Ravi, Kislaya und Fediukov, Vladyslav und Dietrich, Felix und Neckel, Tobias und Buse, Fabian und Bergmann, Michael und Bungartz, Hans-Joachim (2024) Multi-fidelity Gaussian process surrogate modeling for regression problems in physics. Machine Learning: Science and Technology, 5 (4). Institute of Physics (IOP) Publishing. doi: 10.1088/2632-2153/ad7ad5. ISSN 2632-2153.
|
PDF
- Verlagsversion (veröffentlichte Fassung)
2MB |
Offizielle URL: https://iopscience.iop.org/article/10.1088/2632-2153/ad7ad5
Kurzfassung
One of the main challenges in surrogate modeling is the limited availability of data due to resource constraints associated with computationally expensive simulations. Multi-fidelity methods provide a solution by chaining models in a hierarchy with increasing fidelity, associated with lower error, but increasing cost. In this paper, we compare different multi-fidelity methods employed in constructing Gaussian process surrogates for regression. Non-linear autoregressive methods in the existing literature are primarily confined to two-fidelity models, and we extend these methods to handle more than two levels of fidelity. Additionally, we propose enhancements for an existing method incorporating delay terms by introducing a structured kernel. We demonstrate the performance of these methods across various academic and real-world scenarios. Our findings reveal that multi-fidelity methods generally have a smaller prediction error for the same computational cost as compared to the single-fidelity method, although their effectiveness varies across different scenarios.
| elib-URL des Eintrags: | https://elib.dlr.de/207688/ | ||||||||||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||||||||||
| Titel: | Multi-fidelity Gaussian process surrogate modeling for regression problems in physics | ||||||||||||||||||||||||||||||||
| Autoren: |
| ||||||||||||||||||||||||||||||||
| Datum: | 15 Oktober 2024 | ||||||||||||||||||||||||||||||||
| Erschienen in: | Machine Learning: Science and Technology | ||||||||||||||||||||||||||||||||
| Referierte Publikation: | Ja | ||||||||||||||||||||||||||||||||
| Open Access: | Ja | ||||||||||||||||||||||||||||||||
| Gold Open Access: | Ja | ||||||||||||||||||||||||||||||||
| In SCOPUS: | Ja | ||||||||||||||||||||||||||||||||
| In ISI Web of Science: | Ja | ||||||||||||||||||||||||||||||||
| Band: | 5 | ||||||||||||||||||||||||||||||||
| DOI: | 10.1088/2632-2153/ad7ad5 | ||||||||||||||||||||||||||||||||
| Verlag: | Institute of Physics (IOP) Publishing | ||||||||||||||||||||||||||||||||
| ISSN: | 2632-2153 | ||||||||||||||||||||||||||||||||
| Status: | veröffentlicht | ||||||||||||||||||||||||||||||||
| Stichwörter: | multi-fidelity, machine learning, Gaussian processes, physical simulations | ||||||||||||||||||||||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||||||||||
| HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||||||||||
| HGF - Programmthema: | Robotik | ||||||||||||||||||||||||||||||||
| DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||||||||||
| DLR - Forschungsgebiet: | R RO - Robotik | ||||||||||||||||||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | R - Terramechanik | ||||||||||||||||||||||||||||||||
| Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||||||||||
| Institute & Einrichtungen: | Institut für Systemdynamik und Regelungstechnik | ||||||||||||||||||||||||||||||||
| Hinterlegt von: | Fediukov, Vladyslav | ||||||||||||||||||||||||||||||||
| Hinterlegt am: | 18 Nov 2024 09:26 | ||||||||||||||||||||||||||||||||
| Letzte Änderung: | 07 Nov 2025 11:00 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags