elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Support-Guessing Decoding Algorithms in the Sum-Rank Metric

Jerkovits, Thomas und Bartz, Hannes und Wachter-Zeh, Antonia (2024) Support-Guessing Decoding Algorithms in the Sum-Rank Metric. IEEE Transactions on Information Theory. IEEE - Institute of Electrical and Electronics Engineers. ISSN 0018-9448. (eingereichter Beitrag)

[img] PDF - Preprintversion (eingereichte Entwurfsversion)
651kB

Kurzfassung

The sum-rank metric generalizes the Hamming and rank metric by partitioning vectors into blocks and defining the total weight as the sum of the rank weights of these blocks, based on their matrix representation. In this work, we explore support-guessing algorithms for decoding sum-rank-metric codes. Support-guessing involves randomly selecting candidate supports and attempting to decode the error under the assumption that it is confined to these supports. While previous works have focused on worst-case scenarios, we analyze the average case and derive an optimal support-guessing distribution in the asymptotic regime. We show that this distribution also performs well for finite code lengths. Our analysis provides exact complexity estimates for unique decoding scenarios and establishes tighter bounds beyond the unique decoding radius. Additionally, we introduce a randomized decoding algorithm for Linearized Reed--Solomon (LRS) codes. This algorithm extends decoding capabilities beyond the unique decoding radius by leveraging an efficient error-and-erasure decoder. Instead of requiring the entire error support to be confined to the guessed support, the algorithm succeeds as long as there is sufficient overlap between the guessed support and the actual error support. As a result, the proposed method improves the success probability and reduces computational complexity compared to generic decoding algorithms. Our contributions offer more accurate complexity estimates than previous works, which are essential for understanding the computational challenges involved in decoding sum-rank-metric codes. This improved complexity analysis, along with optimized support-guessing distributions, provides valuable insights for the design and evaluation of code-based cryptosystems using the sum-rank metric. This is particularly important in the context of quantum-resistant cryptography.

elib-URL des Eintrags:https://elib.dlr.de/207533/
Dokumentart:Zeitschriftenbeitrag
Titel:Support-Guessing Decoding Algorithms in the Sum-Rank Metric
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Jerkovits, ThomasThomas.Jerkovits (at) dlr.dehttps://orcid.org/0000-0002-7538-7639NICHT SPEZIFIZIERT
Bartz, Hanneshannes.bartz (at) dlr.dehttps://orcid.org/0000-0001-7767-1513NICHT SPEZIFIZIERT
Wachter-Zeh, Antoniaantonia.wachter-zeh (at) tum.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:Oktober 2024
Erschienen in:IEEE Transactions on Information Theory
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Verlag:IEEE - Institute of Electrical and Electronics Engineers
ISSN:0018-9448
Status:eingereichter Beitrag
Stichwörter:Linearized Reed--Solomon Codes, Beyond Unique Decoding, Sum-Rank Metric, Generic Decoding, Support Guessing
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Kommunikation, Navigation, Quantentechnologien
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R KNQ - Kommunikation, Navigation, Quantentechnologie
DLR - Teilgebiet (Projekt, Vorhaben):R - Projekt Cybersicherheit für autonome und vernetzte Systeme [KNQ]
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Kommunikation und Navigation > Satellitennetze
Hinterlegt von: Jerkovits, Thomas
Hinterlegt am:29 Nov 2024 10:16
Letzte Änderung:29 Nov 2024 10:16

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.