elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

A hybrid algorithm based on Bayesian optimization and Interior Point OPTimizer for optimal operation of energy conversion systems

Kyriakidis, Loukas und Mendez, Miguel Alfonso und Bähr, Martin (2024) A hybrid algorithm based on Bayesian optimization and Interior Point OPTimizer for optimal operation of energy conversion systems. Energy, 312. Elsevier. doi: 10.1016/j.energy.2024.133416. ISSN 0360-5442.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
1MB

Offizielle URL: https://www.sciencedirect.com/science/article/pii/S036054422403192X?via%3Dihub

Kurzfassung

Optimization methods are essential to improve the operation of energy conversion systems including energy storage equipment and fluctuating renewable energy. Modern systems consist of many components, operating in a wide range of conditions and governed by nonlinear balance equations. Consequently, identifying their optimal operation (e.g. minimizing operational costs) requires solving challenging optimization problems, with the global optimum often hidden behind many local ones. In this work, we propose a hybrid method that advantageously combines Bayesian optimization (BO) and Interior Point OPTimizer (IPOPT). The BO is a global approach exploiting Gaussian process regression to build a surrogate model of the cost function to be optimized, while IPOPT is a local approach using quasi-Newton updates. The proposed BO-IPOPT combination allows leveraging the parameter space exploration of the BO with the quasi-Newton convergence of IPOPT once solution candidates are in the neighborhood of an optimum. Using a challenging constrained test function, we test BO-IPOPT in accuracy and computational efficiency. Finally, we showcase the proposed method in the optimal operation of a renewable steam generation system. The results show that BO-IPOPT combines high accuracy and computational efficiency, achieving up to 50% better objective function values at the same CPU time than other state-of-the-art methods.

elib-URL des Eintrags:https://elib.dlr.de/207751/
Dokumentart:Zeitschriftenbeitrag
Titel:A hybrid algorithm based on Bayesian optimization and Interior Point OPTimizer for optimal operation of energy conversion systems
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Kyriakidis, Loukasloukas.kyriakidis (at) dlr.dehttps://orcid.org/0009-0003-6634-8579171172842
Mendez, Miguel Alfonsomiguel.alfonso.mendez (at) vki.ac.beNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Bähr, MartinMartin.Baehr (at) dlr.dehttps://orcid.org/0000-0002-5420-5947NICHT SPEZIFIZIERT
Datum:15 Oktober 2024
Erschienen in:Energy
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:312
DOI:10.1016/j.energy.2024.133416
Verlag:Elsevier
ISSN:0360-5442
Status:veröffentlicht
Stichwörter:Nonlinear global optimization; Bayesian optimization; IPOPT; Hybrid method; Renewable steam generation
HGF - Forschungsbereich:Energie
HGF - Programm:Materialien und Technologien für die Energiewende
HGF - Programmthema:Thermische Hochtemperaturtechnologien
DLR - Schwerpunkt:Energie
DLR - Forschungsgebiet:E SP - Energiespeicher
DLR - Teilgebiet (Projekt, Vorhaben):E - Dekarbonisierte Industrieprozesse
Standort: Cottbus
Institute & Einrichtungen:Institut für CO2-arme Industrieprozesse
Hinterlegt von: Kyriakidis, Loukas
Hinterlegt am:07 Nov 2024 13:00
Letzte Änderung:07 Nov 2024 13:00

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.