elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Investigating the Sim-to-Real Generalizability of Deep Learning Object Detection Models

Rüter, Joachim und Durak, Umut und Dauer, Johann C. (2024) Investigating the Sim-to-Real Generalizability of Deep Learning Object Detection Models. Journal of Imaging. Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/jimaging10100259. ISSN 2313-433X.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Offizielle URL: https://www.mdpi.com/2313-433X/10/10/259

Kurzfassung

State-of-the-art object detection models need large and diverse datasets for training. As these are hard to acquire for many practical applications, training images from simulation environments gain more and more attention. A problem arises as deep learning models trained on simulation images usually have problems generalizing to real-world images shown by a sharp performance drop. Definite reasons and influences for this performance drop are not yet found. While previous work mostly investigated the influence of the data as well as the use of domain adaptation, this work provides a novel perspective by investigating the influence of the object detection model itself. Against this background, first, a corresponding measure called sim-to-real generalizability is defined, comprising the capability of an object detection model to generalize from simulation training images to real-world evaluation images. Second, 12 different deep learning-based object detection models are trained and their sim-to-real generalizability is evaluated. The models are trained with a variation of hyperparameters resulting in a total of 144 trained and evaluated versions. The results show a clear influence of the feature extractor and offer further insights and correlations. They open up future research on investigating influences on the sim-to-real generalizability of deep learning-based object detection models as well as on developing feature extractors that have better sim-to-real generalizability capabilities.

elib-URL des Eintrags:https://elib.dlr.de/207571/
Dokumentart:Zeitschriftenbeitrag
Titel:Investigating the Sim-to-Real Generalizability of Deep Learning Object Detection Models
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Rüter, Joachimjoachim.rueter (at) dlr.dehttps://orcid.org/0000-0002-5559-5481172459659
Durak, Umutumut.durak (at) dlr.dehttps://orcid.org/0000-0002-2928-1710NICHT SPEZIFIZIERT
Dauer, Johann C.Johann.Dauer (at) dlr.dehttps://orcid.org/0000-0002-8287-2376NICHT SPEZIFIZIERT
Datum:18 Oktober 2024
Erschienen in:Journal of Imaging
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
DOI:10.3390/jimaging10100259
Verlag:Multidisciplinary Digital Publishing Institute (MDPI)
ISSN:2313-433X
Status:veröffentlicht
Stichwörter:synthetic data; game engine; sim-to-real gap; object detection; deep learning; environment perception; computer vision; air-to-air refueling
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Luftfahrt
HGF - Programmthema:Komponenten und Systeme
DLR - Schwerpunkt:Luftfahrt
DLR - Forschungsgebiet:L CS - Komponenten und Systeme
DLR - Teilgebiet (Projekt, Vorhaben):L - Unbemannte Flugsysteme
Standort: Braunschweig
Institute & Einrichtungen:Institut für Flugsystemtechnik > Unbemannte Luftfahrzeuge
Institut für Flugsystemtechnik > Sichere Systeme und System Engineering
Institut für Flugsystemtechnik
Hinterlegt von: Rüter, Joachim
Hinterlegt am:25 Nov 2024 18:27
Letzte Änderung:25 Nov 2024 18:27

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.