elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Towards Certifiable AI in Aviation: A Framework for Neural Network Assurance Using Advanced Visualization and Safety Nets

Christensen, Johann Maximilian und Zaeske, Wanja Marlo Moritz und Beck, Janick Wolfgang und Friedrich, Sven und Stefani, Thomas und Anilkumar Girija, Akshay und Hoemann, Elena und Durak, Umut und Köster, Frank und Krüger, Thomas und Hallerbach, Sven (2024) Towards Certifiable AI in Aviation: A Framework for Neural Network Assurance Using Advanced Visualization and Safety Nets. In: 43rd AIAA DATC/IEEE Digital Avionics Systems Conference, DASC 2024, Seiten 1-9. IEEE. 43rd AIAA DATC/IEEE Digital Avionics Systems Conference (DASC), 2024-09-29 - 2024-10-03, San Diego, CA, USA. doi: 10.1109/DASC62030.2024.10749321. ISBN 979-835034961-0. ISSN 2155-7195.

[img] PDF
556kB

Offizielle URL: https://ieeexplore.ieee.org/document/10749321

Kurzfassung

While Artificial Intelligence (AI) has become an important asset in many areas of science and technology, safety is often not treated as important as required for aviation. Neglecting safety is not an option for aviation, where strict laws and regulations govern the certification process of new aircraft. Thus, a solid understanding of the underlying AI-based system is important to certify such systems. To this day, manual inspection by humans is an essential step for certification, however requires proper tooling. One such tool, called Advisory Viewer, is presented in this work, helping to break down the high-dimensional vector space of neural networks. The tool presented here can visualize decisions derived from assemblies of neural networks for arbitrary 2-dimensional parameter sweeps and provides real-time feedback upon any parameter change. It is designed to better understand the neural networks behind openCAS, an open-source implementation for the Airborne Collision Avoidance System X (ACAS X), the upcoming implementation for collision avoidance in aviation. However, as currently designed, implementing ACAS X is not feasible on current aviation hardware, as the required memory is not available. Here, neural networks and their ability to compress and generalize can be a solution. Therefore, it is of utmost importance that the AI-based system behind ACAS X always produces correct predictions. Finally, to fix the detected irregularities, this work implements a Safety Net to ensure the correct output for the ACAS X use case. Safety Nets are designed on the idea of sparse lookup tables (LUTs), storing only the points where the neural networks are known to fail. By deploying a system consisting of a Safety Net together with neural network(s), a small, yet potentially certifiable system can be designed and built. This work presents a generic data format for LUTs and recommended algorithms to populate and organize said LUTs for quick access during run-time. Combined, this serves as a generic framework for 100 % assurance of small neural networks, joined by the visualization tooling for the specific use case of openCAS.

elib-URL des Eintrags:https://elib.dlr.de/207941/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Towards Certifiable AI in Aviation: A Framework for Neural Network Assurance Using Advanced Visualization and Safety Nets
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Christensen, Johann Maximilianjohann.christensen (at) dlr.dehttps://orcid.org/0000-0001-9871-122X172775432
Zaeske, Wanja Marlo MoritzWanja.Zaeske (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Beck, Janick Wolfgangjanick.beck (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Friedrich, SvenSven.Friedrich (at) dlr.dehttps://orcid.org/0009-0003-4258-8148172775433
Stefani, ThomasThomas.Stefani (at) dlr.dehttps://orcid.org/0000-0001-7352-0590172775434
Anilkumar Girija, Akshayakshay.anilkumargirija (at) dlr.dehttps://orcid.org/0000-0002-4384-9739172775435
Hoemann, Elenaelena.hoemann (at) dlr.dehttps://orcid.org/0000-0001-9315-548X172775436
Durak, UmutUmut.Durak (at) dlr.dehttps://orcid.org/0000-0002-2928-1710NICHT SPEZIFIZIERT
Köster, FrankFrank.Koester (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Krüger, Thomasthomas.krueger (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Hallerbach, SvenSven.Hallerbach (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:15 November 2024
Erschienen in:43rd AIAA DATC/IEEE Digital Avionics Systems Conference, DASC 2024
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Nein
DOI:10.1109/DASC62030.2024.10749321
Seitenbereich:Seiten 1-9
Verlag:IEEE
ISSN:2155-7195
ISBN:979-835034961-0
Status:veröffentlicht
Stichwörter:ACAS X, AI Engineering, Artificial Intelligence, Neural Networks, Safety
Veranstaltungstitel:43rd AIAA DATC/IEEE Digital Avionics Systems Conference (DASC)
Veranstaltungsort:San Diego, CA, USA
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:29 September 2024
Veranstaltungsende:3 Oktober 2024
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Technik für Raumfahrtsysteme
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R SY - Technik für Raumfahrtsysteme
DLR - Teilgebiet (Projekt, Vorhaben):R - Synergieprojekt Resilienz intelligenter Cyber-Physical Systems of Systems
Standort: andere
Institute & Einrichtungen:Institut für KI-Sicherheit
Institut für Flugsystemtechnik > Sichere Systeme und System Engineering
Hinterlegt von: Christensen, Johann Maximilian
Hinterlegt am:04 Nov 2024 08:59
Letzte Änderung:30 Jan 2025 09:31

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.