig. 13   Summary of analyzed
neural network dimensions (a)
and quantum circuit dimen-
sions (b) for Burgers’ equation
(problem III)

Fig. 14   Summary of analyzed neural network dimensions (a) and
quantum circuit dimensions (b) for linear transport equation (problem
IV)

Table 3   Hyperparameters of the PyTorch L-BFGS optimizer that
were used during training

For further details about each parameter, please consult the PyTorch
documentation https://​pytor​ch.​org/​docs/​stable/​index.​html

Problem I Problem II Problem III Problem IV

lr 1 1 1 1
max_iter 20 20 10 40
max_eval 25 25 12 50
tolerance_
grad

10−7 10−7 −1 −1

tolerance_
change

10−9 10−9 −1 −1

history_size 100 100 10 40
line_search_
fn

None None None None

https://pytorch.org/docs/stable/index.html

Solving transport equations on quantum computers—potential and limitations of physics‑informed…

one epoch on problem III. For all PINN runs an Intel i7-9700
desktop CPU has been used.

Ansatz comparison

There are many degrees of freedom in the design of the
quantum ansatz. It is for example possible to use vari-
ous patterns in the entanglement layers, different rotation

gates, different structural repetitions of the single layers
and different feature maps on the inputs. Studying the
impact of all those choices is beyond the scope of the
current work where we focus on the comparison with the
classical PINN. We chose the ansatz presented by Schuld
et al. [51] as it allowed a successful approximation of all
solutions of problem I–III without requesting individual
hyperparameter searches for each single problem. In the
original work of Kyriienko et al. [4] they did not use data-
reuploading but instead introduced different feature maps
to enhance the expressivity. They achieved the best accura-
cies for all presented use-cases applying the Tower Che-
bychev Feature Map.

Figure 15 shows a comparison between the Fourier
ansatz [51] and the TChebychev ansatz for problem II and
problem III using the training parameters given in Appen-
dix 6.2. For both use cases and different nparam the Fourier
ansatz reaches a lower final error � . All runs are trained
for 50 epochs and do not exhibit a significant change in the
training loss and epsilon in the second half of the training
process. We find that the Fourier ansatz reaches signifi-
cantly better accuracies than the the TChebychev ansatz
for the considered examples and training parameters. Both
approaches fail to approximate problem IV. In future work,
we aim to explore whether a careful combination of data-
reuploading and feature maps enables to approximate the
step-function of problem IV.

Table 4   Average wallclock time for the PIQC per epoch for various
runs on a simulator

Considered are problems I–III with different circuit shapes, defined
by the number of qubits nqubits and layers nlayers

nqubits nlayers nparam Average Wall
Clock Time per
Epoch

Problem I 2 2 18 45 s (*)
Problem I 3 4 45 2 min, 05 s (*)
Problem I 4 6 84 4 min, 12 s (*)
Problem II 4 5 72 26 min, 46 s
Problem II 4 8 108 41 min, 53 s
Problem II 8 8 216 1h, 55 min, 39 s (*)
Problem III 6 8 162 2 h, 05 min, 24 s
Problem III 6 10 162 2 h, 24 min, 45 s
Problem III 10 10 330 6h, 54 min, 1 s
Problem III 10 15 480 22h, 40 min, 03 s

Fig. 15   Ansatz comparison
between Fourier ansatz pre-
sented in [51] and the Tower
Chebychev ansatz introduced
in [4] for problem II and
problem III. In a we compare
the solution (Gauss pulse) of
both ansatzes using 7 qubits
and 15 layers. Panel b depicts
the error over the number of
parameters. Except for one
run, where the Fourier ansatz
does not converge, the Fourier
ansatz reaches better accura-
cies. c Shows the solution of
the Burgers equation of one run
with 7 qubits and 20 layers. The
comparison for problem III for
different number of parameters
is shown in (d). The Fourier
ansatz reaches better accuracies
for all runs

	 P. Siegl et al.

We do not claim that the ansatz presented in [4] does
not allow for similarly good results. However, the Fourier
ansatz seems less prone to subtleties in the hyperparameter
space and does not require the search of a well suited prob-
lem-specific feature map. Instead, we found that using the
Fourier ansatz we are able to work with the same hyper-
parameters for all considered use cases, leaving only the
number of qubits and layers as degrees of freedom. This
enables the straightforward comparison with the classical
PINN presented in this work.

Acknowledgements  The authors gratefully acknowledge the scientific
support and HPC resources provided by the German Aerospace Center
(DLR). The HPC system CARA is partially funded by ”Saxon State
Ministry for Economic Affairs, Labour and Transport” and ”Federal
Ministry for Economic Affairs and Climate Action”. This work was
carried out as part of the German Aerospace Center’s (DLR) internal
project ”Machine Learning and Quantum Computing - Digitalization
of Aircraft Development 2.0”. This project was partly made possible
by the DLR Quantum Computing Initiative and the Federal Ministry
for Economic Affairs and Climate Action; qci.dlr.de/projects/toquaflics

Author Contributions  P.S. and S.W. contributed equally to this work.
The detailed contributions are as follows. All authors conceptualized
this work. D.M.M., P.S., and S.W. developed the theory P.S., S.W and
D.M.M. implemented the code for the PINN and PIQC experiments.
P.S. performed the PIQC and S.W. the PINN simulations. P.S. and S.W.
wrote the manuscript. D.M.M, P.B. and S.L. acquired project funding.
S.L. coordinated the project. P.B. presented the results at the congress.
All authors contributed to revisions of the manuscript

Funding  Open Access funding enabled and organized by Projekt
DEAL.

Data Availability  Data sets generated during the current study are avail-
able from the corresponding author on reasonable request.

Declarations 

conflicts of interest  The authors declare no conflicts of interest.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

	 1.	 Abbas-Bayoumi, A., Becker, K.: An industrial view on numerical
simulation for aircraft aerodynamic design. J. Math. Ind. 1, 10
(2011). https://​doi.​org/​10.​1186/​2190-​5983-1-​10

	 2.	 Lloyd, S., Palma, G.D., Gokler, C., Kiani, B., Liu, Z.-W., Mar-
vian, M., Tennie, F., Palmer, T.: Quantum algorithm for nonlinear

differential equations (2020). https://​doi.​org/​10.​48550/​arXiv.​2011.​
06571

	 3.	 Lubasch, M., Joo, J., Moinier, P., Kiffner, M., Jaksch, D.: Vari-
ational quantum algorithms for nonlinear problems. Phys. Rev.
A 101, 010301 (2020). https://​doi.​org/​10.​1103/​PhysR​evA.​101.​
010301

	 4.	 Kyriienko, O., Paine, A.E., Elfving, V.E.: Solving nonlinear dif-
ferential equations with differentiable quantum circuits. Phys.
Rev. A 103, 052416 (2021). https://​doi.​org/​10.​1103/​PhysR​evA.​
103.​052416

	 5.	 Jaksch, D., Givi, P., Daley, A.J., Rung, T.: Variational quantum
algorithms for computational fluid dynamics. AIAA J. 61(5),
1885–1894 (2023). https://​doi.​org/​10.​2514/1.​J0624​26

	 6.	 Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics informed
deep learning (Part I): data-driven solutions of nonlinear partial
differential equations. arXiv (2017). https://​doi.​org/​10.​48550/​
arXiv.​1711.​10561

	 7.	 Jagtap, A.D., Mao, Z., Adams, N., Karniadakis, G.E.: Physics-
informed neural networks for inverse problems in supersonic
flows. J. Comput. Phys. 466, 111402 (2022). https://​doi.​org/​10.​
1016/j.​jcp.​2022.​111402

	 8.	 Raissi, M., Yazdani, A., Karniadakis, G.E.: Hidden fluid
mechanics: learning velocity and pressure fields from flow vis-
ualizations. Science (New York, N.Y.) 367(6481), 1026–1030
(2020). https://​doi.​org/​10.​1126/​scien​ce.​aaw47​41

	 9.	 Dissanayake, M.W.M.G., Phan-Thien, N.: Neural-network-based
approximations for solving partial differential equations. Com-
mun. Numer. Methods Eng. 10(3), 195–201 (1994). https://​doi.​
org/​10.​1002/​cnm.​16401​00303

	10.	 Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks
for solving ordinary and partial differential equations. IEEE
Trans. Neural Netw. 9(5), 987–1000 (1998). https://​doi.​org/​10.​
1109/​72.​712178

	11.	 Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics informed
deep learning (Part II): data-driven discovery of nonlinear
partial differential equations. arXiv (2017). https://​doi.​org/​10.​
48550/​arXiv.​1711.​10566

	12.	 Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed
neural networks: a deep learning framework for solving forward
and inverse problems involving nonlinear partial differential
equations. J. Comput. Phys. 378, 686–707 (2019). https://​doi.​
org/​10.​1016/j.​jcp.​2018.​10.​045

	13.	 Cuomo, S., Di Cola, V.S., Giampaolo, F., Rozza, G., Raissi,
M., Piccialli, F.: scientific machine learning through physics-
informed neural networks: where we are and what’s next. J. Sci.
Comput. (2022). https://​doi.​org/​10.​1007/​s10915-​022-​01939-z

	14.	 Cai, S., Mao, Z., Wang, Z., Yin, M., Karniadakis, G.E.: Phys-
ics-informed neural networks (PINNs) for fluid mechanics: a
review. Acta. Mech. Sin. 37(12), 1727–1738 (2021). https://​doi.​
org/​10.​1007/​s10409-​021-​01148-1

	15.	 Jin, X., Cai, S., Li, H., Karniadakis, G.E.: NSFnets (Navier-
Stokes flow nets): physics-informed neural networks for the
incompressible Navier-Stokes equations. J. Comput. Phys. 426,
109951 (2021). https://​doi.​org/​10.​1016/j.​jcp.​2020.​109951

	16.	 Eivazi, H., Tahani, M., Schlatter, P., Vinuesa, R.: Physics-
informed neural networks for solving Reynolds-averaged
Navier-Stokes equations. Phys. Fluids 34(7), 075117 (2022).
https://​doi.​org/​10.​1063/5.​00952​70

	17.	 Mao, Z., Jagtap, A.D., Karniadakis, G.E.: Physics-informed
neural networks for high-speed flows. Comput. Methods Appl.
Mech. Eng. 360, 112789 (2020). https://​doi.​org/​10.​1016/j.​cma.​
2019.​112789

	18.	 Wassing, S., Langer, S., Bekemeyer, P.: Physics-informed neural
networks for parametric compressible Euler equations. Comput.
Fluids 270, 106164 (2024). https://​doi.​org/​10.​1016/j.​compf​luid.​
2023.​106164

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1186/2190-5983-1-10
https://doi.org/10.48550/arXiv.2011.06571
https://doi.org/10.48550/arXiv.2011.06571
https://doi.org/10.1103/PhysRevA.101.010301
https://doi.org/10.1103/PhysRevA.101.010301
https://doi.org/10.1103/PhysRevA.103.052416
https://doi.org/10.1103/PhysRevA.103.052416
https://doi.org/10.2514/1.J062426
https://doi.org/10.48550/arXiv.1711.10561
https://doi.org/10.48550/arXiv.1711.10561
https://doi.org/10.1016/j.jcp.2022.111402
https://doi.org/10.1016/j.jcp.2022.111402
https://doi.org/10.1126/science.aaw4741
https://doi.org/10.1002/cnm.1640100303
https://doi.org/10.1002/cnm.1640100303
https://doi.org/10.1109/72.712178
https://doi.org/10.1109/72.712178
https://doi.org/10.48550/arXiv.1711.10566
https://doi.org/10.48550/arXiv.1711.10566
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1007/s10915-022-01939-z
https://doi.org/10.1007/s10409-021-01148-1
https://doi.org/10.1007/s10409-021-01148-1
https://doi.org/10.1016/j.jcp.2020.109951
https://doi.org/10.1063/5.0095270
https://doi.org/10.1016/j.cma.2019.112789
https://doi.org/10.1016/j.cma.2019.112789
https://doi.org/10.1016/j.compfluid.2023.106164
https://doi.org/10.1016/j.compfluid.2023.106164

Solving transport equations on quantum computers—potential and limitations of physics‑informed…

	19.	 Succi, S., Itani, W., Sreenivasan, K., Steijl, R.: Quantum com-
puting for fluids: where do we stand? Europhys. Lett. 144(1),
10001 (2023). https://​doi.​org/​10.​1209/​0295-​5075/​acfdc7

	20.	 Harrow, A.W., Hassidim, A., Lloyd, S.: Quantum algorithm
for linear systems of equations. Phys. Rev. Lett. 103, 150502
(2009). https://​doi.​org/​10.​1103/​PhysR​evLett.​103.​150502

	21.	 Ambainis, A.: Variable time amplitude amplification and a
faster quantum algorithm for solving systems of linear equa-
tions (2010). https://​arxiv.​org/​abs/​1010.​4458

	22.	 Childs, A.M., Kothari, R., Somma, R.D.: Quantum algorithm
for systems of linear equations with exponentially improved
dependence on precision. SIAM J. Comput. 46(6), 1920–1950
(2017). https://​doi.​org/​10.​1137/​16M10​87072

	23.	 Montanaro, A., Pallister, S.: Quantum algorithms and the finite
element method. Phys. Rev. A 93, 032324 (2016). https://​doi.​
org/​10.​1103/​PhysR​evA.​93.​032324

	24.	 Costa, P.C.S., Jordan, S., Ostrander, A.: Quantum algorithm for
simulating the wave equation. Phys. Rev. A 99, 012323 (2019).
https://​doi.​org/​10.​1103/​PhysR​evA.​99.​012323

	25.	 Schalkers, M.A., Möller, M.: Efficient and fail-safe collisionless
quantum Boltzmann method (2022) arXiv:​2211.​14269

	26.	 Schalkers, M.A., Möller, M.: On the importance of data encod-
ing in quantum Boltzmann methods. Quantum Inform. Process.
(2023). https://​doi.​org/​10.​1007/​s11128-​023-​04216-6

	27.	 Budinski, L.: Quantum algorithm for the advection-diffusion
equation simulated with the lattice Boltzmann method. Quan-
tum Inf. Process. 20(2), 57 (2021). https://​doi.​org/​10.​1007/​
s11128-​021-​02996-3

	28.	 Itani, W., Sreenivasan, K.R., Succi, S.: Quantum Carleman lat-
tice boltzmann simulation of fluids (2023). https://​arxiv.​org/​abs/​
2301.​05762

	29.	 Succi, S., Itani, W., Sanavio, C., Sreenivasan, K.R., Steijl, R.:
Ensemble fluid simulations on quantum computers. Comput.
Fluids 270, 106148 (2024). https://​doi.​org/​10.​1016/j.​compf​luid.​
2023.​106148

	30.	 Ichikawa, T., Hakoshima, H., Inui, K., Ito, K., Matsuda, R.,
Mitarai, K., Miyamoto, K., Mizukami, W., Mizuta, K., Mori, T.,
Nakano, Y., Nakayama, A., Okada, K.N., Sugimoto, T., Taka-
hira, S., Takemori, N., Tsukano, S., Ueda, H., Watanabe, R.,
Yoshida, Y., Fujii, K.: Current numbers of qubits and their uses.
Nat. Rev. Phys. 6(6), 345–347 (2024). https://​doi.​org/​10.​1038/​
s42254-​024-​00725-0

	31.	 Penuel, J., Katabarwa, A., Johnson, P.D., Farquhar, C., Cao,
Y., Garrett, M.C.: Feasibility of accelerating incompressible
computational fluid dynamics simulations with fault-tolerant
quantum computers (2024). https://​arxiv.​org/​abs/​2406.​06323

	32.	 Mitarai, K., Negoro, M., Kitagawa, M., Fujii, K.: Quantum cir-
cuit learning. Phys. Rev. A 98, 032309 (2018). https://​doi.​org/​
10.​1103/​PhysR​evA.​98.​032309

	33.	 Benedetti, M., Lloyd, E., Sack, S., Fiorentini, M.: Parameter-
ized quantum circuits as machine learning models. Quantum Sci.
Technol. 4(4), 043001 (2019). https://​doi.​org/​10.​1088/​2058-​9565/​
ab4eb5

	34.	 Cerezo, M., Arrasmith, A., Babbush, R., Benjamin, S.C., Endo,
S., Fujii, K., McClean, J.R., Mitarai, K., Yuan, X., Cincio, L.,
Coles, P.J.: Variational quantum algorithms. Nat. Rev. Phys. 3(9),
625–644 (2021). https://​doi.​org/​10.​1038/​s42254-​021-​00348-9

	35.	 Cerezo, M., Verdon, G., Huang, H.-Y., Cincio, L., Coles, P.J.:
Challenges and opportunities in quantum machine learning. Nat.
Comput. Sci. 2(9), 567–576 (2022). https://​doi.​org/​10.​1038/​
s43588-​022-​00311-3

	36.	 Syamlal, M., Copen, C., Takahashi, M., Hall, B.: Computational
fluid dynamics on quantum computers (2024). https://​arxiv.​org/​
abs/​2406.​18749

	37.	 Pfeffer, P., Heyder, F., Schumacher, J.: Hybrid quantum-classical
reservoir computing of thermal convection flow. Phys. Rev. Res.

4, 033176 (2022). https://​doi.​org/​10.​1103/​PhysR​evRes​earch.4.​
033176

	38.	 Pfeffer, P., Heyder, F., Schumacher, J.: Reduced-order modeling
of two-dimensional turbulent Rayleigh-Bénard flow by hybrid
quantum-classical reservoir computing. Phys. Rev. Res. 5, 043242
(2023). https://​doi.​org/​10.​1103/​PhysR​evRes​earch.5.​043242

	39.	 Bravo-Prieto, C., LaRose, R., Cerezo, M., Subasi, Y., Cincio, L.,
Coles, P.J.: Variational quantum linear solver. Quantum 15, 10
(2023). https://​doi.​org/​10.​22331/q-​2023-​11-​22-​1188

	40.	 Demirdjian, R., Gunlycke, D., Reynolds, C.A., Doyle, J.D., Tafur,
S.: Variational quantum solutions to the advection-diffusion equa-
tion for applications in fluid dynamics. Quantum Inf. Process.
21(9), 322 (2022). https://​doi.​org/​10.​1007/​s11128-​022-​03667-7

	41.	 Gourianov, N., Lubasch, M., Dolgov, S., Berg, Q.Y., Babaee, H.,
Givi, P., Kiffner, M., Jaksch, D.: A quantum-inspired approach to
exploit turbulence structures. Nature Comput. Sci. 2(1), 30–37
(2022). https://​doi.​org/​10.​1038/​s43588-​021-​00181-1

	42.	 Kiffner, M., Jaksch, D.: Tensor network reduced order models for
wall-bounded flows. Phys. Rev. Fluids 8, 124101 (2023). https://​
doi.​org/​10.​1103/​PhysR​evFlu​ids.8.​124101

	43.	 Over, P., Bengoechea, S., Rung, T., Clerici, F., Scandurra, L., Vil-
liers, E., Jaksch, D.: Boundary treatment for variational quantum
simulations of partial differential equations on quantum computers
(2024). https://​arxiv.​org/​abs/​2402.​18619

	44.	 Pool, A.J., Somoza, A.D., Keever, C.M., Lubasch, M., Horstmann,
B.: Nonlinear dynamics as a ground-state solution on quantum
computers (2024). https://​arxiv.​org/​abs/​2403.​16791

	45.	 Cong, I., Choi, S., Lukin, M.D.: Quantum convolutional neural
networks. Nat. Phys. 15(12), 1273–1278 (2019). https://​doi.​org/​
10.​1038/​s41567-​019-​0648-8

	46.	 Caro, M.C., Huang, H.-Y., Cerezo, M., Sharma, K., Sornborger,
A., Cincio, L., Coles, P.J.: Generalization in quantum machine
learning from few training data. Nat. Commun. 13(1), 4919
(2022). https://​doi.​org/​10.​1038/​s41467-​022-​32550-3

	47.	 Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and
entangling capability of parameterized quantum circuits for hybrid
quantum-classical algorithms. Adv. Quantum Technol. 2(12),
1900070 (2019). https://​doi.​org/​10.​1002/​qute.​20190​0070

	48.	 Haug, T., Bharti, K., Kim, M.S.: Capacity and quantum geom-
etry of parametrized quantum circuits. PRX Quantum 2, 040309
(2021). https://​doi.​org/​10.​1103/​PRXQu​antum.2.​040309

	49.	 Chen, C.-C., Watabe, M., Shiba, K., Sogabe, M., Sakamoto, K.,
Sogabe, T.: On the expressibility and overfitting of quantum cir-
cuit learning. ACM Trans. Quantum Computi. (2021). https://​doi.​
org/​10.​1145/​34667​97

	50.	 Williams, C.A., Paine, A.E., Wu, H.-Y., Elfving, V.E., Kyriienko,
O.: Quantum Chebyshev transform: mapping, embedding, learn-
ing and sampling distributions (2023). https://​arxiv.​org/​abs/​2306.​
17026

	51.	 Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on
the expressive power of variational quantum-machine-learning
models. Phys. Rev. A 103, 032430 (2021). https://​doi.​org/​10.​1103/​
PhysR​evA.​103.​032430

	52.	 Mingard, C., Pointing, J., London, C., Nam, Y., Louis, A.A.:
Exploiting the equivalence between quantum neural networks
and perceptrons (2024). https://​arxiv.​org/​abs/​2407.​04371

	53.	 Bowles, J., Ahmed, S., Schuld, M.: Better than classical? The
subtle art of benchmarking quantum machine learning models
(2024). https://​arxiv.​org/​abs/​2403.​07059

	54.	 Paine, A.E., Elfving, V.E., Kyriienko, O.: Physics-informed quan-
tum machine learning: solving nonlinear differential equations in
latent spaces without costly grid evaluations (2023). https://​doi.​
org/​10.​48550/​arXiv.​2308.​01827

	55.	 Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward
networks are universal approximators. Neural Netw. 2(5), 359–
366 (1989). https://​doi.​org/​10.​1016/​0893-​6080(89)​90020-8

https://doi.org/10.1209/0295-5075/acfdc7
https://doi.org/10.1103/PhysRevLett.103.150502
https://arxiv.org/abs/1010.4458
https://doi.org/10.1137/16M1087072
https://doi.org/10.1103/PhysRevA.93.032324
https://doi.org/10.1103/PhysRevA.93.032324
https://doi.org/10.1103/PhysRevA.99.012323
http://arxiv.org/abs/2211.14269
https://doi.org/10.1007/s11128-023-04216-6
https://doi.org/10.1007/s11128-021-02996-3
https://doi.org/10.1007/s11128-021-02996-3
https://arxiv.org/abs/2301.05762
https://arxiv.org/abs/2301.05762
https://doi.org/10.1016/j.compfluid.2023.106148
https://doi.org/10.1016/j.compfluid.2023.106148
https://doi.org/10.1038/s42254-024-00725-0
https://doi.org/10.1038/s42254-024-00725-0
https://arxiv.org/abs/2406.06323
https://doi.org/10.1103/PhysRevA.98.032309
https://doi.org/10.1103/PhysRevA.98.032309
https://doi.org/10.1088/2058-9565/ab4eb5
https://doi.org/10.1088/2058-9565/ab4eb5
https://doi.org/10.1038/s42254-021-00348-9
https://doi.org/10.1038/s43588-022-00311-3
https://doi.org/10.1038/s43588-022-00311-3
https://arxiv.org/abs/2406.18749
https://arxiv.org/abs/2406.18749
https://doi.org/10.1103/PhysRevResearch.4.033176
https://doi.org/10.1103/PhysRevResearch.4.033176
https://doi.org/10.1103/PhysRevResearch.5.043242
https://doi.org/10.22331/q-2023-11-22-1188
https://doi.org/10.1007/s11128-022-03667-7
https://doi.org/10.1038/s43588-021-00181-1
https://doi.org/10.1103/PhysRevFluids.8.124101
https://doi.org/10.1103/PhysRevFluids.8.124101
https://arxiv.org/abs/2402.18619
https://arxiv.org/abs/2403.16791
https://doi.org/10.1038/s41567-019-0648-8
https://doi.org/10.1038/s41567-019-0648-8
https://doi.org/10.1038/s41467-022-32550-3
https://doi.org/10.1002/qute.201900070
https://doi.org/10.1103/PRXQuantum.2.040309
https://doi.org/10.1145/3466797
https://doi.org/10.1145/3466797
https://arxiv.org/abs/2306.17026
https://arxiv.org/abs/2306.17026
https://doi.org/10.1103/PhysRevA.103.032430
https://doi.org/10.1103/PhysRevA.103.032430
https://arxiv.org/abs/2407.04371
https://arxiv.org/abs/2403.07059
https://doi.org/10.48550/arXiv.2308.01827
https://doi.org/10.48550/arXiv.2308.01827
https://doi.org/10.1016/0893-6080(89)90020-8

	 P. Siegl et al.

	56.	 Danilova, M., Dvurechensky, P., Gasnikov, A., Gorbunov,
E., Guminov, S., Kamzolov, D., Shibaev, I.: Recent theoreti-
cal advances in non-convex optimization. In: Nikeghbali, A.,
Pardalos, P.M., Raigorodskii, A.M., Rassias, M.T. (eds.) High-
Dimensional Optimization and Probability. Springer Optimi-
zation and Its Applications, vol. 191, pp. 79–163. Springer
International Publishing, Cham (2022). https://​doi.​org/​10.​1007/​
978-3-​031-​00832-0_3

	57.	 Bishop, C.M.: Pattern Recognition and Machine Learning. Infor-
mation science and statistics. Springer, New York, NY (2006).

	58.	 Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan,
G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmai-
son, A., Köpf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A.,
Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.:
PyTorch: an imperative style, high-performance deep learning
library (2019).https://​doi.​org/​10.​48550/​arXiv.​1912.​01703

	59.	 Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.:
Evaluating analytic gradients on quantum hardware. Phys. Rev. A
99, 032331 (2019). https://​doi.​org/​10.​1103/​PhysR​evA.​99.​032331

	60.	 Kyriienko, O., Elfving, V.E.: Generalized quantum circuit dif-
ferentiation rules. Phys. Rev. A 104, 052417 (2021). https://​doi.​
org/​10.​1103/​PhysR​evA.​104.​052417

	61.	 Wierichs, D., Izaac, J., Wang, C., Lin, C.Y.-Y.: General parameter-
shift rules for quantum gradients. Quantum 6, 677 (2022). https://​
doi.​org/​10.​22331/q-​2022-​03-​30-​677

	62.	 Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum
Information: 10th Anniversary Edition. Cambridge University
Press (2010). https://​doi.​org/​10.​1017/​CBO97​80511​976667

	63.	 Schuld, M., Petruccione, F.: Machine Learning with Quan-
tum Computers. Springer (2021). https://​doi.​org/​10.​1007/​
978-3-​030-​83098-4

	64.	 Bekemeyer, P., Bertram, A., Chaves, D.A.H., Ribeiro, M.D.,
Garbo, A., Kiener, A., Sabater, C., Stradtner, M., Wassing, S.,
Widhalm, M., Goertz, S., Jaeckel, F., Hoppe, R., Hoffmann, N.:
Data-driven aerodynamic modeling using the DLR SMARTy tool-
box. https://​doi.​org/​10.​2514/6.​2022-​3899

	65.	 Bergholm, V., Izaac, J., Schuld, M., Gogolin, C., Ahmed, S., Ajith,
V., Alam, M.S., Alonso-Linaje, G., AkashNarayanan, B., Asadi,
A., Arrazola, J.M., Azad, U., Banning, S., Blank, C., Bromley,
T.R., Cordier, B.A., Ceroni, J., Delgado, A., Matteo, O.D., Dusko,
A., Garg, T., Guala, D., Hayes, A., Hill, R., Ijaz, A., Isacsson, T.,
Ittah, D., Jahangiri, S., Jain, P., Jiang, E., Khandelwal, A., Kott-
mann, K., Lang, R.A., Lee, C., Loke, T., Lowe, A., McKiernan,

K., Meyer, J.J., Montañez-Barrera, J.A., Moyard, R., Niu, Z.,
O’Riordan, L.J., Oud, S., Panigrahi, A., Park, C.-Y., Polatajko,
D., Quesada, N., Roberts, C., Sá, N., Schoch, I., Shi, B., Shu,
S., Sim, S., Singh, A., Strandberg, I., Soni, J., Száva, A., Thabet,
S., Vargas-Hernández, R.A., Vincent, T., Vitucci, N., Weber, M.,
Wierichs, D., Wiersema, R., Willmann, M., Wong, V., Zhang,
S., Killoran, N.: PennyLane: Automatic differentiation of hybrid
quantum-classical computations (2022). https://​doi.​org/​10.​48550/​
arXiv.​1811.​04968

	66.	 San, O., Maulik, R., Ahmed, M.: An artificial neural network
framework for reduced order modeling of transient flows. Com-
mun. Nonlinear Sci. Numer. Simul. 77, 271–287 (2019). https://​
doi.​org/​10.​1016/j.​cnsns.​2019.​04.​025

	67.	 Liu, D.C., Nocedal, J.: On the limited memory bfgs method
for large scale optimization. Math. Program. 45(1–3), 503–528
(1989). https://​doi.​org/​10.​1007/​BF015​89116

	68.	 Fuks, O., Tchelepi, H.A.: Limitations of physics informed machine
learning for nonlinear two-phase transport in porous media. J.
Mach. Learn. Model. Comput. 1(1), 19–37 (2020). https://​doi.​
org/​10.​1615/​JMach​Learn​Model​Comput.​20200​33905

	69.	 Coutinho, E.J.R., Dall’Aqua, M., McClenny, L., Zhong, M.,
Braga-Neto, U., Gildin, E.: Physics-informed neural networks
with adaptive localized artificial viscosity. J. Comput. Phys. 489,
112265 (2023). https://​doi.​org/​10.​1016/j.​jcp.​2023.​112265

	70.	 Kim, Y., Eddins, A., Anand, S., Wei, K.X., Berg, E., Rosenblatt,
S., Nayfeh, H., Wu, Y., Zaletel, M., Temme, K., Kandala, A.:
Evidence for the utility of quantum computing before fault toler-
ance. Nature 618(7965), 500–505 (2023). https://​doi.​org/​10.​1038/​
s41586-​023-​06096-3

	71.	 Schuld, M.: Supervised quantum machine learning models are
kernel methods (2021). https://​arxiv.​org/​abs/​2101.​11020

	72.	 Halton, J.H.: On the efficiency of certain quasi-random sequences
of points in evaluating multi-dimensional integrals. Numer. Math.
2(1), 84–90 (1960). https://​doi.​org/​10.​1007/​BF013​86213

	73.	 CARA. https://​www.​dlr.​de/​de/​forsc​hung-​und-​trans​fer/​forsc​hungs​
infra​struk​tur/​gross​forsc​hungs​anlag​en/​hpc-​clust​er/​cara. Accessed
12 Sep 2023

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1007/978-3-031-00832-0_3
https://doi.org/10.1007/978-3-031-00832-0_3
https://doi.org/10.48550/arXiv.1912.01703
https://doi.org/10.1103/PhysRevA.99.032331
https://doi.org/10.1103/PhysRevA.104.052417
https://doi.org/10.1103/PhysRevA.104.052417
https://doi.org/10.22331/q-2022-03-30-677
https://doi.org/10.22331/q-2022-03-30-677
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1007/978-3-030-83098-4
https://doi.org/10.1007/978-3-030-83098-4
https://doi.org/10.2514/6.2022-3899
https://doi.org/10.48550/arXiv.1811.04968
https://doi.org/10.48550/arXiv.1811.04968
https://doi.org/10.1016/j.cnsns.2019.04.025
https://doi.org/10.1016/j.cnsns.2019.04.025
https://doi.org/10.1007/BF01589116
https://doi.org/10.1615/JMachLearnModelComput.2020033905
https://doi.org/10.1615/JMachLearnModelComput.2020033905
https://doi.org/10.1016/j.jcp.2023.112265
https://doi.org/10.1038/s41586-023-06096-3
https://doi.org/10.1038/s41586-023-06096-3
https://arxiv.org/abs/2101.11020
https://doi.org/10.1007/BF01386213
https://www.dlr.de/de/forschung-und-transfer/forschungsinfrastruktur/grossforschungsanlagen/hpc-cluster/cara
https://www.dlr.de/de/forschung-und-transfer/forschungsinfrastruktur/grossforschungsanlagen/hpc-cluster/cara

	Solving transport equations on quantum computers—potential and limitations of physics-informed quantum circuits
	Abstract
	1 Introduction
	1.1 Physics-informed neural networks
	1.2 Variational quantum algorithms
	1.3 Scope and structure of this work

	2 Physics-informed neural networks
	3 Variational quantum algorithms
	3.1 Rotational gates
	3.2 Data encoding
	3.3 Trainable layers
	3.4 Measurement and output
	3.5 Quantum circuit ansatz

	4 Experiment
	4.1 Problems
	4.2 Optimization
	4.3 Quantum circuit and neural network shapes
	4.4 Studied quantities
	4.5 Results
	4.6 Number of training epochs
	4.7 Accuracy
	4.8 Representing shocks
	4.9 Discussion

	5 Conclusion and outlook
	Appendix
	Approximations
	Training details
	Computational Effort

	Ansatz comparison

	Acknowledgements
	References

