Christensen, Johann Maximilian und Zaeske, Wanja Marlo Moritz und Beck, Janick Wolfgang und Friedrich, Sven und Stefani, Thomas und Anilkumar Girija, Akshay und Hoemann, Elena und Durak, Umut und Köster, Frank und Krüger, Thomas und Hallerbach, Sven (2024) Towards Certifiable AI in Aviation: A Framework for Neural Network Assurance Using Advanced Visualization and Safety Nets. In: 43rd AIAA DATC/IEEE Digital Avionics Systems Conference, DASC 2024, Seiten 1-9. IEEE. 43rd AIAA DATC/IEEE Digital Avionics Systems Conference (DASC), 2024-09-29 - 2024-10-03, San Diego, CA, USA. doi: 10.1109/DASC62030.2024.10749321. ISBN 979-835034961-0. ISSN 2155-7195.
![]() |
PDF
556kB |
Offizielle URL: https://ieeexplore.ieee.org/document/10749321
Kurzfassung
While Artificial Intelligence (AI) has become an important asset in many areas of science and technology, safety is often not treated as important as required for aviation. Neglecting safety is not an option for aviation, where strict laws and regulations govern the certification process of new aircraft. Thus, a solid understanding of the underlying AI-based system is important to certify such systems. To this day, manual inspection by humans is an essential step for certification, however requires proper tooling. One such tool, called Advisory Viewer, is presented in this work, helping to break down the high-dimensional vector space of neural networks. The tool presented here can visualize decisions derived from assemblies of neural networks for arbitrary 2-dimensional parameter sweeps and provides real-time feedback upon any parameter change. It is designed to better understand the neural networks behind openCAS, an open-source implementation for the Airborne Collision Avoidance System X (ACAS X), the upcoming implementation for collision avoidance in aviation. However, as currently designed, implementing ACAS X is not feasible on current aviation hardware, as the required memory is not available. Here, neural networks and their ability to compress and generalize can be a solution. Therefore, it is of utmost importance that the AI-based system behind ACAS X always produces correct predictions. Finally, to fix the detected irregularities, this work implements a Safety Net to ensure the correct output for the ACAS X use case. Safety Nets are designed on the idea of sparse lookup tables (LUTs), storing only the points where the neural networks are known to fail. By deploying a system consisting of a Safety Net together with neural network(s), a small, yet potentially certifiable system can be designed and built. This work presents a generic data format for LUTs and recommended algorithms to populate and organize said LUTs for quick access during run-time. Combined, this serves as a generic framework for 100 % assurance of small neural networks, joined by the visualization tooling for the specific use case of openCAS.
elib-URL des Eintrags: | https://elib.dlr.de/207941/ | ||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||||||||||||||||||||||||||||||
Titel: | Towards Certifiable AI in Aviation: A Framework for Neural Network Assurance Using Advanced Visualization and Safety Nets | ||||||||||||||||||||||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||||||||||||||||||||||
Datum: | 15 November 2024 | ||||||||||||||||||||||||||||||||||||||||||||||||
Erschienen in: | 43rd AIAA DATC/IEEE Digital Avionics Systems Conference, DASC 2024 | ||||||||||||||||||||||||||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||||||||||||||||||||||||||
DOI: | 10.1109/DASC62030.2024.10749321 | ||||||||||||||||||||||||||||||||||||||||||||||||
Seitenbereich: | Seiten 1-9 | ||||||||||||||||||||||||||||||||||||||||||||||||
Verlag: | IEEE | ||||||||||||||||||||||||||||||||||||||||||||||||
ISSN: | 2155-7195 | ||||||||||||||||||||||||||||||||||||||||||||||||
ISBN: | 979-835034961-0 | ||||||||||||||||||||||||||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||||||||||||||||||||||||||
Stichwörter: | ACAS X, AI Engineering, Artificial Intelligence, Neural Networks, Safety | ||||||||||||||||||||||||||||||||||||||||||||||||
Veranstaltungstitel: | 43rd AIAA DATC/IEEE Digital Avionics Systems Conference (DASC) | ||||||||||||||||||||||||||||||||||||||||||||||||
Veranstaltungsort: | San Diego, CA, USA | ||||||||||||||||||||||||||||||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||||||||||||||||||||||||||
Veranstaltungsbeginn: | 29 September 2024 | ||||||||||||||||||||||||||||||||||||||||||||||||
Veranstaltungsende: | 3 Oktober 2024 | ||||||||||||||||||||||||||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||||||||||||||||||||||||||
HGF - Programmthema: | Technik für Raumfahrtsysteme | ||||||||||||||||||||||||||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | R SY - Technik für Raumfahrtsysteme | ||||||||||||||||||||||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Synergieprojekt Resilienz intelligenter Cyber-Physical Systems of Systems | ||||||||||||||||||||||||||||||||||||||||||||||||
Standort: | andere | ||||||||||||||||||||||||||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für KI-Sicherheit Institut für Flugsystemtechnik > Sichere Systeme und System Engineering | ||||||||||||||||||||||||||||||||||||||||||||||||
Hinterlegt von: | Christensen, Johann Maximilian | ||||||||||||||||||||||||||||||||||||||||||||||||
Hinterlegt am: | 04 Nov 2024 08:59 | ||||||||||||||||||||||||||||||||||||||||||||||||
Letzte Änderung: | 30 Jan 2025 09:31 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags