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Motivation and Problem

Agent-based modeling is a comprehensive tool for analyzing the electricity
market.
Considering the behavior of individual household (HH) actors (PV, HP, EV) is
important.

Traditional aggregation neglects diversity in individual decision-making processes.

Influence of varying attributes of individual actors is overlooked.

Direct modeling of individual HH actors is challenging w.r.t. to resources.

Solution:
An accurate prediction of the ag-
gregated behavior of these actors
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The Process

Prediction
Model

Prediction
Model

Actor Model
(PV, HP, EV)

Aggregation
(HH Profiles)

ML Training

Actor Model: The actual optimization models for PV, HP, and EV.

Aggregation over the population represented by each HH profile.
HH profiles fine-grainity differs among technologies, e.g., Weather-Locations

are impotent in PV and HP profiles,

can be ignored in EV profiles.

Result: One prediction model for each technology and HH profile.

)

Reduces the complexity of ABM models to
one agent per technology and HH profile.
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Challenges of Training the Prediction Models

1. Multiple input variables and one target variable.

2. Input variables and their forward and backward windows are fixed by the
corresponding actor model.

3. Each input variable has an individual forward and backward window.

4. Input and output are time series (TS).

especially 3., makes the use of popular
TS forecasting frame works challenging
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Our Solution: ModPredictor

https://gitlab.com/modpredictor
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https://gitlab.com/mlmodpred/modpredictor


Our Solution: ModPredictor

Language: Python.

ML Dependencies: scikit-learn, keras, tensorflow.

Uses LSTM with variable sizes and deepness (not yet automatic).

Two approaches for variable forward and backward windows.

Ignore concrete time and focus on sequences.

Will be soon available @GitLab as open source
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Variable Forward and Backward Windows – PV Example

1 file_paths_train:

- "./ load_pv_MH2_Berlin.csv"

3 test_ratio: 0

time_var: "TimeStep"

5 input_vars:

EnergyGenerationPerMW:

7 Forward: 1

StoredMWh:

9 Forward: 1

ProsumersLoadInMW:

11 Forward: 1

SalesPriceInEURperMWH:

13 Forward: 24

target_vars:

15 GridInteraction:

Backward: 24

17 model_dir: "output/pv_model"

scaling:

19 - "input"

- "target"

21 epochs: 100

1 file_paths_train:

- "./ load_hp_BAU_Kiel.csv"

3 test_ratio: 0

time_var: "TimeStep"

5 input_vars:

ambient_temperature:

7 Forward: 48

solar_radiation:

9 Forward: 48

price:

11 Forward: 48

tapping_profile:

13 Forward: 48

target_vars:

15 aggregated_consumption:

Backward: 48

17 model_dir: "output/hp_model"

scaling:

19 - "input"

- "target"

21 epochs: 100

1 file_paths_train:

- "./ load_ev_profile0.csv"

3 test_ratio: 0

time_var: "timestamp"

5 input_vars:

price_EURkWh:

7 Forward: 96

available_charging_kW:

9 Forward: 96

elec_consumption_kWh:

11 Forward: 96

battery_level_kWh:

13 Forward: 96

target_vars:

15 optimised_load_kW:

Backward: 24

17 model_dir: "output/ev_model"

scaling:

19 - input

- target

21 epochs: 100
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Variable Forward and Backward Windows – Streamlining
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General – usable with any NN

Exact – no information change

However, not feasible for big training data and moderate hardware

Alternative: Padded tensors, Runtime improvement: > 1day)< 1Hour.
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ModPredictor – PV Results

ENTIRE TEST SET:
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ModPredictor – PV Results

ZOOM-IN: entry index 3000 – entry index 4000
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ModPredictor – All Results

MODEL TRAINING VALIDATION TEST MAE (MW)

PV 8760 CrossVal 1/4 8760 87.80
HP 8760 CrossVal 1/4 8760 241.99
EV 35040 CrossVal 1/4 35040 423.56
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Results and Conclusion

Acceptable predictions for PS, HP, and EV.

Enhanced understanding of the impact of individual household decision-making.

ML techniques provide a scalable solution for modeling diverse actor decisions.
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aboubakr.elghazi@dlr.de

ulrich.frey@dlr.de

THANK YOU!


