Hoffmann, J. Paul und Theiss, Alexander und Hein, Stefan (2024) Correlating the Internal Encoding of Boundary-Layer Profiles: Insights in Neural Networks Used for Boundary-Layer Stability Prediction. In: 24. STAB-DGLR-Symposium 2024, Seiten 158-159. 24. STAB-DGLR-Symposium 2024, 2024-11-13 - 2024-11-14, Regensburg, Deutschland.
PDF
- Nur DLR-intern zugänglich
395kB |
Offizielle URL: https://www.dlr.de/de/as/aktuelles/veranstaltungen/stab/2024/stab-jahresbericht_2024.pdf
Kurzfassung
Linear stability theory is an established method for the prediction of boundary-layer transition. Practical application of this method often involves surrogate-models, which in this work are artificial neural networks. This paper focuses on partially gaining insights into such black-box models trained for two different modes, namely two-dimensional Tollmien-Schlichting and stationary crossflow instabilities. By design of its topology, the network is forced to encode the information of the relevant wall-normal boundary-layer profile in the output of a single neuron at an intermediate stage. Employing symbolic regression for this task, this latent feature is then correlated with known boundary-layer parameters, in order to investigate whether the neural networks learn to derive known physical parameters.
elib-URL des Eintrags: | https://elib.dlr.de/207693/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||
Titel: | Correlating the Internal Encoding of Boundary-Layer Profiles: Insights in Neural Networks Used for Boundary-Layer Stability Prediction | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | November 2024 | ||||||||||||||||
Erschienen in: | 24. STAB-DGLR-Symposium 2024 | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Nein | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||
Seitenbereich: | Seiten 158-159 | ||||||||||||||||
Name der Reihe: | Jahresbericht | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | boundary layer, transition, neural network, correlation, latent parameter | ||||||||||||||||
Veranstaltungstitel: | 24. STAB-DGLR-Symposium 2024 | ||||||||||||||||
Veranstaltungsort: | Regensburg, Deutschland | ||||||||||||||||
Veranstaltungsart: | nationale Konferenz | ||||||||||||||||
Veranstaltungsbeginn: | 13 November 2024 | ||||||||||||||||
Veranstaltungsende: | 14 November 2024 | ||||||||||||||||
Veranstalter : | STAB/DGLR | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Luftfahrt | ||||||||||||||||
HGF - Programmthema: | Effizientes Luftfahrzeug | ||||||||||||||||
DLR - Schwerpunkt: | Luftfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | L EV - Effizientes Luftfahrzeug | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | L - Flugzeugtechnologien und Integration | ||||||||||||||||
Standort: | Göttingen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Aerodynamik und Strömungstechnik > Hochgeschwindigkeitskonfigurationen, GO | ||||||||||||||||
Hinterlegt von: | Hoffmann, Paul | ||||||||||||||||
Hinterlegt am: | 10 Dez 2024 17:29 | ||||||||||||||||
Letzte Änderung: | 10 Dez 2024 17:29 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags