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Abstract
Quantum circuits with trainable parameters, paired with classical optimization routines can be used as machine learning 
models. The recently popularized physics-informed neural network (PINN) approach is a machine learning algorithm that 
solves differential equations by incorporating them into a loss function. Being a mesh-free method, it is a promising approach 
for computational fluid dynamics. The question arises whether the properties of quantum circuits can be leveraged for a 
quantum physics-informed machine learning model. In this study, we compare the classical PINN-ansatz and its quantum 
analog, which we name the physics-informed quantum circuit (PIQC). The PIQC simulations are performed on a noise-free 
quantum computing simulator. Studying various differential equations, we compare expressivity, accuracy and convergence 
properties. We find that one-dimensional problems, such as the linear transport of a Gaussian-pulse or Burgers’ equation, 
allow a successful approximation with the classical and the quantum ansatz. For these examples, the PIQC overall performs 
similarly to PINN and converges more consistently and for Burgers’ equations even faster. While this is promising, the chosen 
quantum circuit approach struggles to approximate discontinuous solutions which the classical PINN-ansatz can represent. 
Based on this comparison, we extrapolate that the required number of qubits for solving two-dimensional problems in 
aerodynamics may already be available in the next few years. However, the acceleration potential is currently unclear and 
challenges like noisy circuits and approximations of discontinuous solutions have to be overcome.

Keywords  Quantum machine learning · Physics informed neural network · Variational quantum circuit · Differential 
equations

1  Introduction

Computational fluid dynamics (CFD) is an essential tool 
for many applications in science and industry. Conventional 
methods, such as finite volume and finite element, rely on 
the discretization of time and space and require an increasing 
number of degrees of freedom for high Reynolds number 
flows. To this day, the application of scale resolving sim-
ulations (like direct numerical simulation and large eddy 

simulation) is infeasible in an industrial aerospace context 
due to the billions of points that are required to obtain accu-
rate physical models of turbulent flows [1]. Quantum com-
puting is a potentially disruptive technology that may be able 
to accelerate previously expensive computational tasks, as 
solving non-linear differential equations [2–5].

In this context, it is crucial to develop and assess novel 
simulation algorithms which are compatible with faulty 
quantum hardware. To make a step in this direction, in 
this work, we consider one approach, namely the physics-
informed quantum circuits and draw the comparison to its 
classical variant, the physics informed neural network.

1.1 � Physics‑informed neural networks

Supervised deep learning has become ubiquitous for applica-
tions, such as computer vision and natural language process-
ing. In computational physics, however, purely data-driven 
models are oftentimes unsuitable because they may not 
respect physical laws, e.g. due to noisy data. Ideally, we 
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want to leverage the physical knowledge available in the 
form of partial differential equations (PDEs), to enhance a 
machine learning model. One method to reach this goal, is 
the physics-informed neural network (PINN). This method 
approximates the solution to a differential equations with a 
neural network. The differential equation is incorporated into 
a loss function used for training and the required derivatives 
are calculated using automatic differentiation. The initial and 
boundary conditions are typically incorporated into the loss 
function via additional loss terms. Therefore, PINNs refor-
mulate boundary value problems as optimization problems. 
Here, the neural network acts as a global continuous ansatz 
for the solution which distinguishes the method from clas-
sical methods, based on discretization in space and time. 
PINNs can be used as a deep learning-based PDE solver 
for forward problems. This is the purpose for which they 
are used in this work. The training of PINNs is typically 
significantly slower than solving the PDE with a classical 
solver. However, contrary to classical solvers, they offer the 
advantage that additional solution data (e.g. from measure-
ments or other simulations) can be incorporated into the 
loss. This makes them applicable to tackle certain inverse 
problems [6–8]. Furthermore, they may be used to solve 
parametric forward problems by approximating the solu-
tion in a continuous parameter space. Once the network is 
trained, it can be evaluated quickly and solutions for differ-
ent parameter values can be retrieved. Originally proposed 
in the 90s by works of Dissanayake and Phan-Thien [9] and 
later Lagaris [10], the approach has recently gained sub-
stantial interest after a series of papers by Raissi et al. [6, 
11, 12] where the method is applied to a variety of forward 
and inverse problems, coining the term physics-informed 
neural network. Subsequently, numerous variants and exten-
sions have been proposed and the method was shown to be 
effective in a wide variety of scenarios. For a thorough over-
view the interested reader is referred to [13]. In particular, 
PINNs have been applied to fluid dynamics [14]. So far, 
the complexity of analyzed problems is limited to simple, 
two-dimensional flows. However, initial steps towards higher 
complexity problems with relevance for aerospace science 
are made. In the following, some notable examples are 
listed. Jin et al. [15] solve the incompressible Navier-Stokes 
equations for laminar flows and turbulent channel flows at 
Reynolds number Re = 1000 . Eivazi et al. [16] solve the 
incompressible Reynolds-averaged-Navier-Stokes equations 
for zero and adverse pressure gradient boundary layers and 
a NACA 0012 airfoil. Raissi et al. [8] reconstruct full flow 
fields for Navier-Stokes equations based on noisy measure-
ments of a passive scalar which is advected by the flow. 
The compressible Euler equations have been considered 
for supersonic two-dimensional cases such as an oblique 
shock wave or expansion wave for forward [17] and inverse 
problems [7, 17]. Wassing et al. [18] show parametric PINN 

simulations of the compressible Euler equations for sub- and 
supersonic flows in two dimensions.

1.2 � Variational quantum algorithms

Next to machine learning, quantum computing is a further 
promising future technology. In the context of fluid dynam-
ics we often face the challenge of non-linearity of the gov-
erning equations and non-hermicity of diffusion [19] hinder-
ing a straight forward implementation in terms of quantum 
gates. However, various ideas on how to tackle these prob-
lems were developed and are currently investigated. We will 
shortly outline some key resources. For a more detailed dis-
cussion, we refer the interested reader to [19]. Many legacy 
CFD methods, like finite volumes or finite elements, rely on 
a discretization of the spatial fields allowing for a lineariza-
tion of the equations. This linear formulation enables the use 
of quantum linear solvers like the Harrow-Hassidim-Lloyd 
algorithm [20] and its improvements [21, 22]. With this tech-
niques the scaling of a quantum finite element routine [23] 
was studied and a finite difference scheme solving the wave 
equation [24] implemented. Moreover, Lattice–Boltzmann 
routines are under active consideration [25–27] and Carle-
man-Linearization seems to be a possible tool [28]. Fur-
thermore, quantum computers seem to be well suited for 
probability density function methods and ensemble simula-
tions [29] as those require linear differential equations to 
be solved.

Most of the aforementioned approaches require a large 
number of qubits and error-corrected operations. Hence, 
they are not yet applicable for real use-cases on quantum 
computing hardware which is still prone to noise and limited 
in the number of available qubits and connectivity [30]. First 
doubts if the mentioned approaches designed for fault-toler-
ant computers allow for quantum advantages are raised [31].

In this early stage of quantum computing, promising 
candidates are variational quantum algorithms (VQA) that 
combine trainable quantum circuits with classical optimiza-
tion routines [32–35]. Following the variational approach, 
Syamlal et al. published a preprint with first evidence for 
beneficial scaling of a variational quantum lattice boltzmann 
method [36] for CFD applications. Quantum Reservoir Com-
puting is under consideration to capture thermal convec-
tive [37] and turbulent flows [38]. Further works introduced 
VQAs that focus on solving linear [39, 40] and non-linear [3, 
4] differential equations. In this context, Lubasch et al. intro-
duced a variational approach using amplitude encoding and 
finite differences that allows to solve non-linear differen-
tial equations. The method relies on the paradigm of ten-
sor networks, which showed to be suitable for flow simula-
tions [41, 42]. This approach was extended to treat different 
boundary conditions [43] and space-time methods [44]. 
VQAs are further an important building block for quantum 
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machine learning (QML) algorithms and researchers study 
the quantum potential in nearly all areas of classical machine 
learning (ML). For example, there are experimental studies 
on quantum convolutional ML [45] and quantum reinforce-
ment learning, as well as theoretical work, trying to identify 
generalization bounds [46] and quantify quantum circuit 
expressivity [47–49].

Kyriienko et al. proposed the quantum version [4] of the 
physics-informed neural network algorithm [12] for solv-
ing PDEs. They show the general feasibility to solve one-
dimensional non-linear differential equations by training the 
parameters of a quantum circuit with a loss function that 
incorporates the differential equations. To this aim, they 
compare different handling strategies of the input encod-
ing and the boundary treatment. Using a hardware-efficient 
ansatz together with different feature maps, they study the 
performance on two different differential equations with 
continuous solutions. In following works, they expand their 
understanding of the feature maps and their application to 
stochastic PDEs [50]. While they show the general ability 
of the quantum approach in [4], they do not perform any 
comparison to classical PINNs and they leave the question 
of current limits of the quantum approach open.

Our work performs a direct comparison of the classi-
cal and quantum approach, for different relevant PDEs of 
different complexity. We use a different circuit ansatz that 
relies on data reuploading [51] as it allows us to solve a 
broader variety of problems. In analogy to PINNs, we name 
the quantum approach physics-informed quantum circuit 
(PIQC) throughout this work. While our PIQC-ansatz is 
able to approximate continuous solutions to all considered 
differential equations, both the ansatz presented in [4, 51] 
fail to capture discontinuous solutions. Our work illustrates 
when PIQCs show a comparable or even beneficial behav-
iour over classical PINNs. Furthermore, it pin-points that 
the presented ansatzes are incapable of finding flow solu-
tions with discontinuities, an important phenomena in many 
industry-relevant flow applications. Many studies that claim 
advantage of QML and classical ML are currently criticized 
[52, 53] for using data which is down-sampled beyond rec-
ognition and choosing particularly bad-performing archi-
tectures of the classical neural networks. The focus of our 
work is an empirical study as well. However, we choose our 
problems as broad as possible to allow for a fair comparison. 
We further use neural network architectures, that work well 
for PINNs and do not hide results that are not beneficial for 
the PIQC.

During the publishing process of this work, Paine et al. 
released a preprint on physics-informed quantum machine 
learning, with a different procedure of information encod-
ing [54].

1.3 � Scope and structure of this work

This work is devoted to the evaluation and comparison 
between PINNs and PIQC. We share experimental expe-
riences comparing the convergence speed and accuracy. 
Furthermore, current limitations are discussed, occurring 
due to the missing availability of quantum computers with 
large qubit numbers and the infeasibility of simulating them. 
This paper is structured as follows. First, we will give an 
introduction into physics-informed neural networks and 
variational quantum algorithms. Next, we will present the 
differential equations studied. First an ordinary differential 
equation (ODE), second a linear transport equations, and 
third a non-linear Burgers’ equations. The last problem, i.e. 
the transport of a shock, is only well captured by the PINN, 
showcasing the limitations of the currently used quantum 
circuit ansatz.

2 � Physics‑informed neural networks

Physics-informed neural networks are a deep learning-based 
method using classical neural networks for differential prob-
lems such as solving partial differential equations. PINNs 
incorporate differential terms into the loss function which is 
minimized during the training of the neural network.

Let us consider a one-dimensional initial-boundary value 
problem:

for an unknown solution u(x, t) in space x ∈ Ω and in the 
time interval t ∈ [0, T) . Here, D is a general differential 
operator and I  and B are initial and boundary conditions, 
respectively. To approximate a solution u(x, t) with a PINN, 
we use a neural network û

�
(x, t) as the global ansatz function 

û
�
(x, t) ≈ u(x, t) . The neural network acts as a parametric 

ansatz function for the solution. Since neural networks are 
universal function approximators [55], a sufficiently large 
network is theoretically able to capture continuous solutions 
at arbitrary precision. Empirical result show that even dis-
continuous functions can be approximated [12]. However, 
to find such good approximations, one has to find a global 
optimum of a non-convex optimization problem to deter-
mine the parameters of the network, which in general can 
be an NP-hard problem [56].

A fully connected feed-forward neural network is 
obtained by a repeated composition of parametric vector-
valued linear functions and non-linear activation functions. 
It can be expressed as follows:

(1)

�u

�t
−D(u) =0 (x, t) ∈ Ω × (0, T)

I(u(x, 0), x) =0 x ∈ Ω

B(u(x, t), x, t) =0 (x, t) ∈ �Ω × (0, T)
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Each composition of one parametric linear function and the 
non-linear activation function �(⋅) is called a layer. Nk is the 
dimension of the k-th layer. The input vector 
r = (x0

1
, x0

2
,… , x0

N0
) and the output vector xM

j
 determine the 

dimensions of the domain and codomain of the network. All 
other layers are called hidden layers and the network has a 
depth of M layers. The values of each layer k only depends 
on the function values of the previous layer k − 1 and w and 
b are the parameters of the network, called weights and 
biases. Since this architecture is inspired by brain neurons, 
the individual outputs xk

j
 at each layer are often called neu-

rons. For an in-depth explanation of classical neural network 
architectures, consider for example  [57]. For physics-
informed neural networks, a typical activation function is 
the hyperbolic tangent �(⋅) = tanh(⋅).

The optimization or training of the network weights 
and biases requires the construction of a loss function L . 
For regression problems, this loss is most commonly the 
mean squared error between network predictions and target 
data. However, for physics-informed neural networks, we 
construct a composite loss function which consists of three 
terms:

The first term on the right hand side is the residual loss. It 
directly incorporates the differential equation and its magni-
tude measures the residual of the predicted solution,

Backpropagation methods use reverse mode automatic dif-
ferentiation to calculate derivatives of a loss function L with 
respect to parameters of the network. Similarly, we can use 
reverse mode automatic differentiation to calculate deriva-
tives of the network output û

�
 with respect to its input r . 

This essentially exploits the chain rule of derivatives in a 
hardware-efficient manner to calculate the derivatives of a 
particular evaluation of the network. Firstly, the network 
is evaluated and the prediction û

�
 is obtained. The opera-

tions, performed on the inputs by the neural network to 
obtain the prediction, are stored in a computational graph. 

(2)

û(r) ∶ ℝ
N0

⟶ ℝ
NM

ûj ≡ xM
j
, j = 1…NM

r =
(
x0
1
, x0

2
,… , x0

N0

)

xk
j
= 𝜎

(
Nk−1∑

i=1

wk−1
i,j

xk−1
i

− bj

)
,

j = 1…Nk, k = 1…M.

(3)L = LRes + �ILI + �BLB.

(4)
LRes =

1

NRes

NRes∑

i=1

(
𝜕û

�

𝜕t
(xi, ti)−D(û

�
(xi, ti))

)2

,

xi ∈ Ω ;ti ∈ (0, T).

Subsequently, by stepping back through the network from 
the last to the first layer, we can calculate the desired deriva-
tives by iteratively applying the chain rule, one layer at a 
time using the computational graph. For more details, see 
for example [57]. In practice, we can use third-party librar-
ies such as PyTorch [58] to implement these routines in a 
straightforward manner.

The second and third term of the loss function penalize dif-
ferences between the predicted solution and the given initial 
condition and boundary condition, respectively,

Note that these loss terms are required to avoid convergence 
to a trivial solution of the differential equation. For all fol-
lowing experiments, we set the scalar weighting factors 
�I = �B = 1 . The training points (xi, ti) inside of the domain 
and on the boundary can be randomly sampled. Thus, we can 
train the model using only information of the solution given 
by the boundary conditions and without additional solution 
data in the interior of the domain. Using the loss function 
Eq. (3) we can formulate the optimization problem for the 
trainable parameters as:

where � is the vector containing all trainable parameters of 
the neural network (weights and biases in Eq. (2)) and np 
is the number of parameters in the network. A schematic 
explanation of the PINN method is shown in Fig. 1.

3 � Variational quantum algorithms

A variational quantum algorithm (VQA) is a hybrid quan-
tum-classical approach that consists of a quantum circuit 
with trainable parameters and an optimization routine that 
runs on a classical computer.

In the following, we will shortly deepen the idea of this 
hybrid quantum-classical approach.

The VQA can be split into a quantum part and a classi-
cal part. Let us first consider the classical neural network-
based approach in Fig. 1. For the VQA approach, the neural 
network in this picture is replaced by a quantum circuits 
which also acts as the global ansatz function. We use the 
measurement results of the quantum circuit to define the 
function value u. The computation of the loss, as well as the 

(5)LI =
1

NI

NI∑

i=1

I(û
�
(xi, 0))

2, xi ∈ Ω,

(6)
LB =

1

NB

NB∑

i=1

B(û
�
(xi, ti))

2,

xi ∈ 𝜕Ω ;ti ∈ (0, T).

(7)arg min
�∈ℝnp

(
L(û

�
)
)
,
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optimization routine remain on the classical computer and 
work equivalently to the classical PINNs. To find the optimal 
set of trainable parameters for the PINN and PIQC, we rely 
on gradient-based optimization. To make use of these rou-
tines, the quantum circuit needs to be differentiable so that 
gradients of the loss with respect to the trainable parameters 
inside of the circuit can be calculated.

For all gates and measurements used throughout this work, 
it is well known how to compute the derivatives of the quan-
tum circuit. On real quantum hardware, this is possible, with 
the help of the parameter-shift rule [32, 59] and its generali-
zations [60, 61]. In this work, using noise-free simulators of 
quantum hardware, the gradients were computed analytically. 
The differentiability of the circuit is further required to com-
pute the residual needed for the loss function in Eq. (3) which 
in our examples includes derivatives of the form �u

�x
 , �u
�t

 and �
2u

�x2
 . 

The used quantum circuits consist of three main building block 
(see Fig. 2). First, there is an encoding layer for feeding in the 
inputs, second, the trainable layer aimed to be optimized, and 
last, the measurement layer, necessary to extract the output-
data from the quantum computer. For simplicity, we will intro-
duce each of these building blocks separately. In practice, they 
can occur multiple times.

3.1 � Rotational gates

Rotational gates play an important role for data encoding, as 
well as for the trainable layers of the VQC. They are param-
eterized single-qubit operations that implement a rotation of 
the single-qubit state on the Bloch sphere [62]. The rotational 
gates, which are unitary operations and implement a rotation 
around the respective axis, can be expressed in matrix repre-
sentation as

The angle � ∈ ℝ can take the value of an input datum or act 
as a trainable parameter.

3.2 � Data encoding

In general, there are various possibilities for how to encode 
information into a gate-based quantum computer. Here, we 
will restrict ourselves to the rotational encoding. A detailed 
description of other important encoding schemes as bit-
encoding or amplitude encoding can be found in [63]. We 

(8)

Rx(�) =

(
cos �∕2 −i sin �∕2

−i sin �∕2 cos �∕2

)
,

Ry(�) =

(
cos �∕2 − sin �∕2

sin �∕2 cos �∕2

)
,

Rz(�) =

(
exp−i�∕2 0

0 exp i�∕2

)
.

Fig. 1   Schematic depiction of 
the PINN approach. The neural 
network is trained using a 
composite loss function which 
measures the agreement of the 
neural network with the residual 
and initial and boundary 
conditions. Partial derivatives 
are calculated using automatic 
differentiation
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use the rotation gates to encode one real number per qubit 
and gate. For example, applying Ry(x) on the state �0⟩ yields

This allows for an efficient data-encoding without expen-
sive state preparation routines. In combination with Pauli-
measurements it further ensures the differentiability of the 
quantum circuit. The rotational encoding is well suited for 
problems with small input dimension.

3.3 � Trainable layers

Rotation gates are also used in the trainable layer, shown in 
Fig. 2. Here, the gate R(�i, �j, �k) = Rx(�i)Ry(�j)Rz(�k) refers 
to a rotation around all three axes in the Bloch sphere. In 
the trainable layers, the rotational angles are the trainable 
parameters � . Hence, they are determined by solving the 
optimization problem Eq. (7) with a classical training rou-
tine. Additionally, two-qubit gates like the CNOT gate are 
used to create entanglement. This enhances the expressivity 
of the quantum circuit.

3.4 � Measurement and output

Measurement is required to extract the information of inter-
est into a format that we can process. Here, we perform a 
Pauli measurement in the z-basis on each qubit and sum over 
these values to obtain our approximation

The index i refers to the i-th qubit.

(9)Ry(x)�0⟩ = cos (x∕2)�0⟩ − sin (x∕2)�1⟩.

(10)û
�
(x) =

�

i

⟨Sz
i
⟩.

3.5 � Quantum circuit ansatz

For real applications, the quantum circuit is usually more 
complex than the simplified version shown in Fig. 2. There 
are various possibilities to increase the expressivity, i.e. 
enhance the number and the complexity of functions the cir-
cuit can represent. One possibility to increase the expressiv-
ity is the ansatz presented by Kyriienko in [4], which repeats 
the trainable layer multiple times. They furthermore apply a 
feature map on the input values, to increase the complexity.

A different ansatz was presented by Schuld et al. in [51]. 
Their quantum circuit consists of alternating repetitions of 
encoding layers and trainable layers, as shown in Fig. 3. In 
comparison to the simple ansatz in Fig. 2 and the ansatz pre-
sented by Kyriienko in [4], this ansatz starts and ends with a 
trainable layer. Schuld et al. show that their quantum mod-
els can be written as partial fourier series in the data [51]. 
The accessible range of fourier frequencies in the model 
increases with increasing number of qubits and/or layers.

With this alternating ansatz we were able to approximate 
a broader variety of functions, than with the ansatz presented 
by Kyriienko in [4], see Appendix 6.3 for more details. For 
all results shown in the following, we used the alternating 
circuit ansatz introduced by Schuld et al.

4 � Experiment

In this section, we will show a comparison between training 
a classical PINN and a PIQC by means of various exam-
ples. In all experiments, the PINN and the PIQC share the 
same cost-function, training routine and are implemented 
in the same Software framework SMARTy [64]. The quan-
tum computations are implemented by using Pennylane [65] 
and performed on a simulator. Studying the effect of noise 

Fig. 2   Example of a variational quantum circuit with three qubits. It 
consists of three main parts. First, the encoding (purple), where input 
information x is encoded via rotation gates. Second, the trainable 
layer, where rotation gates contain trainable parameters � . Their val-
ues are to be determined by solving the optimization problem Eq. (7). 

The trainable layer further contains two-qubit gates that create entan-
glement. Third, there is the measurement procedure. Here, we con-
sider a Pauli measurement in the z-basis on each qubit. The measured 
results are summed up to the model approximation û

�(x)
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and errors is beyond the scope of the current work and will 
be addressed in the future. Simulators (as well as currently 
available real quantum hardware) only allow to study cir-
cuits with a very limited number of qubits and layers. This 
also limits the size and complexity of problems, that can be 
treated. Thus, we decide to focus on simple problems and 
extensive parameter studies for the design of the circuits/
networks dimensions. This allows for the simulation of many 
different circuit shapes in parallel. The used values can be 
found in Tab. 2.

4.1 � Problems

In this paper, we study four different problems with increas-
ing complexity and known analytical solution. Problem I is 
a simple ODE

in the domain x ∈ [−1, 1] and boundary conditions 
u(−1) = u(1) = 0 , with a square function as analytical 
solution

Second, we study the linear transport equation

where the analytical solution is

and I is the initial condition. As Problem II, we select a 
Gauss pulse as the initial condition:

with periodic boundary conditions in the domain 
x × t ∈ [−1, 1] × [0, 0.5] and a transport velocity c = 0.5.

(11)d2u

dx2
= 1,

(12)u(x) =
1

2

(
x2 − 1

)
.

(13)
�u

�t
+ c

�u

�x
= 0,

(14)u(x, t) = I(x − ct)

(15)I(x) = exp(−x2∕0.1),

Next, as problem III we study the one dimensional 
Burgers’ equation which is a non-linear PDE and a fre-
quently used test case for fluid flow applications

We consider the domain x × t ∈ [−1, 1] × [0, 1] and a viscos-
ity of � = 0.01 . One can show that an analytical solution to 
this equation is given by [66]

with t0 = exp 1∕(8�) . The initial and boundary conditions 
follow from the analytical solution. Problem I–III share the 
advantage that the function to be approximated, is continu-
ous and smooth. In real fluid fields, however, we need to 
handle complex situations, like the chaotic nature of turbu-
lence and the appearances of shocks. In this part, we study 
the capability of the PIQC and the PINN to approximate 
a shock. Therefore, for problem IV, we again consider the 
linear transport Eq. (13) with a step-function as the initial 
condition

which models a fully-developed shock. For the boundary we 
choose Dirichlet conditions u(x = −1, t) = 0, u(x = 1, t) = 1 
and as the transport velocity c = 0.5.

4.2 � Optimization

To optimize the parameters of the neural network and the 
quantum circuit, we use the low memory Broyden-Fletcher-
Goldfarb-Shanno quasi-Newton algorithm (L-BFGS) [67]. 
Empirically, we have observed most success with this algo-
rithm for optimizing PIQCs compared to first-order stochas-
tic gradient methods. This may be due to the fact that, as a 

(16)�u

�t
+ u

�u

�x
= �

�
2u

�x2
.

(17)u(x, t) =

x

t+1

1 +
√
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Fig. 3   Circuit ansatz used for 
the performed PIQC-experi-
ments with varying number of 
qubits and layers. Each layer 
consists of a trainable (orange), 
and an encoding (purple) part. 
The repeated encoding leads 
to a higher expressivity of the 
quantum circuit. This ansatz 
was proposed and analyzed in 
[51]
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quasi-Newton method, the algorithm requires comparatively 
less iterations than first-order methods. For the PIQC we 
are severely limited in the number of iterations, due to the 
significant cost of simulating the quantum circuit. In addi-
tion, L-BFGS is also a popular choice for PINN optimiza-
tion, especially for fine-tuning models after an initial train-
ing stage with stochastic gradient descend variants (see for 
example [7, 15, 17, 18]). For a fair comparison we use the 
implementation of PyTorch [58] for both approaches with 
the same hyperparameters (see the Appendix 6.2 or further 
details).

4.3 � Quantum circuit and neural network shapes

The performance of the PINNs and PIQC on a specific 
problem depends on the dimensions of the selected ansatz 
function because it determines the number of trainable 
parameters. Hence, the dimensions of the parametric ansatz 
determine the expressivity. Since the fundamental nature of 
the parametric functions is different, we compare the results 
based on the number of trainable parameters, which can eas-
ily be determined on both cases.

For the neural network, we fix the number of neurons per 
hidden layer Nk = Nhidden for all layers. We then repeat each 
training run for different numbers of neurons per hidden 
layer Nhidden and different numbers of layers M. In addition, 
since the performance of PINNs can be inconsistent, depend-
ing on the random initialization of the trainable parameters 
at the beginning of the training, we repeat each run with 
different random initializations of the parameters. This gives 
a rough estimate of how consistently PINN performs. For 
the quantum circuit, we choose various layouts in terms of 
number of qubits and layers. The selected layouts for the 
PINN and the PIQC are depicted in Figs. 11, 12, 13 and 14. 
Due to the computational effort of the PIQC simulation (see 
Appendix 6.2.1 for more details), the runs are not repeated.

4.4 � Studied quantities

For the comparison, we are interested in the convergence 
speed and the overall accuracy for each differential equa-
tion. For the accuracy we consider the mean absolute error 
(MAE):

where Nval is the number of validation points, û
�
(x, t) is the 

approximated solution of the PINN or the PIQC, and u(x, t) 
is the analytical solution. To assess the accuracy, we look at 
the � values which is reached after a fixed amount of epochs 
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(
xi, ti

)
− u

(
xi, ti

)|||,

nepoch = 50 . For the convergence speed, we select a certain 
value for �th for each problem. Then we count the num-
ber of epochs nepochs needed, to reach the threshold 𝜀 < 𝜀

th 
(c.f. Table 2). Note that the set of validation points is differ-
ent from the set of training point.

4.5 � Results

In the following, we compare the approximation perfor-
mance of the PINN and the PIQC for problems I–IV.

4.6 � Number of training epochs

We start with comparing the convergence speed for prob-
lem I and problem II, where the solution can be approxi-
mated well by both the quantum circuit and the neural 
network. For both problems we observe that the PINN 
and PIQC are able to reach the designated accuracies �th 
within 50 epochs, as long as the number of parameters 
is sufficient (see Figs. 4, 5). In that case, both methods 
generally require less than 10 epochs for problem I and 
II. For the PINN we observe that it may perform rather 
inconsistently over a wide range of parameter numbers. 
For problem II, even for more than 300 parameters, the 
network is occasionally unable to converge. Looking at 
the runs that fail, we see that this is usually the case if the 
number of neurons per layer is low. Even a high number of 
layers can not make up for a layer width of less than five 
neurons. For the PIQC on the other hand, we see that as 
long as a certain number of parameters is available (about 
25 for problem I and about 120 for problem II), it is able 
to approximate the solution well. Overall, both methods 
perform similarly and can find reasonably accurate solu-
tions at similar numbers parameters as long as the neural 
network is not too narrow.

For problem III for the PINN method, we see that it 
performs extremely inconsistently for the entire parameter 
range and is unable to reliably reach the designated �th in 
less than 50 epochs, as shown in Fig. 6. PINNs require a 
larger number of training epochs for this particular prob-
lem. For the PIQC method however, we see that for suf-
ficiently large circuits with more than 300 parameters, the 
method converges again reliably and for more than 400 
parameters it takes less than 10 epochs to converge to �th . 
For both, problem II and III, the PIQC shows the much 
clearer trend of the number of required epochs than the 
PINN. While low-parameter runs do not converge at all 
within 50 epochs, we see a steady decrease of the number 
of epochs with increasing number of trainable parameters 
after a critical size is reached.
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4.7 � Accuracy

Next, we compare the accuracy of both approaches after a 
limited number of 50 L-BFGS iterations (see Figs. 7, 8). 

For problems I and II we generally observe no significant 
changes in loss and validation errors after more than 30 
epochs. Therefore, this comparison gives an assessment 
of the accuracy that can be reached with both approaches 

Fig. 4   The number of train-
ing epochs nepoch required to 
decrease the mean absolute 
error below �th = 10−3 in 
dependence of the number of 
trainable parameters nparam . 
Trained is a a classical PINN 
and b a PIQC to find a solution 
to the ODE Eq. (11). Both 
approaches quickly converge 
over the whole range of nparam , 
but the PINN needs slightly less 
epochs to reach �th

Fig. 5   The number of training epochs nepoch required to decrease 
the mean absolute error below �th = 3 × 10−3 in dependence of the 
number of trainable parameters nparam . Trained is a a classical PINN 
and b a PIQC to find a solution to the transport equation of a Gauss 
pulse Eq.  (13) and Eq.  (15). The red vertical lines are positioned at 
nparam = 10, 300 and help to visualize the different range and scaling 

of nparam for both approaches. For problem II, the PINN shows a fast 
convergence for most runs but also training inconsistencies over the 
whole range of nparam . The PIQC instead requires a minimal amount 
of nparam ≈ 150 to converge but then shows a clear dependence of 
nepoch on nparam

Fig. 6   The number of training epochs nepoch required to decrease the 
mean absolute error below �th = 5 × 10−3 in dependence of the num-
ber of trainable parameters nparam . Trained is a a classical PINN and b 
a PIQC to find a solution to Burgers’ equation (16). The PINN shows 

converging and non-converging runs over the whole range of param-
eters without a visible dependence on nparam . Instead, the PIQC does 
show a clear dependence of nepoch on nparam and allows for a faster 
convergence for nparam > 380
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for the given number of training points. The test is again 
repeated for various neural network and quantum circuit 
dimensions. Each PINN network shape run is repeated with 
random initializations (five times for problem I and three 
times for problem II).

For problem I, the PIQC and PINN both achieve an accu-
racy of � ≈ 10−5 for the best runs. The PIQC shows to have 
an optimal size for nepoch = 25 − 60 . For more trainable 
parameters, the requires number of epochs does increase 
again. The PINN seems to be less dependent on the num-
ber of trainable parameters. It shows similar values over the 
whole range of nparam . For problem II we see similar accura-
cies for both approaches. But in this case, the PIQC is more 
consistent and we observe no random training instabilities. 
This is in contrast to the PINN which is more prone to ran-
dom training instability for narrow networks. For realistic 
usage of PINNs one would reduce the initial step size (the 
learning rate) to avoid such instabilities. This would however 
result in slower convergence for the PINN.

For problem III no accuracy plot has been created, as each 
epoch of the high-parameter runs is computationally very 
expensive in terms of wall-clock time (see Appendix 6.2.1 
for details). Hence, not all runs were trained up to 50 epochs, 

which would be required to allow for a fair comparison. For 
each problem, an example of the approximation with the 
corresponding reached accuracy is given in Appendix 6.1.

4.8 � Representing shocks

Problem IV allows us to study the capacity to represent 
shocks, with PINNs and PIQCs. In Fig. 9 the approximation 
of the step-function with a PINN and a PIQC is depicted. 
The PIQC with nparam = 480 is not able to accurately rep-
resent the step. Instead, it shows an oscillating behaviour 
around the shock. Meanwhile, the PINN with a compara-
ble amount of training parameters is capable to approxi-
mate the step and reaches error values of � = 1 × 10−3 . 
The PINN shows superior results for the entire range of 
nparam ∈ [0, 4771] compared to the PIQC. A total of five of 
the analyzed 60 PINN runs did not converge, which can be 
attributed to the relatively high learning rate that is used. 
The PIQC shows an improvement in the solution for an 
increased circuit size. However, the simulations cost limits 
the possible size and the number of training epochs.

Fig. 7   Mean absolute error � 
in dependence of the num-
ber of trainable parameters 
nparam . Trained is a a PINN 
and b a PIQC for 50 epochs to 
approximate the solution of the 
ODE in Eq. (11). The PINN 
reaches accuracies between 
� = 10−5 − 10−4 for most runs. 
The PIQC shows a broader 
range of � = 10−5 − 10−3 for 
most runs, the best accuracy is 
reached around nparam = 50

Fig. 8   Mean absolute error � in dependence of the number of train-
able parameters nparam . Trained is a a PINN and b a PIQC for 50 
epochs to approximate the solution of the transport of a Gauss pulse 
Eq.  (11) and Eq.  (15). When the PINN converges, most runs reach 

accuracies around � = 10−3 . However, as seen already in Fig.  5 not 
all runs converge. The PIQC shows a steady decrease of � with nparam , 
reaching accuracies better than � = 10−3 for nparam > 200
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4.9 � Discussion

Overall, our results show that for smooth problems the PIQC 
approach indeed performs similar to classical PINN methods 
on simple PDEs in terms of convergence speed and accuracy. 
For certain problems, as the Transport of the Gauss Pulse 
and the Burgers’ equation, we even observe more consistent 
convergence and for the Burgers’ equations a faster conver-
gence speed given enough training parameters. This gives 
a first indication that the PIQC method may indeed be a 
reasonable candidate for solving PDEs on quantum hard-
ware. However, it has to be clearly stated that the presented 
results are nothing more than an initial assessment of the 
approach. At this point of time, with quantum computing 
in its infancy, the complexity of possible experiments is 
severely limited. Due to computational effort (see Appen-
dix 6.2.1 for more details) that is required for the simulation 
of quantum circuits on classical hardware, the extend of the 
current experiments is restricted in multiple ways. Firstly, 
the PIQC can only be trained for very few epochs within a 
reasonable simulation time for the considered problems. For 
more complex problems (see for example [15, 16, 18]), clas-
sical PINNs are usually trained with variants of stochastic 
gradient descent such as ADAM for thousands of epochs 
followed by a second training phase with a quasi-Newton 
optimizer such as L-BFGS. Secondly, our experiments were 
limited in the number of training points that the model is 
evaluated on. Lastly, we can only consider small models 
with parameter numbers on the order of nparam ≈ 102 . State 
of the art PINN models typically require thousand or even 
ten-thousand of parameters.

Moreover, we observe that the currently used circuit 
ansatz seems less suitable to approximate discontinous 
solutions.

For a linear advection equation, the PINN is able to 
capture the discontinuity without any additional measures 
while the PIQC approach fails as evident by Fig. 9. Hence, 
we conclude that the native shock-capturing capabilities of 
PINNs are superior to the chosen PIQC ansatz. However, for 
non-linear conservation laws such as the inviscid Burgers’ 
equation or Euler equations, the PINN method requires addi-
tional measures [17, 18, 68, 69] such as adaptive point dis-
tributions or artificial viscosity to accurately capture shocks. 
These shock capturing methods might also be applicable to 
the PIQC approach. For now it is unclear how PIQCs behave 
for large amount of epochs, and whether further convergence 
after initial training plateaus occur, as often observed for 
PINNs.

Due to the current restrictions on our quantum circuit 
simulations, we are unable to reliably asses the performance 
of the PIQC approach on more complex problems. Assum-
ing that the shown trend of similar performance at similar 
numbers of parameters extends even to higher complexity 
problems, we can make a rough estimate for the circuit sizes 
that are required to solve such problems. We consider two 
publications which used PINNs to solve two-dimensional 
aerodynamic flows. Eivazi et al. [16] solve the incompress-
ible Reynolds-averaged Navier Stokes equations using net-
works with 8 layers and 20 neurons per layer which results 
in 3063 trainable parameters. Wassing et al. [18] solve the 
compressible Euler equations in a parametric formulation 
using a maximum of 8 layers of 40 Neurons. This results 
in 11764 trainable parameters. The number of parameters 
nparam in the presented circuit ansatz can be computed as 
nparam = 3 ⋅ (nlayers + 1) ⋅ nqubits , where nlayers , nqubits is the 
number of layers and qubits respectively. Hence, the number 
of trainable parameters can be increased by either increasing 
the number of qubits and/or the number of layers. Assuming 

Fig. 9   a Approximation of the transported shock with a PINN 
and a PIQC after training for 50 epochs. Trained are a PIQC with 
nparam = 480 and a PINN with nparam = 415 . While the PINN approxi-
mates the step nicely, the PIQC exhibits oscillations around the step 
position. b History of � during training for the PIQC and PINN runs 
in (a) as well as the median PINN prediction and the prediction range 

(0.1 to 0.9 quantile) over all analyzed network shapes (c.f. Fig. 14). 
Five of the 60 runs did not converge or diverged. Hence, we con-
sider the median and quantile predictions to account for outliers. The 
PINN performs significantly better than the PIQC. The median PINN 
reaches an accuracy between 10−3 − 10−2 if trained for 50 epochs
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that PIQCs would require a similar number of parameters, 
we can estimate that this would require for example a cir-
cuitof of 30 qubits and 33 layers to reach 3036 trainable 
parameters and of 60 qubits and 65 layers for 11764 train-
able parameters. If we double the number of qubits, the num-
ber of layers can be approximately halved. For even more 
complex, industry-relevant problems like three dimensional, 
high Reynolds number flows, the requirements in terms of 
circuit size would be even further increased. However, tak-
ing into account that Kim et al. [70] present first successfully 
experiments on a 127 qubit quantum computer from IBM, 
the required circuit sizes for more complex problems will 
probably be in reach within the next years. Furthermore, 
due to the fact that the state space of quantum circuits grows 
exponentially with the number of qubits, it may be possi-
ble to approximate more complex problems with relatively 
few qubits and thus fewer parameters than for the classical 
equivalent.

Besides the current limit on circuit size, we assumed 
ideal quantum circuits for our experiments. Current genera-
tion quantum computers are prone to noise which imposes 
a limit on the circuit depth and is expected to further reduce 
accuracy.

5 � Conclusion and outlook

In this work, we compared empirically the convergence 
speed and accuracy of PINNs and PIQCs on the basis of 
various differential equations. Starting with an ODE, we 
increased the complexity by looking at the linear transport 
equation, and by finally studying the non-linear viscous 
Burgers’ equation. For problem I-III the solution could be 
represented with both, PINN and PIQCs. For problem I and 
II we observe convergence to the selected accuracy threshold 
�
th in less than 10 epochs for both models, given sufficiently 

large networks/quantum circuits. For the PINN however, 
we observe occasional instability due to the relatively large 
optimization step size that we selected for both models. In 
comparison, the PIQC performs consistently well. For prob-
lem III the PIQC converges far more reliably and faster in 
terms of the number of epochs than the PINN given a suffi-
cient number of parameters. It would be interesting to study, 
whether this trend of faster convergence of the PIQC persists 
or even increases for more complex problems with smooth 
solutions. In terms of accuracy, we observe similar precision 
for the best runs of both models on problem I and II. Again 
the PINN models may perform inconsistently and randomly 
fail for certain shapes and initializations, mostly for narrow 
network shapes. The PIQC was unable to approximate prob-
lem IV, i.e. the transport of a shock with the current circuit 
ansatz. This is in contrast to the classical PINN which is able 
to find more accurate approximations of the solution for all 

analyzed network shapes. It is necessary, to further study the 
impact of the circuit ansatz, to allow for an approximation of 
discontinuous problems with the PIQC. An interesting next 
step to tackle the shock-capturing possibilities, would be to 
further investigate the data-reuploding ansatz in this work, 
combined with the feature map approach [4, 50]. Includ-
ing expressivity measures [47–49] and analytical methods 
for comparison [52, 71], could deepen the understanding of 
the impact of the circuit ansatz. The ultimate aim of using 
quantum computers for solving partial differential equations 
is to reduce the required time for numerical simulations. 
Therefore, future investigations will also need to address the 
question, whether the PIQC approach can result in reduced 
wall clock times, compared to classical computing. An 
important next step is to port the algorithm on real quantum 
hardware. First, this allows us to study the impact of noise 
and errors on its success and second enables a direct com-
parison between PINNs and PIQC with respect to wall clock 
times and energy consumption per run.

Appendix

Approximations

In Fig. 10, the analytical solution of problem I–III is depicted 
as well as exemplary approximations with PINN and PIQC. 
For problem I we used a PINN with 8 neurons and 1 layer 
and a PIQC with 2 qubits and 3 layers. Problem II is solved 
with a a PINN with 15 neurons and 2 layers and a PIQC 
with 8 qubits and 10 layers and problem III with a PINN 
with 11 neurons and 4 layers and a PIQC with 10 qubits and 
15 layers. The reached accuracies of these runs are given in 
Table 1. Both approaches are capable to approximate the 
solutions of all three problems.

Training details

In the following we provide details on the training val-
ues, as number of epochs, number of training points and 
the chosen value of �th for all problems, see Table 2. We 
further introduce the design of experiment, i.e. the num-
ber of neurons/qubits and the number of layers for the 
experiments see Figs. 11, 12, 13 and 14. For problem III, 
not all possible combinations of number of qubits and 
layers where computed in the considered range, as each 
simulation in the high-parameter regime is time intensive 
(see 6.2.1 for time examples). For all PyTorch operations, 
double-precision floating point numbers were used for all 
PINN experiments, while floating point precision was used 
for the PIQC experiments to reduce the wall-clock time.

The training points were sampled, using the low-dis-
crepancy Halton sequence to obtain a uniform distribution 
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of quasi-random points [72]. The validation points are 
equidistant.

The PyTorch [58] implementation of the  L-BFGS opti-
mization algorithm [67] was used. In terms of hyperpa-
rameters of the optimizer, we mainly applied the default 
parameters suggested by PyTorch. However, to decrease 
computational efforts for problem III and IV we decreased 
the history size. This has shown to be possible without 
a significant loss in accuracy. Furthermore, we disabled 
the termination limits for these problems (i.e. set them to 
a negative value). For all four individual problems, the 
specified hyperparameters were used both by the PINN 
and the PIQC. An overview of the optimizer parameters 
is shown in Table 3.

Computational Effort

The classical simulation of a general quantum computer 
is only feasible for small numbers of qubits. The size of 
the vector representing the quantum state, as well as the 
matrices representing the operations, increase exponentially 
with the number of qubits. Here, we give some examples 
of the computation times of certain runs. Note, that this is 

Fig. 10   Comparison of ana-
lytical solutions and exemplary 
PINN and PIQC predictions 
for  a problem I, b prob-
lem II  and c problem III. Both 
approaches are capable to 
capture the solutions of all three 
problems

Table 1   Accuracy of the approximation with the PINN or the PIQC 
after training for 50 epochs. The runs where performed with a PINN 
with problem I) 8 neurons, 1 layer, problem II) 15 neurons, 2 layers 
and problem III) 11 neurons, 4 layers; and a PIQC with problem I) 2 
qubits and 3 layers, problem II) 8 qubits and 10 layers and problem III 
10 qubits and 15 layers

PINN PIQC

Problem I 2.29 × 10−5 1.59 × 10−5

Problem II 1.07 × 10−3 3.99 × 10−4

Problem III 1.41 × 10−3 2.68 × 10−3

Table 2   Information on the training variables of problems I–IV 

Given is the threshold mean absolute error �th used for the conver-
gence experiments, the number of training points ntraining , the number 
of validation points nvalidation and the maximal number of epochs max 
nepoch , used for the accuracy experiments

�
th

ntraining nvalidation max nepoch

Problem I 1 × 10−3 30 30 50
Problem II 3 × 10−3 100 100 50
Problem III 5 × 10−3 200 100 50
Problem IV 6 × 10−3 200 100 50

Fig. 11   Summary of analyzed 
neural network dimensions (a) 
and quantum circuit dimensions 
(b) for ODE (problem I)
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not a detailed study on simulation time but only meant to 
allow the reader to develop a rough idea of the computa-
tional effort. Naturally, all training values, like the number 
of training points and the circuit size influence the duration 
of one epoch. Each quantum simulation was run on DLR’s 
high performance computing cluster CARA, consisting of 
2x AMD EPYC 7601 (32 cores; 2,2 GHz) processors with 
128 GB DDR4 (2666 MHz) RAM per node [73]. In Table 4, 
the training time per epoch for various sample runs is given. 

As expected, we see that an increased number of qubits and 
layers increase the computing time. Fine-tuning the simula-
tion framework would allow for certain limited simulation 
speed-ups. For example, we did not implement paralleliza-
tion. However, the overall problem to simulate large quan-
tum circuits can not be circumvented.

In comparison, the classical PINN runs take between 
4 ⋅ 10−3 s for one epoch on problem I and about 0.5 s for 

Fig. 12   Summary of analyzed 
neural network dimensions (a) 
and quantum circuit dimensions 
(b) for linear transport equation 
(problem II)

Fig. 13   Summary of analyzed 
neural network dimensions (a) 
and quantum circuit dimen-
sions (b) for Burgers’ equation 
(problem III)

Fig. 14   Summary of analyzed neural network dimensions (a) and 
quantum circuit dimensions (b) for linear transport equation (problem 
IV)

Table 3   Hyperparameters of the PyTorch L-BFGS optimizer that 
were used during training

For further details about each parameter, please consult the PyTorch 
documentation https://​pytor​ch.​org/​docs/​stable/​index.​html

Problem I Problem II Problem III Problem IV

lr 1 1 1 1
max_iter 20 20 10 40
max_eval 25 25 12 50
tolerance_
grad

10−7 10−7 −1 −1

tolerance_
change

10−9 10−9 −1 −1

history_size 100 100 10 40
line_search_
fn

None None None None

https://pytorch.org/docs/stable/index.html
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one epoch on problem III. For all PINN runs an Intel i7-9700 
desktop CPU has been used.

Ansatz comparison

There are many degrees of freedom in the design of the 
quantum ansatz. It is for example possible to use vari-
ous patterns in the entanglement layers, different rotation 

gates, different structural repetitions of the single layers 
and different feature maps on the inputs. Studying the 
impact of all those choices is beyond the scope of the 
current work where we focus on the comparison with the 
classical PINN. We chose the ansatz presented by Schuld 
et al. [51] as it allowed a successful approximation of all 
solutions of problem I–III without requesting individual 
hyperparameter searches for each single problem. In the 
original work of Kyriienko et al. [4] they did not use data-
reuploading but instead introduced different feature maps 
to enhance the expressivity. They achieved the best accura-
cies for all presented use-cases applying the Tower Che-
bychev Feature Map.

Figure 15 shows a comparison between the Fourier 
ansatz [51] and the TChebychev ansatz for problem II and 
problem III using the training parameters given in Appen-
dix 6.2. For both use cases and different nparam the Fourier 
ansatz reaches a lower final error � . All runs are trained 
for 50 epochs and do not exhibit a significant change in the 
training loss and epsilon in the second half of the training 
process. We find that the Fourier ansatz reaches signifi-
cantly better accuracies than the the TChebychev ansatz 
for the considered examples and training parameters. Both 
approaches fail to approximate problem IV. In future work, 
we aim to explore whether a careful combination of data-
reuploading and feature maps enables to approximate the 
step-function of problem IV.

Table 4   Average wallclock time for the PIQC per epoch for various 
runs on a simulator

Considered are problems I–III with different circuit shapes, defined 
by the number of qubits nqubits and layers nlayers

nqubits nlayers nparam Average Wall 
Clock Time per 
Epoch

Problem I 2 2 18 45 s (*)
Problem I 3 4 45 2 min, 05 s (*)
Problem I 4 6 84 4 min, 12 s (*)
Problem II 4 5 72 26 min, 46 s
Problem II 4 8 108 41 min, 53 s
Problem II 8 8 216 1h, 55 min, 39 s (*)
Problem III 6 8 162 2 h, 05 min, 24 s
Problem III 6 10 162 2 h, 24 min, 45 s
Problem III 10 10 330 6h, 54 min, 1 s
Problem III 10 15 480 22h, 40 min, 03 s

Fig. 15   Ansatz comparison 
between Fourier ansatz pre-
sented in [51] and the Tower 
Chebychev ansatz introduced 
in [4] for problem II and 
problem III. In a we compare 
the solution (Gauss pulse) of 
both ansatzes using 7 qubits 
and 15 layers. Panel b depicts 
the error over the number of 
parameters. Except for one 
run, where the Fourier ansatz 
does not converge, the Fourier 
ansatz reaches better accura-
cies. c Shows the solution of 
the Burgers equation of one run 
with 7 qubits and 20 layers. The 
comparison for problem III for 
different number of parameters 
is shown in (d). The Fourier 
ansatz reaches better accuracies 
for all runs
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We do not claim that the ansatz presented in [4] does 
not allow for similarly good results. However, the Fourier 
ansatz seems less prone to subtleties in the hyperparameter 
space and does not require the search of a well suited prob-
lem-specific feature map. Instead, we found that using the 
Fourier ansatz we are able to work with the same hyper-
parameters for all considered use cases, leaving only the 
number of qubits and layers as degrees of freedom. This 
enables the straightforward comparison with the classical 
PINN presented in this work.
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