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Ramp Rate Metric Suitable for Solar Forecasting

Bijan Nouri,* Yann Fabel, Niklas Blum, Dominik Schnaus, Luis F. Zarzalejo,

Andreas Kazantzidis, and Stefan Wilbert

Solar irradiance forecasting plays a crucial role in integrating large quantities of
intermittent solar power. Forecasting systems are commonly evaluated using

metrics like root-mean- square error (RMSE) and skill scores. However, these

metrics aggregated over larger data sets do not adequately assess the prediction
of ramp events, which are critical for many applications. This article introduces a
novel, simple, and adaptable ramp rate metric that analyzes ramp events between
successive lead times within forecasts. A case study on ramp rate mitigation in
PV systems benchmarks suitable ramp thresholds for various solar irradiance

components. The capabilities and limitations of deterministic and probabilistic
forecasts from two all-sky imager-based models are evaluated for ramp predic-
tion. A state-of-the-art data-driven vision transformer End2End model excels in
RMSE and skill scores but performs poorly in ramp prediction. Conversely, a

novel generative forecasting model combined with a convolutional neural net-
work-based irradiance model shows superior ramp prediction, achieving an F1
score of >0.7 for critical ramp events. This study underscores the importance of
suitable ramp rate metrics and highlights the potential of generative models for

the power system.l'! This issue is particu-
larly critical for large centralized solar
plants or dense fleets of solar installations.
Active smoothing and buffering through
battery energy storage systems could miti-
gate the negative effects of ramps, but at
significantly increased operating and capi-
tal costs.”) By using intra-hour forecasts,
changing solar irradiance conditions can
be anticipated, allowing optimized power
plant operation and grid integration.”!
Consequently, this has the potential to
reduce storage system capacity require-
ments and costs.l) Numerical weather pre-
diction (NWP), satellite observations, local
sensing, and data-driven or hybrid methods
are all valuable tools for generating fore-
casts.’! The choice of method depends
on the specific application and the relevant

enhancing ramp forecasting.

1. Introduction

Sudden changes in solar irradiance on a local scale can have a
significant impact on solar power generation. This intermittent
nature of the solar resource, which is mainly due to cloud
passing’s, poses a challenge to the integration of solar energy into
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temporal and spatial scales. Particularly for
large centralized solar power plants or
dense fleets of solar power plants, ramps
per minute could be of importance.
Local sensing methods, such as all-sky imagers that capture
sky conditions with high spatial and temporal resolution, could
serve as suitable forecasting systems.!” Recent years have seen a
surge in new developments with increasingly powerful forecast-
ing models, particularly regarding direct data-driven methods
using deep learning.>”!

The primary metrics used to evaluate and optimize forecasting
systems are root-mean-square error (RMSE) and forecast skill.
The RMSE serves as a measure of the accuracy achieved by
the developed model, while the forecast skill serves as a critical
benchmark that evaluates the model’s RMSE against that of a
persistence baseline model.®! However, the pursuit of RMSE
optimization often results in a smoothing effect on forecasts,
especially in direct data-driven approaches. While these optimi-
zation strategies excel at minimizing RMSE and demonstrate
high forecast skill, they may prove less adept at predicting
short-term ramps.””) This makes some forecasts well suited for
applications that require accurate energy quantity prediction
for a given time interval but virtually useless for control applica-
tions where the actual ramp detection is desired (e.g., ramp rate
mitigation of PV power plants).ll Highly resolved probabilistic
approaches could be potential solution.’*!! Yet, when ensemble
members or initial deterministic forecasts in a quantile approach
are optimized for RMSE, similar smoothing effects are partially
observed. These effects appear at individual probability levels in
probabilistic forecasts. While the likelihood of ramps can be
inferred from the sharpness of the probabilistic forecast
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distribution, exact forecasts of ramp events are not provided. Itis
therefore important that ramp-rate specific metrics are also con-
sidered when evaluating the adequacy of probabilistic forecasts.

Ramps are characterized by both the difference in irradiance
from the beginning to the end of a time interval and the differ-
ence between the minimum and maximum irradiance within
that timeframe.!"**3! This highlights the importance of consider-
ing both duration and magnitude in forecasting ramps. Several
potential metrics have been described in the literature.™* One
common approach is to assess the difference between two
measured irradiance values (y) while ramp prediction involves
comparing the predicted (§) and measured irradiance.™ This
is defined as:

y(t+ FH) — y(t) > ¢ — observed ramp event (1)
p(t+ FH) — y(t) > ¢ — predicted ramp event (2)

FH is the forecast horizon and ¢ is the ramp threshold. The
threshold is set to 10% of the corresponding clear sky irradiance
and is limited to a discrete forecast horizon of 10 min into the
future. This makes the approach rather rigid and potentially
unsuitable for various applications. Additionally, using a thresh-
old based on a fixed proportion of clear-sky irradiance is highly
sensitive during morning and evening hours, potentially trigger-
ing events solely due to changes in the sun’s position.

An adapted version of the method considers the derivative of
normalized irradiance values (ny), making it more suitable for
varying FH and sun positions:!"*]

ny(t+ FH) — ny(t)

TH > ¢ — observed ramp event (3)
p(t+ FH) —
VW(+F—IW > ¢ — predicted ramp event “4)

Normalization is performed using the maximum clear sky
irradiance at the top of the atmosphere for each day. The thresh-
old ¢ is defined individually for each FH as the 99" percentile of
ramp rates under clear sky conditions. Although the intention is
to establish a universally applicable threshold, using the 99th
percentile of ramp rates under clear sky conditions makes &
extremely sensitive and thus unsuitable. Establishing an appro-
priate threshold for defining ramps remains a common chal-
lenge with these metrics. As in the examples presented,
thresholds often vary depending on the dataset used, which com-
plicates reproducibility and comparability. The swinging-door
algorithm addresses this by dynamically adapting to identify
ramp events in data streams, utilizing a variable egp, (width
of a door) to pinpoint ramp boundaries.*®! However, the algo-
rithm’s sensitivity to esp, is crucial, a small value may lead to
false detections from noise, while a large value might miss
smaller ramps. Hence, selecting an appropriate egp, is vital to
strike a balance between sensitivity and robustness. Due to its
complexity, the swinging-door algorithm is less intuitive and
more difficult to interpret. Further metrics have been developed
specifically for hourly resolution NWP forecasts.’*'”) But the
usefulness of some of these metrics is questionable since persis-
tence forecasts outperform NWP models in predicting ramps.[*”
By definition, persistence models cannot predict ramps caused
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by cloud passages, so a meaningful ramp metric should not indi-
cate a good ramp prediction skill for persistence approaches. This
issue is particularly important for highly resolved intra-hourly
forecasts, where changes in irradiance due to solar position
between subsequent forecast lead times are minimal.

No metric has yet been found that is adequate for many use
cases and accepted by most stakeholders.>** This is partly due to
the complexity of the so far proposed metrics and partly due to
the difficulty of establishing a definition of practical irradiance
ramp events.

This study aims to develop a simple, adaptable ramp rate met-
ric to effectively assess ramp events in solar irradiance forecast-
ing. We introduce a novel ramp rate metric and conduct a case
study on ramp rate mitigation in PV systems. Our study focuses
on systems operating under grid codes with specific ramp limits
to benchmark suitable ramp thresholds. The capabilities and lim-
itations of ramp prediction of deterministic and probabilistic
forecasts from all-sky imager-based models are evaluated for a
state-of-the-art data-driven and a novel generative model.

In Section 2, we introduce and discuss the error metrics. The
experimental setup is presented in Section 3, including the PV
model and data sets used. Section 4 evaluates different ramp rate
thresholds for the specific use case of ramp rate mitigation in PV
plants. In Section 5, both a state-of-the-art data-driven forecasting
model and a novel generative forecasting model are presented,
along with their validation results using the previously defined
ramp error metric and thresholds. Finally, Section 6 finishes with
concluding remarks.

2. Error Metrics

Section 2.1 first presents typical established error metrics.
Section 2.2 then introduces the novel error metric presented
in this article specifically for ramp rates.

2.1. Overview on Typical Error Metrics

A detailed description of typical error metrics for deterministic
forecasts is given in ref. [18], a corresponding overview of metrics
for probabilistic forecasts can be found in ref. [19].

Using multiple metrics allows for a more comprehensive eval-
uation of forecast accuracy. Different metrics highlight different
characteristics of the errors. Typical error metrics for determin-
istic forecasts are the Bias, the mean absolute error (MAE) and
the RMSE:

Biaszl/ni?i—)/i ()
=1
MAE = 1/”2 19 — vil (©)
p
RMSE = 1/nzn: (#: —v)? (7)

i=1
Bias quantifies systematic deviations, MAE reflects average

error magnitude, and RMSE emphasizes the presence of
large errors.
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The quality of probabilistic forecasts can be characterized by
the attributes of reliability, resolution, and sharpness.*
Reliability assesses whether a forecast is statistically consistent,
that is, high reliability implies that the predicted probabilities
match the observed outcomes. Resolution evaluates the forecasts
ability to distinguish between different prevailing conditions.
Sharpness describes the concentration of the forecast distribu-
tion derived solely from the forecasts themselves. A forecast
can be sharp but useless if it is unreliable. Skilled probabilistic
forecasts should be both reliable and have high resolution.

Typical error metrics for probabilistic forecasts are the interval
score (IS), quantile score (QS), and the continuous ranked
probability score (CRPS):

1 2
ISpr =5 2 (Uipr = Lipt) + > (Lipr = ¥i) ey,
=1 8)

2
+ p (Yi - Ui')1Yi> Uipt
1 0 ' 0
05—y 2wl iy TAE0 o
1. [1

where L is the lower bound, U is the upper bound, PI is the
prediction interval, F; describes the cumulative distribution
functions (CDF) of the forecasts, F, describes the CDF of the
corresponding observation as Heaviside step function shifted
to the observation y;.

a is the statistical significance level and 7 is the probability
level. IS focuses on the accuracy of prediction intervals, reward-
ing narrow, accurate intervals and penalizing intervals that miss
the actual value and targets mainly sharpness and reliability. QS
evaluates specific quantile forecasts, providing insights into how
well the forecast captures different points in the distribution and
targets mainly reliability and resolution. CRPS assesses the over-
all accuracy of the forecast distribution, integrating the entire
probabilistic forecast into a single measure and targets mainly
reliability and resolution.

For both deterministic and probabilistic forecasts, it is highly
recommended to utilize skill scores, which compare the model
under investigation with a reference model.?!! The skill score is
defined as:

s= 1 — —model (11)

Sbenchmark

where s represents a suitable metric, such as RMSE for determin-
istic forecasts and CRPS for probabilistic forecasts.'®!! Skill
scores are essential for evaluating and comparing the perfor-
mance of forecasting models, providing a standardized measure
of how well a forecast performs relative to a benchmark. For
deterministic forecasts, the reference model is often persis-
tence,””! while for probabilistic forecasts, it is typically climatol-
ogy model.”” By quantifying the improvement over simpler well-
known models, skill scores help identify the effectiveness and
reliability of advanced forecasting methods.
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Bias, MAE, RMSE, IS, QS, CRPS, and skill scores, while use-
ful to evaluate general forecast accuracy and reliability, are not
suitable for evaluating ramp predictions due to their inability
to specifically capture the timing and magnitude of sudden
changes. These metrics focus on overall error and distributional
accuracy, but ramps involve rapid and significant variations that
require specialized metrics. Consequently, models evaluated and
optimized solely by these metrics may appear performant yet fail
to accurately predict critical ramp events. Specialized ramp detec-
tion metrics are necessary to address these shortcomings.
As noted earlier, no standard and widely accepted metric exists
in the literature to evaluate ramp forecast performance.>'* In
the following, a simple ramp metric is proposed. It can be easily
applied to different use cases by using flexible thresholds.

2.2. Proposed Ramp Rate Metric

We propose a metric to evaluate the accuracy of solar irradiance
forecasts based on the detection of ramp events. A predicted ramp
event is a significant change in irradiance between two subsequent
lead times (LT) within a forecast. The simplicity of this ramp defi-
nition lies in its straightforward comparison of the rate of change in
irradiance to a threshold e. This makes it easy to implement and
understand. Thresholds € can and should be adapted to the specific
use cases reflecting varying degrees of significance of irradiance
changes. The approach evaluates ramp events based on multistep
predictions, where each prediction is made from the same origin
point in time #,. To account for minor deviations in the exact tim-
ing of ramp events, a tolerance window is introduced. This window
enhances the robustness of the approach in practical scenarios
where exact timing alignment between observed and predicted
ramps is challenging. Within this window, if an observed ramp
and a predicted ramp occur at any time, they are considered a
match. The equation to detect an observed ramp event is:

ORE, 1 = max
Je{—At+res, —At+2res, ..., At}

{y(t+LT+j) —y(t—i—LT—i—j—res)} .
res

(12)

In this equation, ORE, ;T represents the observed ramp event
at time ¢ and lead time LT. The term y(t) denotes the observed
irradiance at time t. The tolerance window is At, the ramp event
detection threshold is ¢, and res is the corresponding temporal
resolution.

Similarly, the equation to detect a predicted ramp event is:

PRE; ;1 = max
i Jje{—At+res, —At+2res, ..., At}

{9(t+LT+j)_f’(t+ LT-I—j—res)} - (13)

res

where PRE, 1 represents the predicted ramp event at time ¢ and
lead time LT. The term j(t) denotes the predicted irradiance at
time t. Figure 1 illustrates a case of a correctly detected ramp
event within the tolerance window.

True positive (TP), false negative (FN), false positive (FP),
and true negative (TN) matches are defined according to
Equation (14) through (17).
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Figure 1. Observed and predicted ramp events for LT =4min,
At=+2min and an ramp rate threshold of &=100W/(m?min). This
example illustrates a matching ramp event within the tolerance window.

n
TPir =) ORE, ;7APRE, (14)
i=1
n
FNpp = ORE, ;7A~PRE, 7 (15)
i=1
n
FPiy = +ORE, ;rAPRE, 1 (16)
i=1
TNLT = Z -|OREti,LTA-|PREt,-, LT (17)

i=1

Accuracy, Precision, Recall and F1 Score are calculated
according to Equation (18)—(21).

Accurac = 18
T = TP, + TNyy + FPyr + FNyp (18)
. TPrr
Precision; = ————— 19
LT TP,y + FP,r (19)
TP

Recall,; =— 1T (20)
Fl,, = 2 - Precision; 1 - Recall;r 1)

Precision;t + Recall;

3. Data Sets

At CIEMAT’s Plataforma Solar de Almeria, eight meteorological
stations are distributed over an area of ~1km?. Each station is
equipped with ISO 9060 class A spectrally flat pyranometers
and pyrheliometers, as well as automated solar trackers with
sun sensors for measuring direct normal irradiance (DNI), global
horizontal irradiance (GHI), and diffuse horizontal irradiance
(DHI). Additionally, there are two ASIs on the site, positioned
at the southwest and northeast ends. The ASI systems use
off-the-shelf Mobotix Q25 cameras, which capture fully hemi-
spherical images of the sky at a resolution of 2112 x 2048 pixels
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Figure 2. Positions of the measurement stations and of the simulated PV
system at CIEMAT's PSA (latitude: 37.0927° N, longitude: —2.3607° E and
altitude: 546 m). The plant consist of 78 400 modules (azimuth: 180° and
tilt: 30°) with a maximum power of 21,128,800 W. Each yellow outline
represents one string of PV modules.
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at an exposure time of 160 ps. Data is recorded with a temporal
resolution of 1 min. Figure 2 shows the location of each measure-
ment station.

This study utilizes two datasets from these devices. The first
dataset covers 359 days from September 1, 2020, to August 31,
2021, and is used to evaluate suitable ramp rate thresholds
(Section 4). The second dataset spans 28days between
September and November 2019 and is employed to validate
two ASI-based forecasting models using the proposed ramp rate
metric (Section 5). This second dataset was introduced in a pre-
vious paper as a particularly interesting and complex benchmark
dataset,® which has since been used in several other
benchmarks.

4. Ramp Rate Thresholds

The primary challenge for a simple ramp rate metric, as intro-
duced in Section 2.2, is to determine an appropriate and flexible
ramp threshold e. This study is an attempt to address this chal-
lenge from an application perspective of ramp rate mitigation in
PV plants. There are already a large number of grid codes in place
around the world that have introduced ramp rate limits for PV
power plants. A commonly used ramp rate limit is £10% min of
the plant’s rated power.!”! Such a PV power-based metric can be
practical when the PV system specifications, such as total
PV field area, tilt, tracking, etc. are known. However, these
parameters vary across different applications, complicating the
evaluation and comparison of forecast data. In contrast, GHI
or GTI (Global Tilted Irradiance) are directly related to the phys-
ical input driving PV power production. Thus, they provide a
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more fundamental basis for evaluating potential fluctuations in
power output. Evaluating ramp events in terms of irradiance
removes dependencies on specific PV system parameters, mak-
ing it easier to compare forecasts and performance across differ-
ent installations. For the evaluation of a suitable threshold, a PV
model is implemented as described in Section 4.1. The actual
evaluation is done in Section 4.2.

4.1. PV Model

A hypothetical PV power plant serves as a testbed to evaluate the
applicability of different irradiance ramp thresholds, while com-
plying with grid code specifications of £10% min of the plant’s
rated power. The plant is modeled using pvlib, with the PV model
originally developed and validated using production data from a
real 22 MW power plant in Northwest Germany.!*! This model
was then adapted for further research on a hypothetical PV power
plant located in southern Spain at CIEMAT’s Plataforma Solar de
Almeria.*®!

The final PV system consists of individual 78 400 modules.
The modules parameters are selected from the California
Energy Commission module database,?®! with additional param-
eters obtained from the Sandia National Laboratories module
database.””) These modules are connected into strings. Two
strings are connected to each inverter. Each row of the array con-
sists of four strings and two inverters. The simulation uses a
simplified PVWatt inverter model.”®! The general setup, as well
as a detailed representation of the different strings, is shown in
Figure 2. A full description of the model, including a complete
list of parameters used, is available in ref. [25].

An estimation of GTI corresponding to the module orientation
is required for the PV model. This GTI should match the spatial
resolution of the solar field, with a corresponding irradiance
value for each PV module. The procedure described in
ref. [29] is used to determine the GTI according to Equation (22):

GTI(8,¢) = DNI - cos(6(5,$)) + D, + D, (22)

where 0 is the incidence angle for the evaluated plane, ¢ is the tilt
angle, ¢ is the azimuth angle, D, is the diffuse sky irradiance in
the evaluated plane, and D, is the ground-reflected irradiance in
the evaluated plane. D, is calculated according to Equation (23):

D, = DHI - R, (23)

where, R, is the transposition factor, determined using the Ma-
Igbal approach.2% Assuming isotropy of reflected irradiance, D,
is calculated from GHI and ground albedo (p) using
Equation (24):*%

Dgzl_%os(ﬁ).p.cm (24)
The GT1 is calculated for each of the 8 meteorological stations.
For every time step, a GTI map is created using the grid corre-
sponding to the PV model (see Figure 2). A nearest interpolation
with a Gaussian filter is applied to smooth transitions.
This results in a GTI value for each grid point corresponding
to the nearest station. On the basis of these maps, the cumulative
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power for each inverter is calculated for each timestamp over the
359 days of the data set described in Section 3.

4.2. Evaluation Ramp Rate Thresholds

A total of 483 614 time steps of PV power output are modeled. In
around 1.8% of the cases critical ramps with >10% min of the
rated power 21,128.8 kW were observed (see Figure 3). These
critical ramps serve as the basis for determining suitable solar
irradiance ramp thresholds for GHI, GHI Clear Sky Index
(kGHI), and GTT (specific to the PV module plane).

Figure 4 shows the distribution of absolute irradiance ramps
for GHI, kGHI, and GTI over all sun elevation angles and
discretized over distinct bins of sun elevation angles for the
8754 critical PV ramp events. As expected, the mean and median
ramps for the GHI increase with sun elevation. For kGHI and
GTI, a more homogeneous distribution over distinct sun eleva-
tion angles is observed. However, an effect of the sun elevation
angle is still visible.

In this study, the thresholds ¢ are chosen to optimize the F1
score. We also investigated the difference between a constant and
a sun elevation dependent e. All final thresholds are listed in
Table 1 and 2.

TP, FN, and FP ramp events are described by the
Equation (25)—(27):

TP = OPVREAEIRE (25)
i=1
n

FN = OPVRE;A-EIRE, (26)
i=1

FP = -OPVREAEIRE, (27)

i=1

where OPVRE is the observed PV ramp event with a PV power
output gradient >10% min of the rated power. EIRE is the
expected irradiance ramp event with an irradiance gradient
>¢e. TN ramp events do not need to be addressed as only the
8754 critical events already identified are of interest.

500 — ‘ ‘ : :
Il Uncritical ramps
8754 ramps observed [ Critical ramps
400 |- which represents 1.8% b

of the evaluated data set

Occurence
N w
o o
o o

-
o
o

-50 -40 -30 -20 -10 O 10 20
Relative PV power output ramps in %/min
based on rated power

30 40 50

Figure 3. Observed PV power output ramps during the 359-day
evaluation period.
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Figure 4. Observed absolute irradiance ramps corresponding to the previously identified 8754 critical PV power ramps.

Table 1. Optimized constant thresholds e.

€GHI EkGHI a1l

10Wm™2 0.14 130Wm™2

Table 3 summarizes the results. For GHI and kGHI-based
thresholds, it is evident that incorporating a sun elevation-
dependent ¢ is beneficial, as it results in an increase in the F1
score of ~11%. Conversely, for GTI-based thresholds, the sun
elevation has a relatively minor effect, with an improvement
of #2.3% in the F1 score. This is expected due to the relatively
homogeneous distribution of the percentiles visible in Figure 4.
Overall, the GTI-based thresholds are the most performant. This
is not surprising, as the GTI is already aligned with the plane of
the PV modules.

In the presented use case, GTI-based thresholds that account
for the sun’s elevation have proven effective, achieving an F1
score of 0.948. Practically, a GTI-based approach is highly feasi-
ble. Depending on the latitude, the forecasting system could con-
sider the most reasonable orientations. For specific applications,
the existing orientations of a power plant can be utilized, as this
method only requires the orientation and does not involve com-
plex PV modeling. For a more general approach, a GHI-based

Table 2. Optimized sun elevation dependent thresholds .

threshold is recommended. It is advisable to select a threshold
that depends on the sun’s elevation. This recommendation
applies to both GHI and kGHI.

5. Ramp Rate Validation Forecasting Approaches

Section 5.1 introduces the forecasting approaches used.
Section 5.2 presents the validation results considering the novel
ramp rate metric.

5.1. Used Forecasting Approaches

In the following, a state-of-the art data-driven model optimized
on RMSE (End2End model) as well as a novel generative forecast-
ing model are presented.

5.1.1. End2End Model

The examined End2End model is a deep learning model as
presented in ref. [9]. It is trained in an end-to-end manner
hence, no physical processes like cloud dynamics or transmit-
tance are explicitly modeled but the model learns the correlation
of input and output data. Apart from sky images, the model is

0°-10° 10°-20° 20°-30° 30°-40° 40°-50° 50°-60° 60°-70° 70°-80°
£chr 42Wm? 55Wm2 69Wm—2 83Wm2 103 Wm™2 121Wm™2 134Wm™2 146 W m ™2
ExGH! 0.284 0.195 0.144 0.132 0.129 0.131 0.134 0.136
ecr 1M Wm™2 1M5Wm™2 121Wm™2 127Wm™2 132Wm™2 137Wm™2 142Wm™2 145 W m~2
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Table 3. TP, FP, FN, and F1Score of detected critical PV power ramp events based on different threshold values & for GHI, kGHI, and GTI. Both constant
and sun elevation-dependent ¢ values are investigated. In addition, the absolute avg. PV power gradient is shown for both FP and FN ramp events. Ideally,
both values should be close to the 10% min limit for critical ramp events. The color coding is individual for each column and ranges from dark green
(best outcome) to dark red (worst outcome).

TP critical ramps FP critical ramps FN critical ramps F1 score Absolute avg. PV Absolute avg. PV

power gradient for power gradient for
FP cases [% min~] FN cases [% min~']

GHI 6597 1499 2157 0.783 8.86 12.26

kGHI 7574 3664 1180 0.758 6.07 10.87

GTI 8219 779 535 0.926 9.37 10.51

GHI: sun elevation based 8018 1730 736 0.867 7.74 10.69

kGHI: sun elevation based 8000 2145 754 0.847 7.44 10.68

GTI: sun elevation based 8316 482 438 0.948 9.51 10.39

provided with additional timeseries data, like past irradiance
measurement. The output is a multi-step irradiance forecast
for the location of the camera. Specifically, the model as part
of this study predicts a scalar GHI and DNI value for each lead
time from 1 to 20 min. To consider spatio-temporal dependen-
cies of irradiance and cloud dynamics, the model integrates a
transformer-based architecture. More precisely, it consists of
two branches, each containing a separate transformer architec-
ture, to extract features from images and timeseries data.

In the first branch, feature representations from time series
data are learned using the model from ref. [31]. As input, 30-min-
ute sequences of GHI, DNI, and DHI measurements and
calculated sun elevation/azimuth values are used, allowing to
learn temporal patterns. The length of the resulting representa-
tion vectors is a hyperparameter set to 512.

For image feature extraction, the timeSformer architecture is
used.?®? By applying a combined spatio-temporal attention mecha-
nism, cloud behavior as observed by the ASI should be learned.
Here, a shorter time window of 5 min is considered. While spatial
attention is achieved through the underlying vision transformer
architecture,?* temporal attention is applied over the same image
patch of the whole image sequence, following the “divided space-
time attention” method from ref. [32]. Like the time series represen-
tation, the length of the image sequence representation is set to 512.

To obtain the final multistep forecast both representation vectors
are concatenated and fed into a multi-layer-perceptron (MLP). The
multistep forecast for lead times 1 to 20 min is thus calculated at
once for each timestep. A schematic of the entire approach is
shown in Figure 5. As being trained end-to-end, both model
branches are optimized in parallel without further pretraining.

As described in ref. [9], a nonparametric probabilistic quantile
forecasting method based on ref. [11] can be applied to the
End2End model to obtain probabilistic forecasts. Overall, the
End2End model exhibits state-of-the-art performance, achieving
average skill scores of 23.4% for deterministic forecasts and
55.1% for probabilistic forecasts up to a 20-minute horizon.?’

5.1.2. Generative Forecasting Model

The generative forecasting model (GFM) was previously pre-
sented in ref. [34]. It consists of a probabilistic generative model
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and a deterministic irradiance model. First, the generative
model predicts multiple continuations of previous frames. In the
second step, the irradiance network is applied to the generated
videos to predict the irradiance at each time step.**

The generative model is implemented with a probabilistic
denoising diffusion model,** which is trained to incrementally
remove noise from a noised image. During inference, the model
can be recursively applied to randomly initialized images to gen-
erate photorealistic samples.®® In particular, a 2D U-net with
spatial attention layers is used.?**” Since this model typically
expects images instead of videos, the past frames and the noise
are concatenated in the channel dimension, the number of chan-
nels for the first convolutional layer of the U-net is adjusted, and
all concatenated samples are predicted in the last layer. It uses a
64 x 64 pixel resolution and predicts eight different samples of
the next five frames given the last six frames on a one frame per
minute basis.

The irradiance forecast is then derived by processing each
predicted synthetic sky image separately. It can be regarded as
a solar estimation approach based on sky image data only. In this
setup we use a CNN with ResNet34 backbone,*® to extract infor-
mation from a single sky images and estimate the corresponding
GHI and DNI. Since both processing steps (image generation
and irradiance estimation) are independent, the irradiance model

Vision
Transformer Irradiance

ASl| sequence Nowcast

N 6/
&

c
o
E=}
©
c
(0]
g
=
Q
o

Timeseries
Transformer

Figure 5. Schematic graph of generating forecasts with the End2End
model (reproduced from ref. [9]).
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is trained on real image data, separately from the diffusion
model. However, Gaussian noise is added to the images and
the images are resized a 64 x 64 pixel resolution to account
for the characteristics of the synthetic images. After the training
on real image data, the irradiance model is used in inference
mode on the synthetic images to obtain the nowcasts. A sche-
matic of the entire approach is shown in Figure 6. By processing
multiple samples (N), an irradiance distribution can be derived
for each lead time to create a probabilistic nowcast. In this study,
eight samples are generated per lead time. A Gaussian distribu-
tion is used to generate the desired quantiles of a probabilistic
nowcasts from the eight samples.

Compared to the End2End model, the GFM is not as prone to
shortcut learning as discriminative models because the model
has to learn the entire data generation process.?®) Moreover,
by using a probabilistic generative model, one can model the
aleatoric uncertainty given by the ambiguity that multiple cloud
changes are possible for a given state.

5.2. Validation Results

The validation is applied to GHI and GTI forecasts. Both forecast-
ing systems provide DNI and GHI forecasts, allowing for the
calculation of GTI forecasts according to Equation (22). Sun
elevation-dependent ramp thresholds for GHI and GTI from
Section 4.2 are utilized. In addition to deterministic forecasts,
the quantiles 2.3, 15.85, 50, 84.15, and 97.7% of the respective
probabilistic forecasts are considered.

The GFM is currently limited to a horizon of 5 min ahead, so
the validation for both methods only considers multistep fore-
casts up to this timeframe. The tolerance window for the
Ramp Rate metric is chosen to encompass all lead times up
to 5 min ahead. GFM generates 8 samples per forecast and lead
time. To validate the deterministic forecasts, each of the 8 sam-
ples is considered separately, and the validation results are aver-
aged. The performance across samples is very consistent, with a

Input of previous
sky image
sequence

2D U-Net

concatenate Encoder Decoder

Input of
Gaussian noise

www.solar-rrl.com

standard deviation in the lower tenths of a percent range for the
F1 score.

For validation, the 28-day benchmark data set introduced in
Section 3 is used. This validation dataset consists of the sky
images from the southwest camera and the corresponding refer-
ence station (see Figure 2). The results of this validation are pre-
sented in Table 4 and 5. The GFM model generally outperforms
the End2End model in terms of TP and EN, especially for deter-
ministic forecasts, indicating superior ramp event detection. This
trend extends to probabilistic forecasts, except at the extreme
quantiles (2.3% and 97.7%) where the End2End model shows
better TP and FN performance. However, this improvement is
offset by significantly worse performance in FP and TN at these
quantiles, leading to more false detections. For other quantiles,
the End2End model excels in minimizing FP and maximizing
TN. Overall, GFM maintains a good balance between FP and
TN, showcasing robustness across variable conditions.

In terms of accuracy, the End2End model performs better
overall, benefiting from the fact that only ~13% of the time
stamps within the validation dataset include ramps. Therefore,
the End2End model benefits from maximizing TN. However,
accuracy significantly drops at the extreme quantiles (2.3%
and 97.7%) due to increased false detections. High accuracy
alone is insufficient, especially where TN is so dominant, as
TN largely represents simple clear-sky conditions. Balancing pre-
cision and recall is crucial. Precision indicates the proportion of
predicted positive cases that are actually positive, which is partic-
ularly important in scenarios where the cost of FP is high. Recall
measures the proportion of actual positive cases that are correctly
identified, which is crucial in situations where the cost of FN is
high. The F1 score consistently favors GFM, indicating it effec-
tively manages the trade-off between precision and recall. GFM
not only detects true events but also minimizes false detections,
making it more reliable for ramp predictions across different
conditions.

Comparing GHI and GTI-based ramp predictions, GTI
exhibits notably higher detection rates, as reflected by the F1

Output samples
of next sky image
sequence

Irradiance Nowcast

in [W/m?]

Figure 6. Schematic graph of generating forecasts with the generative model as well as CNN irradiance model. Per lead time, N samples of synthetic sky

images and corresponding irradiance are generated.
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Table 4. Observed TP, FN, FP, and TN ramp events for both forecasting methods. The results are discretized by deterministic and probabilistic methods
as well as GHI and GTI. The color coding goes from dark green (best outcome) to dark red (worst outcome).

TP FN
End2End GFM End2End GFM
€(GHI) €(GTI) &(GHI) £(GTI) &(GHI) £(GTI) &(GHI) £(GTI)
Deterministic 7.65% 33.74% 55.66% 76.11% 92.35% 66.26% 44.34% 23.89%
q2.30 81.79% 76.24% 62.01% 77.89% 18.21% 23.76% 37.99% 22.11%
q15.85 18.07% 51.08% 52.51% 72.04% 81.93% 48.92% 47.49% 27.96%
q50.00 7.65% 32.11% 43.67% 70.40% 92.35% 67.89% 56.33% 29.60%
q84.15 11.21% 51.99% 43.80% 71.31% 88.79% 48.01% 56.20% 28.69%
q97.70 84.83% 79.27% 51.45% 77.80% 15.17% 20.73% 48.55% 22.20%
FP ™
End2End GFM End2End GFM
£(GHI) £(GTI) £(GHI) £(GTI) £(GHI) £(GTI) £(GHI) £(GTI)
Deterministic 0.12% 0.75% 6.56% 9.62% 99.88% 99.25% 93.44% 90.38%
q2.30 17.54% 15.43% 12.50% 9.78% 82.46% 84.57% 87.50% 90.22%
q15.85 0.57% 5.33% 7.75% 8.35% 99.43% 94.67% 92.25% 91.65%
q50.00 0.11% 0.54% 4.38% 8.15% 99.89% 99.46% 95.62% 91.85%
q84.15 0.35% 4.66% 3.43% 10.06% 99.65% 95.34% 96.57% 89.94%
q97.70 18.63% 13.72% 4.91% 13.67% 81.37% 86.28% 95.09% 86.33%

Table 5. Observed accuracy and F1 score for both forecasting methods. The results are discretized by deterministic and probabilistic methods as well as
GHI and GTI. The color coding goes from dark green (best outcome) to dark red (worst outcome).

Accuracy F1
End2End GFM End2End GFM

£(GHI) £(GTI) £(GHI) £(GTI) £(GHI) £(GTI) £(GHI) £(GTI)
Deterministic 93.88% 86.79% 90.98% 87.68% 0.14 0.49 0.45 0.70
q2.30 82.42% 82.98% 85.84% 87.89% 0.38 0.63 0.36 0.71
q15.85 94.13% 86.38% 89.66% 87.93% 0.29 0.59 0.40 0.69
q50.00 93.88% 86.65% 92.23% 87.78% 0.14 0.48 0.42 0.69
q84.15 93.89% 87.10% 93.13% 86.41% 0.19 0.61 0.45 0.67
q97.70 81.60% 84.95% 92.24% 84.71% 0.38 0.67 0.46 0.66

score. This is largely due to GTT’s stronger sensitivity to the direct
component of solar irradiance, resulting in more pronounced
ramp amplitudes during cloud passing’s.

This section has shown that forecasts with high performance
for energy quantities can perform differently for ramp rates.
Our novel metric has detected this difference well.

6. Conclusion

This study introduced a new ramp rate metric, designed for sim-
plicity and adaptability by defining ramp events through straight-
forward thresholds and a tolerance window. This methodology is
flexible across various forecasting scenarios and robust in detect-
ing ramp events, accommodating minor timing deviations. By
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adjusting the resolution parameter, the metric can be applied
to datasets with varying time intervals between measurements.

A key challenge with a ramp rate metric is determining
the appropriate ramp threshold, which should be tailored to
the application at hand, as different applications have distinct
requirements. Some applications may disregard ramps if only
accurate energy quantities are necessary, while others prioritize
accurate ramp forecasts that exceed a certain amplitude over-
achieving high skill scores.

This study exemplifies the specific use case of ramp rate
mitigation in PV systems, addressing a ramp rate limitation
of +£10% min of the system’s rated power, as outlined in many
grid codes.! This application necessitates high-resolution fore-
casts, ideally capable of directly predicting PV production.
However, high-resolution PV production prediction requires

© 2024 Wiley-VCH GmbH
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complex PV modeling. Evaluating ramp events in terms of irra-
diance simplifies usage and comparisons across different instal-
lations by removing dependencies on specific PV system
parameters.

High-resolution modeled PV production data over 359 days
were used to identify ideal GHI, kGHI, and GTI ramp rate
thresholds for detecting critical ramps in PV production.
Fixed GHI and kGHI ramp thresholds achieved F1 scores
between 0.758 and 0.783, with kGHI performing better in preci-
sion (less critical FN events) and GHI performing better in recall
(less critical FP events). Sun elevation-dependent GHI and kGHI
ramp thresholds improved F1 scores from 0.847 to 0.867, balanc-
ing precision and recall. GTI-based thresholds performed best,
with F1 scores of 0.926 and 0.948 for fixed and sun elevation-
dependent thresholds, respectively. This result is unsurprising,
given that the GTI is already aligned with the plane of the PV
modules.

Although the presented thresholds were optimized for a
specific application, they are generally applicable for evaluating
the ramp prediction performance of different high-resolution
forecasting systems using the proposed new metric at any
arbitrary site.

To demonstrate the new metric two distinct ASI-based fore-
casting methods were evaluated for ramp detection suitability.
The End2End model is a data-driven approach that combines
a time series and vision transformers to derive irradiance.
Specifically, it utilizes time series data on current irradiance
and sun position, in addition to an ASI image series. The
GFM employs a denoising diffusion model to generate multiple
continuations of past frames and a CNN to predict irradiance
from the generated synthetic sky images. Both models are capa-
ble of providing deterministic and probabilistic DNI and GHI
forecasts. The DNI and GHI forecasts can be used to calculate
GTI forecast. The End2End model represents the state-of-the-
art, exhibiting high skill scores for both deterministic and prob-
abilistic forecasts with horizons up to 20 min ahead.” The GFM
is a rather novel approach which considers cloud shape
changes.[**

Both models undergo validation using GHI and GTI forecasts,
incorporating sun elevation-dependent ramp thresholds and the
proposed ramp rate metric, which considers TP, FN, FP, TN
ramp events, along with overall accuracy and the F1 score. In
terms of deterministic forecasts, the End2End model exhibits
several characteristics. Firstly, it tends to miss most of the critical
ramps, leading to low TP values and correspondingly high FN
values. On the other hand, the model demonstrates very high
TN values and correspondingly low FP values. Notably, since
only ~13% of timestamps contain critical ramps, TN becomes
particularly relevant for assessing accuracy. This leads to high
overall accuracy but low F1 scores. This behavior is expected,
as the End2End model is optimized to minimize RMSE, result-
ing in smoothing effects. While this makes the model well-suited
for predicting accurate energy quantities, it is less effective
for detecting actual ramp events. Probabilistic forecasts of the
End2End model show improved F1 scores at lower and higher
quantiles. The model can generally detect ramps, but the smooth-
ing effect causes many ramps to fall below the critical thresholds.
However, the lower and higher quantiles of the probabilistic fore-
casts amplify the ramps, making them partially detectable.
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The GFM model is less affected by smoothing effects.
Additionally, the GFM model accounts for the complex effects
of cloud shape changes, making it particularly suitable for ramp
detection. Validation results confirm this, with the GFM model
demonstrating superior performance in TP and FN metrics and
achieving higher F1 scores. This indicates its reliability in accu-
rately detecting true ramp events and minimizing missed
detections.

When comparing GHI and GTI-based ramp predictions, GTI
shows notably higher ramp detection rates, as indicated by the
F1 score. This is primarily due to GTT’s greater sensitivity to
the direct component of solar irradiance, resulting in more
pronounced ramp amplitudes during cloud passages.

This study underscores the necessity of including specific
ramp rate metrics in forecast model evaluations. Models assessed
solely on RMSE and skill scores may conceal their inability to
detect ramps effectively. Moreover, the potential of generative
models like GFM is highlighted, though current limitations indi-
cate a need for further improvements in image resolution and
irradiance modeling. Future research will entail a comprehensive
validation of an enhanced GFM model. The upgraded model will
have the capability to generate multistep forecasts with a horizon
of >30 min.
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