Supported by:

on the basis of a decision by the German Bundestag

En4u, FKZ, 03EI1029A

ENHANCING HOUSEHOLD-LEVEL OPERATIONAL DECISION MAKING WITH MACHINE LEARNING

EURO24, 1th of July 2024, Copenhagen

A. Achraf EL GHAZI, Ulrich FREY, Evelyn SPERBER

German Aerospace Center (DLR)

Motivation and Problem

- Agent-based modeling is a comprehensive tool for analyzing the electricity market.
- Considering the behavior of individual household (HH) actors (PV, HP, EV) is important.
 - Traditional aggregation neglects diversity in individual decision-making processes.
 - Influence of varying attributes of individual actors is overlooked.
- Direct modeling of individual HH actors is challenging w.r.t. to resources.

Motivation and Problem

- Agent-based modeling is a comprehensive tool for analyzing the electricity market.
- Considering the behavior of individual household (HH) actors (PV, HP, EV) is important.
 - Traditional aggregation neglects diversity in individual decision-making processes.
 - Influence of varying attributes of individual actors is overlooked.
- Direct modeling of individual HH actors is challenging w.r.t. to resources.

Solution: An accurate prediction of the aggregated behavior of these actors

The Process

- Actor Model: The actual optimization models for PV, HP, and EV.
- Aggregation over the population represented by each HH profile.
- HH profiles fine-grainity differs among technologies, e.g., Weather-Locations
 - are impotent in PV and HP profiles,
 - can be ignored in EV profiles.
- Result: One prediction model for each technology and HH profile.

The Process

- Actor Model: The actual optimization models for PV, HP, and EV.
- Aggregation over the population represented by each HH profile.
- HH profiles fine-grainity differs among technologies, e.g., Weather-Locations
 - are impotent in PV and HP profiles,
 - can be ignored in EV profiles.
- Result: One prediction model for each technology and HH profile.

Challenges of Training the Prediction Models

- 1. Multiple input variables and one target variable.
- 2. Input variables and their forward and backward windows are fixed by the corresponding actor model.
- 3. Each input variable has an individual forward and backward window.
- 4. Input and output are time series (TS).

Challenges of Training the Prediction Models

- 1. Multiple input variables and one target variable.
- 2. Input variables and their forward and backward windows are fixed by the corresponding actor model.
- 3. Each input variable has an individual forward and backward window.
- 4. Input and output are time series (TS).

especially 3., makes the use of popular TS forecasting frame works challenging

Our Solution: ModPredictor

https://gitlab.com/modpredictor

< C (0 mm	//gitab.com	'mmodpred/modpredictor			B	s 🖉 A 🟠 🗞 👗 C 💷 🏚	
🗊 Energiesystemanaly. 🔝	Regionaldater	berk 🗶 Rublications - Ener	🗙 Datestammlung - E.,	🗶 Software Engineeri. 📲 4.1 The Dispatch of. 🛛 🔕 WebPostforb 1.1 🧠	🚯 VERMEER - 202103. 👩 Ganua - FZEK3	HIDA - Heinholtz L. H Heinholtz Open Sci. 🚯 Home-	Tearrote-k.
🦊 Gründe, die für Gi	tLab spreche	en Preise Erkunden				Anmelden Kosteniose	Testversion anfordern
Q. Suchen oder au	frufen	MLModPred / medpredictor					
Projekt			M moder	ordiotor @		de stantinue (a) i	
M modpredictor			mouple	edictor +		Statement of 1	
85 Verwaten			P main ~ modpr	anedictor	Verlauf Datei finden Code	Projektinformation	
변 Planen 아 Code	3		ensured to ret Aboubake Ach	eturn the best model wrt val_loss over all csv, epochs, and cross val triaf El Ghazi entiell vor 1 Monat	→ 37 Commits		
Q. Brad	,					2 0 Jan	
D Bereitstellung	2		Name	Letzter Commit	Letzte Aktualisierung	0.01000	
SP Detreiben			En src	ensured to return the best model wr1 va	vor 1 Monat	D README	
Coernaction			README.md	Wrote README.md	vor 2 Monaten	Erstellt am	
at Anaysanan			B env.ymt	bugfic adjust file names to ",tec" for pr	vor 1 Monat	April 17, 2024	
			README.md				
			modpredic Name	ctor			
			Modpredictor				
			Description				
			This project trains (HP), electric vehic	s a LSTM-model for time-series prediction. The input data is in the /in licles (EVI), and Photovoltaic+Storage systems (PV).	put/ folder. There is data for heat pumps		
			Usage				
(THate			TRAINING: Train e using the respecti	each model with the respective training file, i.e. train_hp, train_ev, trai tive prediction file, i.e. pred_hp, pred_ev, pred_pv. You may use the de	n.pv. PREDICTION: Predict each model by reads file for prediction, which is the file		

Our Solution: ModPredictor

- Language: Python.
- ML Dependencies: scikit-learn, keras, tensorflow.
- Uses LSTM with variable sizes and deepness (not yet automatic).
- Two approaches for variable forward and backward windows.
- Ignore concrete time and focus on sequences.

Our Solution: ModPredictor

- Language: Python.
- ML Dependencies: scikit-learn, keras, tensorflow.
- Uses LSTM with variable sizes and deepness (not yet automatic).
- Two approaches for variable forward and backward windows.
- Ignore concrete time and focus on sequences.

Will be soon available @GitLab as open source

Variable Forward and Backward Windows – PV Example

1	file_paths_train:	1	fil
	- "./load_pv_MH2_Berlin.csv"		-
3	test_ratio: 0	3	tes
	time_var: "TimeStep"		tim
5	input_vars:	5	inp
	EnergyGenerationPerNW:		a
7	Forward: 1	7	
	StoredNWh:		S
9	Forward: 1	9	
	ProsumersLoadInNW:		Р
11	Forward: 1	11	
	SalesPriceInEURperNWH:		t
13	Forward: 24	13	
	target_vars:		tar
15	GridInteraction:	15	а
	Backward: 24		
17	model_dir: "output/pv_model"	17	mod
	scaling:		sca
19	- "input"	19	-
	- "target"		-
21	epochs: 100	21	epo

file_paths_train:
- "./load_hp_BAU_Kiel.csv"
test_ratio: 0
time_var: "TimeStep"
input_vars:
ambient_temperature:
Forward: 48
solar radiation:
Forward: 48
price
Forward: 48
tapping profile:
Forward: 48
forward. Fo
target_vars:
aggregated_consumption:
Backward: 48
<pre>model_dir: "output/hp_model"</pre>
scaling:
- "input"
- "target"
epochs: 100

1	file_paths_train:
	= "./load_ev_profile0.csv"
3	test_ratio: 0
	time_var: "timestamp"
5	input_vars:
	price_EURkWh:
7	Forward: 96
	available_charging_kW:
9	Forward: 96
	elec_consumption_kWh:
11	Forward: 96
	battery_level_kWh:
13	Forward: 96
	target_vars:
15	optimised_load_kW:
	Backward: 24
17	<pre>model_dir: "output/ev_model"</pre>
	scaling:
19	input
	 target
21	epochs: 100

- General usable with any NN
- Exact no information change
- However, not feasible for big training data and moderate hardware
- Alternative: Padded tensors, Runtime improvement: > 1day ⇒< 1Hour.

ModPredictor – PV Results

ENTIRE TEST SET:

8

ModPredictor – PV Results

ZOOM-IN: entry index 3000 - entry index 4000

ModPredictor – All Results

MODEL	TRAINING	VALIDATION	TEST	MAE (MW)
PV	8760	CrossVal 1/4	8760	87.80
HP	8760	CrossVal 1/4	8760	241.99
EV	35040	CrossVal 1/4	35040	423.56

Results and Conclusion

- Acceptable predictions for PS, HP, and EV.
- Enhanced understanding of the impact of individual household decision-making.
- ML techniques provide a scalable solution for modeling diverse actor decisions.

11

Supported by:

Federal Ministry for Economic Affairs and Climate Action

on the basis of a decision by the German Bundestag

THANK YOU!

aboubakr.elghazi@dlr.de ulrich.frey@dlr.de

