Nouri, Bijan und Fabel, Yann und Blum, Niklas und Schnaus, Dominik und Zarzalejo, L. F. und Kazantzidis, Andreas und Wilbert, Stefan (2024) Ramp Rate Metric Suitable for Solar Forecasting. Solar RRL. Wiley. doi: 10.1002/solr.202400468. ISSN 2367-198X.
PDF
- Verlagsversion (veröffentlichte Fassung)
3MB |
Kurzfassung
Solar irradiance forecasting plays a crucial role in integrating large quantities of intermittent solar power. Forecasting systems are commonly evaluated using metrics like root-mean- square error (RMSE) and skill scores. However, these metrics aggregated over larger data sets do not adequately assess the prediction of ramp events, which are critical for many applications. This article introduces a novel, simple, and adaptable ramp rate metric that analyzes ramp events between successive lead times within forecasts. A case study on ramp rate mitigation in PV systems benchmarks suitable ramp thresholds for various solar irradiance components. The capabilities and limitations of deterministic and probabilistic forecasts from two all-sky imager-based models are evaluated for ramp prediction. A state-of-the-art data-driven vision transformer End2End model excels in RMSE and skill scores but performs poorly in ramp prediction. Conversely, a novel generative forecasting model combined with a convolutional neural network-based irradiance model shows superior ramp prediction, achieving an F1 score of ≥0.7 for critical ramp events. This study underscores the importance of suitable ramp rate metrics and highlights the potential of generative models for enhancing ramp forecasting.
elib-URL des Eintrags: | https://elib.dlr.de/207615/ | ||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||||||||||
Titel: | Ramp Rate Metric Suitable for Solar Forecasting | ||||||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||||||
Datum: | Oktober 2024 | ||||||||||||||||||||||||||||||||
Erschienen in: | Solar RRL | ||||||||||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||||||||||
DOI: | 10.1002/solr.202400468 | ||||||||||||||||||||||||||||||||
Verlag: | Wiley | ||||||||||||||||||||||||||||||||
ISSN: | 2367-198X | ||||||||||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||||||||||
Stichwörter: | Solar Forecasting, All sky imager, Ramp rate, Error metrics, Validation | ||||||||||||||||||||||||||||||||
HGF - Forschungsbereich: | Energie | ||||||||||||||||||||||||||||||||
HGF - Programm: | Materialien und Technologien für die Energiewende | ||||||||||||||||||||||||||||||||
HGF - Programmthema: | Thermische Hochtemperaturtechnologien | ||||||||||||||||||||||||||||||||
DLR - Schwerpunkt: | Energie | ||||||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | E SW - Solar- und Windenergie | ||||||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | E - Condition Monitoring | ||||||||||||||||||||||||||||||||
Standort: | Köln-Porz | ||||||||||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Solarforschung > Qualifizierung | ||||||||||||||||||||||||||||||||
Hinterlegt von: | Nouri, Bijan | ||||||||||||||||||||||||||||||||
Hinterlegt am: | 23 Okt 2024 09:53 | ||||||||||||||||||||||||||||||||
Letzte Änderung: | 23 Okt 2024 09:53 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags