elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Automated Scenario Generation from Operational Design Domain Model for Testing AI-Based Systems in Aviation

Stefani, Thomas und Christensen, Johann Maximilian und Girija, Akshay Anilkumar und Gupta, Siddhartha und Durak, Umut und Köster, Frank und Krüger, Thomas und Hallerbach, Sven (2024) Automated Scenario Generation from Operational Design Domain Model for Testing AI-Based Systems in Aviation. CEAS Aeronautical Journal. Springer. doi: 10.1007/s13272-024-00772-4. ISSN 1869-5590. (im Druck)

[img] PDF - Nur DLR-intern zugänglich - Postprintversion (akzeptierte Manuskriptversion)
1MB

Kurzfassung

Applications based on artificial intelligence (AI) promise benefits, ranging from improved performance to increased capabilities in many industries. In the aviation domain, one example is the new Airborne Collision Avoidance System (ACAS X). The current investigation aims at combining ACAS X and AI to maintain its performance while decreasing the memory footprint. However, the anticipation of AI being increasingly used confronts regulators with challenges in terms of safety assurance and certification. Consequently, the European Union Aviation Safety Agency (EASA) published a concept paper for machine learning applications in aviation. Both, the Concept of Operation (ConOps) in combination with an Operational Design Domain (ODD), are listed as objectives to be met for the safety analysis. From a developer’s perspective, this raises questions on how to effectively derive the ODD from ConOps and test the given system based on the ODD description. Based on an exemplary use case of a Near Mid-Air Collision avoidance between two aircraft through the advisories of ACAS X, a highly automated framework for generating and testing synthetic data is proposed. Using this framework, 1800 Near Mid-Air Collision scenario files are created and automatically executed in the simulation environment FlightGear. Scenario-based testing is used for the logging of ACAS X advisory data and evaluating it against predefined requirements. By this approach, an efficient way of verifying system requirements and conducting automated testing based on the ODD definition is demonstrated. Throughout this process, Model-Based Systems Engineering (MBSE) is used to reduce and manage complexity. The framework in this paper enables a systematic and highly automated approach for scenario generation based on the ODD.

elib-URL des Eintrags:https://elib.dlr.de/207924/
Dokumentart:Zeitschriftenbeitrag
Titel:Automated Scenario Generation from Operational Design Domain Model for Testing AI-Based Systems in Aviation
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Stefani, ThomasThomas.Stefani (at) dlr.dehttps://orcid.org/0000-0001-7352-0590NICHT SPEZIFIZIERT
Christensen, Johann Maximilianjohann.christensen (at) dlr.dehttps://orcid.org/0000-0001-9871-122XNICHT SPEZIFIZIERT
Girija, Akshay Anilkumarakshay.anilkumargirija (at) dlr.dehttps://orcid.org/0000-0002-4384-9739NICHT SPEZIFIZIERT
Gupta, SiddharthaSiddhartha.Gupta (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Durak, UmutUmut.Durak (at) dlr.dehttps://orcid.org/0000-0002-2928-1710NICHT SPEZIFIZIERT
Köster, Frankfrank.koester (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Krüger, Thomasthomas.krueger (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Hallerbach, SvenSven.Hallerbach (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:2024
Erschienen in:CEAS Aeronautical Journal
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Nein
DOI:10.1007/s13272-024-00772-4
Verlag:Springer
ISSN:1869-5590
Status:im Druck
Stichwörter:AI, Model-Based Systems Engineering, Operational Design Domain, Scenario-based testing
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Technik für Raumfahrtsysteme
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R SY - Technik für Raumfahrtsysteme
DLR - Teilgebiet (Projekt, Vorhaben):R - Synergieprojekt Resilienz intelligenter Cyber-Physical Systems of Systems
Standort: Ulm
Institute & Einrichtungen:Institut für KI-Sicherheit
Institut für Flugsystemtechnik > Sichere Systeme und System Engineering
Hinterlegt von: Stefani, Thomas
Hinterlegt am:04 Nov 2024 08:58
Letzte Änderung:04 Nov 2024 08:58

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.