elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Towards the Monitoring of Operational Design Domains using Temporal Scene Analysis in the realm of Artificial Intelligence in Aviation

Anilkumar Girija, Akshay und Christensen, Johann Maximilian und Stefani, Thomas und Hoemann, Elena und Durak, Umut und Köster, Frank und Hallerbach, Sven und Krüger, Thomas (2024) Towards the Monitoring of Operational Design Domains using Temporal Scene Analysis in the realm of Artificial Intelligence in Aviation. In: 43rd AIAA DATC/IEEE Digital Avionics Systems Conference, DASC 2024. IEEE. 43rd IEEE/AIAA Digital Avionics Systems Conference (DASC), 2024-09-29 - 2024-10-03, San Diego, CA, USA. doi: 10.1109/DASC62030.2024.10749445. ISBN 979-835034961-0. ISSN 2155-7195.

[img] PDF - Nur DLR-intern zugänglich
2MB

Kurzfassung

The application of Artificial Intelligence (AI) in aviation has gained significant attention in recent years, particularly in safety-critical domains such as aviation. One possible application in this domain is the next version of the Airborne Collision Avoidance System X (ACAS X). The current system, ACAS II, with its state-of-the-art implementation, TCAS II, has been in use for decades and has significantly reduced the number of mid-air collisions. However, it relies on a simple rule/heuristics-based logic, leading to false positives which increases the workload of both pilots and air traffic controllers unnecessarily. The next generation of collision avoidance systems, ACAS X, instead uses exhaustive lookup tables to determine resolution advisories. These lookup tables, however, are too large to be stored on current avionics hardware. Thus, neural networks can compress these lookup tables significantly, enabling the deployment of ACAS X on current avionics hardware. Nevertheless, deploying an AI-based system for predicting resolution advisories raises safety concerns regardless of whether it is used in commercial or unmanned aircraft. To mitigate these concerns, it is crucial to not only train the AI-based system on a substantial amount of data but also to understand and define the environmental conditions in which is supposed to operate. This concept is referred to as the Operational Design Domain (ODD). Monitoring ODD conditions is essential to ensure the safe operation of the AI-based system. This paper presents a novel methodology for predictive ODD monitoring, leveraging temporal scene analysis to assess potential scenarios that an AI-based system may encounter. Temporal scene analysis is a methodology that analyses scenarios by dividing them into discrete scenes, each representing a specific point in time within the scenario. This approach allows for a detailed examination of the scenario’s progression, identifying critical situations and transitions that may impact the AI-based system’s performance and safety. For this, it utilizes a database of scenarios generated based on the ODD description. Splitting the scenario into scenes and rearranging them to create new synthetic scenarios increases the data available for predictive ODD monitoring. All this will be demonstrated in the context of a collision avoidance use case.

elib-URL des Eintrags:https://elib.dlr.de/207871/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Towards the Monitoring of Operational Design Domains using Temporal Scene Analysis in the realm of Artificial Intelligence in Aviation
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Anilkumar Girija, Akshayakshay.anilkumargirija (at) dlr.dehttps://orcid.org/0000-0002-4384-9739173389794
Christensen, Johann Maximilianjohann.christensen (at) dlr.dehttps://orcid.org/0000-0001-9871-122X173389795
Stefani, ThomasThomas.Stefani (at) dlr.dehttps://orcid.org/0000-0001-7352-0590173389796
Hoemann, Elenaelena.hoemann (at) dlr.dehttps://orcid.org/0000-0001-9315-548X173389797
Durak, UmutUmut.Durak (at) dlr.dehttps://orcid.org/0000-0002-2928-1710NICHT SPEZIFIZIERT
Köster, FrankFrank.Koester (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Hallerbach, SvenSven.Hallerbach (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Krüger, Thomasthomas.krueger (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:15 November 2024
Erschienen in:43rd AIAA DATC/IEEE Digital Avionics Systems Conference, DASC 2024
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Nein
DOI:10.1109/DASC62030.2024.10749445
Verlag:IEEE
ISSN:2155-7195
ISBN:979-835034961-0
Status:veröffentlicht
Stichwörter:Operational Design Domain, Evaluation, Safety, Scenario, AI Engineering
Veranstaltungstitel:43rd IEEE/AIAA Digital Avionics Systems Conference (DASC)
Veranstaltungsort:San Diego, CA, USA
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:29 September 2024
Veranstaltungsende:3 Oktober 2024
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Technik für Raumfahrtsysteme
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R SY - Technik für Raumfahrtsysteme
DLR - Teilgebiet (Projekt, Vorhaben):R - Synergieprojekt Resilienz intelligenter Cyber-Physical Systems of Systems
Standort: Ulm
Institute & Einrichtungen:Institut für Flugsystemtechnik > Sichere Systeme und System Engineering
Institut für KI-Sicherheit
Hinterlegt von: Stefani, Thomas
Hinterlegt am:04 Nov 2024 08:53
Letzte Änderung:20 Dez 2024 11:54

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.