elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Enhancing Household-Level operational decision making with Machine Learning

El Ghazi, Aboubakr Achraf und Frey, Ulrich und Sperber, Evelyn (2024) Enhancing Household-Level operational decision making with Machine Learning. In: 33rd European Conference on Operational Reseach. 33rd European Conference on Operational Reseach, 2024-06-30 - 2024-07-03, Copenhagen.

[img] PDF
59kB
[img] PDF
1MB

Kurzfassung

Agent-based modeling (ABM) presents an effective framework for analyzing complex and highly interconnected systems such as the electricity market. With the ongoing energy transformation, understanding the individual decisions of actors such as households with PV-storage systems (PVS), heat pumps (HP), and electric vehicles (EV) is crucial. However, ABMs for the electricity market on a national level with complex interconnected actors face scalability limitations with regard to their individual decision making. Though, aggregating actors into representative entities and applying a single decision strategy fails to consider the diversity of individual decision-making processes. Moreover, this oversimplified approach neglects the influence of the varying attributes of the individual actors. To solve this problem, we propose leveraging machine learning (ML) techniques to address these requirements while controlling the scalability challenge. The main idea is to utilize ML methods to learn and predict the aggregation of individual actor decisions. Central to our approach is a uniform forecasting of aggregated demand time series for all actor types, i.e., PVS, HP, and EV. The underlying demand time series result from applying optimization models specific to each actor type. The results show similarly good predictions for PVS, HP, and EV. This method enables a more nuanced understanding the individual impact of decision-making processes of households on a national level.

elib-URL des Eintrags:https://elib.dlr.de/207802/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Enhancing Household-Level operational decision making with Machine Learning
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
El Ghazi, Aboubakr AchrafAboubakr.ElGhazi (at) dlr.dehttps://orcid.org/0000-0001-5064-9148170446400
Frey, UlrichUlrich.Frey (at) dlr.dehttps://orcid.org/0000-0002-9803-1336NICHT SPEZIFIZIERT
Sperber, EvelynEvelyn.Sperber (at) dlr.dehttps://orcid.org/0000-0001-9093-5042NICHT SPEZIFIZIERT
Datum:2024
Erschienen in:33rd European Conference on Operational Reseach
Referierte Publikation:Nein
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:veröffentlicht
Stichwörter:Machine Learning, Agent-based, Household-Level, operational decision
Veranstaltungstitel:33rd European Conference on Operational Reseach
Veranstaltungsort:Copenhagen
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:30 Juni 2024
Veranstaltungsende:3 Juli 2024
Veranstalter :Association of European Operational Research Societies
HGF - Forschungsbereich:Energie
HGF - Programm:Energiesystemdesign
HGF - Programmthema:Energiesystemtransformation
DLR - Schwerpunkt:Energie
DLR - Forschungsgebiet:E SY - Energiesystemtechnologie und -analyse
DLR - Teilgebiet (Projekt, Vorhaben):E - Systemanalyse und Technologiebewertung
Standort: Stuttgart
Institute & Einrichtungen:Institut für Vernetzte Energiesysteme > Energiesystemanalyse, ST
Hinterlegt von: El Ghazi, Aboubakr Achraf
Hinterlegt am:28 Okt 2024 09:46
Letzte Änderung:28 Okt 2024 09:46

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.