
1

Support-Guessing Decoding Algorithms in the

Sum-Rank Metric

Thomas Jerkovits , Member, IEEE, Hannes Bartz , Member, IEEE, Antonia

Wachter-Zeh , Member, IEEE

Abstract

The sum-rank metric generalizes the Hamming and rank metric by partitioning vectors into blocks

and defining the total weight as the sum of the rank weights of these blocks, based on their matrix

representation. In this work, we explore support-guessing algorithms for decoding sum-rank-metric

codes. Support-guessing involves randomly selecting candidate supports and attempting to decode the

error under the assumption that it is confined to these supports. While previous works have focused on

worst-case scenarios, we analyze the average case and derive an optimal support-guessing distribution

in the asymptotic regime. We show that this distribution also performs well for finite code lengths.

Our analysis provides exact complexity estimates for unique decoding scenarios and establishes tighter

bounds beyond the unique decoding radius.

Additionally, we introduce a randomized decoding algorithm for Linearized Reed–Solomon (LRS)

codes. This algorithm extends decoding capabilities beyond the unique decoding radius by leveraging

an efficient error-and-erasure decoder. Instead of requiring the entire error support to be confined to

the guessed support, the algorithm succeeds as long as there is sufficient overlap between the guessed

support and the actual error support. As a result, the proposed method improves the success probability

and reduces computational complexity compared to generic decoding algorithms.

Our contributions offer more accurate complexity estimates than previous works, which are essential

for understanding the computational challenges involved in decoding sum-rank-metric codes. This

improved complexity analysis, along with optimized support-guessing distributions, provides valuable

insights for the design and evaluation of code-based cryptosystems using the sum-rank metric. This is

particularly important in the context of quantum-resistant cryptography.

Index Terms

This work was supported by the German Research Council (DFG) as an ANR-DFG project under Grant no. WA 3907/9-1.

https://orcid.org/0000-0002-7538-7639
https://orcid.org/0000-0001-7767-1513
https://orcid.org/0000-0002-5174-1947

2

Linearized Reed–Solomon Codes, Beyond Unique Decoding, Sum-Rank Metric, Generic Decoding,

Support Guessing

I. INTRODUCTION

The sum-rank metric, introduced for space-time codes in [1], generalizes both the Hamming

and rank metrics by partitioning vectors into several blocks and defining the sum-rank weight

as the sum of the rank weights of its blocks. Here, the rank weight of a block refers to the rank

of its matrix representation, as used in rank-metric codes [2].

In recent years, the sum-rank metric has gained significant attention, leading to the develop-

ment of various code constructions and decoding algorithms [3]–[10]. Linearized Reed–Solomon

(LRS) codes, introduced by Martı́nez-Peñas [11], achieve the Singleton-like bound in the sum-

rank metric with equality and include Reed–Solomon and Gabidulin codes as special cases.

These codes have found applications in multishot network coding [8], [12], locally repairable

codes [11], and space-time codes [1].

The sum-rank metric has also attracted interest in the context of code-based cryptography. It

offers a balanced approach between the Hamming and rank metric, making it an appealing

choice for constructing secure code-based cryptosystems resilient to quantum and classical

attacks. Generic decoding algorithms in the rank metric, such as the GRS algorithm [13],

are more complex than generic decoding algorithms in the Hamming metric, which typically

rely on (improvements of) Prange’s information set decoding. Consequently, rank-metric-based

cryptography can use smaller parameters than in the Hamming metric while maintaining the

same level of security, leading to reduced key sizes. However, many rank-metric cryptosystems

depend on highly structured codes, which have been vulnerable to structural attacks and, in some

cases, have been broken [14]–[18].

Although cryptosystems based on the sum-rank metric have yet to be extensively studied, it is

hoped that by carefully choosing the block sizes and the number of blocks, the sum-rank metric

can be tuned to achieve a desirable balance between security and key size. This flexibility may

offer resistance to attacks that exploit vulnerabilities specific to either the Hamming or rank

metric, where many attacks effective in one may prove ineffective in the other [19].

While most code-based cryptosystems, such as the McEliece cryptosystem, focus on unique

decoding up to the unique decoding radius, understanding the complexity of decoding in the sum-

rank metric beyond the unique decoding radius is also important for cryptographic applications.

3

Cryptosystems like the Faure-Loidreau (FL) system [18], [20], [21] rely on the difficulty of

decoding structured codes beyond the unique decoding radius, even when the attacker knows

the code’s structure.

On the other hand, cryptosystems like WAVE [22], BIKE [23], HQC [24], and RQC [25]

require solving the syndrome decoding problem for random-like codes. Therefore, analyzing

decoding complexities both within and beyond the unique decoding radius is crucial for assessing

the security of such systems.

Recently, Puchinger et al. [26] proposed the first non-trivial generic decoding algorithm for

arbitrary Fqm-linear codes in the sum-rank metric. Their algorithm solves the generic decoding

problem for error weights up to n− k, where n is the code length and k is the code dimension.

They derive upper and lower bounds on the expected decoding complexity for the worst-case

rank profile, which refers to the distribution of ranks across the individual blocks of the error

vector, as defined by the sum-rank metric. However, in deriving the lower bound, they assume a

fixed error, meaning that this lower bound is only valid for unique decoding scenarios, such as

in the McEliece setting, where the error weight is up to (d− 1)/2, with d being the minimum

distance of the code. Beyond the unique decoding radius, alternative solutions to the decoding

problem may exist, and the lower bound does not account for these, making it loose in this

regime. Additionally, the gap between the upper and lower bounds in [26] is significant for

some parameters, indicating the potential for improvement. We need a tight lower bound on the

decoding complexity to ensure that the system’s best-known attack is as hard as brute-forcing all

possible keys. This bound effectively serves as an upper limit on the attacker’s efficiency, ensuring

that any potential attack cannot be easier than brute-force. Therefore, improving the lower bound

on the expected decoding complexity is essential for accurately assessing the security level and

selecting appropriate parameters when designing such cryptosystems.

This paper addresses these limitations by extending the analysis to the average case (over all

rank profiles). We derive a support drawing distribution tailored for the average-case scenario, op-

timizing the expected decoding complexity in the asymptotic setting. This solution also performs

well for finite lengths, as numerical evaluations demonstrate. Our derived theoretical complexity

can be computed efficiently and is exact for the case of unique decoding, where exactly one

solution exists (e.g., in the McEliece setting). For decoding beyond the unique decoding radius,

i.e., for error weights larger than (d− 1)/2, our exact complexity becomes an upper bound. We

introduce a lower bound that accounts for alternative solutions using random coding union bound

4

(RCU) bound arguments, providing a more accurate estimation of the decoding complexity in

this regime.

In our previous work [27], we generalized the randomized decoding algorithm from [28] in the

rank metric to the sum-rank metric. In this paper, we extend that analysis by providing additional

insights, proofs, and discussions and by considering the asymptotic average case, similar to our

analysis of the generic decoding algorithm.

Conceptually, the randomized decoding algorithm works by randomly guessing part of the

error’s support. Unlike the generic decoder, which requires the guessed support to fully contain

the error’s support, the randomized decoding algorithm for LRS codes only requires sufficient

overlap between the guessed support and the error’s support. By using an error-and-erasure

decoder (e.g., [29]), successful decoding is possible if enough of the error lies within the guessed

support. This relaxation improves the success probability and reduces the expected decoding

complexity, particularly for errors with weights only slightly above the unique decoding radius.

We analyze the probability of successful decoding for specific distributions of the guessed

supports and propose methods to find the optimal distribution. By exploiting the structure of the

underlying LRS code, our approach achieves better expected computational complexity compared

to the generic decoding algorithm introduced in [26].

Additionally, we introduce a new Prange-like algorithm for the generic case in the sum-rank

metric, specifically designed for the asymptotic average-case setting where the number of blocks

tends to infinity and the sizes of the individual blocks are fixed. Similar to the modified Prange

algorithm used in the WAVE scheme [22] for the Hamming metric, our algorithm can also find

a solution to the generic decoding problem for large error weights in the sum-rank metric.

Organization of the Paper

In Section II, we provide the necessary preliminaries on the sum-rank metric and LRS codes.

Section III discusses several decoding problems in the sum-rank metric that are of interest for

various applications, highlighting their relevance to cryptography. In Section IV, we extend

the analysis of the generic decoding algorithm to the average case and derive optimal support

drawing distributions. Additionally, we provide an improved simple closed-form upper bound

that enhances the simple bound introduced in [26]. Section V introduces the new Prange-like

algorithm for the generic case in the sum-rank metric, specifically designed for the asymptotic

average-case setting with a large number of blocks. Section VI presents the extended analysis

5

of the randomized decoding algorithm for LRS codes, along with its optimization. Finally, in

Section VIII, we conclude the paper and discuss potential directions for future work.

II. PRELIMINARIES

This section introduces the notation used throughout the paper, defines the sum-rank metric,

and presents the concepts of linear codes and the considered channel model. We also define the

error support in the sum-rank metric and LRS codes.

A. Notation

In this paper, we let n and m be integers with 1 ≤ m and 1 ≤ n. Let q be a prime power

and denote the finite field of order q by Fq. We denote the extension field of Fq of degree m as

Fqm . We denote the set of all k-dimensional subspaces of Fµ
q as the Grassmannian Gq(Fµ

q).

Let A be a discrete set. The cardinality of A, denoted by |A|, is the number of elements in

A. We use the notation a
$← A to denote an element a drawn uniformly at random from a set

A. We use [0, 1] ⊂ R to denote the interval of real numbers between 0 and 1, inclusive. We

define the set of all valid probability mass functions (PMFs) over A as

D(A) =

{
αs ∈ [0, 1]|A| ⊂ R|A| :

∑
s∈A

αs = 1

}
. (1)

Here, αs ∈ [0, 1]|A| denotes a vector of length |A| with real values in the interval [0, 1].

Since each component αs can take any real value in [0, 1] and the sum of these components

must be 1, the set D(A) forms a probability simplex in R|A|. Therefore, there are uncountably

many PMFs over A.

For a given integer e and f such that 1 ≤ e ≤ f ≤ w, we use the following notation to denote

a submatrix of A ∈ Fv×w
q consisting of the selected columns:

A[e:f] :=

A1,e · · · A1,f

...

Av,e · · · Av,f

 ,
where A[e:f] is a submatrix of A formed by all rows but only columns e to f .

6

B. Sum-Rank Metric

This section provides a concise overview of the sum-rank weight and sum-rank distance, along

with other relevant notations that will be used throughout the paper.

Definition 1 (Sum-Rank Weight and Sum-Rank Distance). Let x = [x(1) | . . . | x(ℓ)] ∈ Fn
qm

be a vector, that is partitioned into blocks x(i) ∈ Fni
qm with respect to a length profile n =

[n1, . . . , nℓ] ∈ Zℓ
≥0. The sum-rank weight of x with respect to the length profile n is then defined

as

wt
(n)
ΣR(x) :=

ℓ∑
i=1

rkq
(
x(i)
)
,

where rkq(x
(i)) := dimq ⟨x(i)1 , . . . , x

(i)
ni ⟩ denotes the dimension of the Fq-span of the entries of

x(i). The sum-rank distance of two vectors x,y ∈ Fn
qm is then defined by

d
(n)
ΣR(x,y) := wt

(n)
ΣR(x− y).

In some parts of the paper, we restrict our analysis to the case where n = ℓη with n =

[η, . . . , η] ∈ Zℓ
≥0. In this case, we omit n in the notation and simply write wtΣR(·) and dΣR(·, ·),

respectively. Furthermore, we denote the maximum possible rank weight for each block as

µ := min{m, η}.

Remark 1. Note that if ni = 1 for all i ∈ {1, . . . , ℓ}, we have that the sum-rank weight of a

vector x ∈ Fn
qm is the number of nonzero entries of x. This means, that the sum-rank weight

coincides with the Hamming weight. For ℓ = 1 the sum-rank weight coincides with the rank

weight. Thus, codes in the Hamming metric and codes in the rank metric can be seen as special

cases within the sum-rank metric.

For a vector x = [x(1), . . . ,x(ℓ)] ∈ Fn
qm with sum-rank weight w = wtΣR(x), we are at times

interested in the rank profile of x, which describes the rank weights of the individual blocks.

Therefore we define the map ψ : Fn
qm → {0, . . . , µ}ℓ as

ψ(x) = [rkq(x
(1)), . . . , rkq(x

(ℓ))],

and call ψ(x) the rank profile of x. Furthermore, we define the set of all possible rank profiles

as follows.

7

Definition 2. Let w, ℓ and µ be non-negative integers such that w ≤ ℓµ. We define the set

Tw,ℓ,µ :=

{
w ∈ {0, . . . , µ}ℓ :

ℓ∑
i=1

wi = w

}
,

which contains all possible rank profiles of a vector consisting of ℓ blocks and sum-rank weight

w.1

In [26], an upper bound on the cardinality of the set Tw,ℓ,µ has been derived as

|Tw,ℓ,µ| ≤
(
ℓ+ w − 1

ℓ− 1

)
.

We now define the set that contains only the ordered rank profiles.

Definition 3. Let w, ℓ, and µ be non-negative integers with w ≤ ℓµ. We define the set

Jw,ℓ,µ := {w ∈ Tw,ℓ,µ : w1 ≥ w2 ≥ · · · ≥ wℓ} .

Without the restrictions on the maximal length ℓ and the maximum value µ, this set would be

identical to the set of integer partitions of w. However, with these restrictions, it forms a special

case of integer partitions, constrained in length by ℓ and in value by µ. Note that every element

w ∈ Jw,ℓ,µ is also an element in Tw,ℓ,µ, but not vice versa.

Next, for a given w ∈ Tw,ℓ,µ, we denote by Sℓ,µ(w) the set of all possible permutations of

w. Hence, each element σ in Sℓ,µ(w) is an automorphism, i.e., σ : Tw,ℓ,µ → Tw,ℓ,µ.

Additionally, let w̃ = [w̃1, . . . , w̃ℓ] be the vector obtained by sorting the entries of w in

decreasing order. We denote this operation by sort(w), so that w̃ = sort(w). In other words,

sort(w) represents the permutation of the entries of w that yields the sorted vector w̃, such that

w̃1 ≥ · · · ≥ w̃ℓ.

This leads to the following two relations between the two sets Jw,ℓ,µ and Jw,ℓ,µ:

Jw,ℓ,µ = {sort(w) : ∀w ∈ Tw,ℓ,µ},

Tw,ℓ,µ =
⋃

w∈Jw,ℓ,µ

{σ(w) : ∀σ ∈ Sℓ,µ(w)}.

1Rank profiles are closely related to the concept known in the literature as weak integer compositions, where an integer

is expressed as the sum of non-negative integers. In contrast to weak integer compositions, rank profiles have the additional

constraint that each part (rank weight) does not exceed a fixed upper bound, which in our case is µ.

8

For a given rank profile w ∈ Tw,ℓ,µ we also define the restricted set

T ≥w
w,ℓ,µ := {w′ ∈ Tw,ℓ,µ : w′

1 ≥ w1, . . . , w
′
ℓ ≥ wℓ}.

For an element w ∈ Jw,ℓ,µ denote by |Sℓ,µ(w)| the number of possible permutations of w

which is given by the multinomial as

|Sℓ,µ(w)| =
(

ℓ

λ1, λ2, . . . , λµ

)
=

ℓ!

λ1!λ2! · · ·λµ!
,

where λi is the number of occurrences of the integer i in w for all i = 0, . . . , µ. Hence, from

all permutations from all elements in Jw,ℓ,µ we obtain the set Tw,ℓ,µ.

The set of all vectors in Fn
qm of sum-rank weight wtΣR(e) = w is denoted as

Eq,η,m,ℓ(w) := {e ∈ Fn
qm | wtΣR(e) = w}. (2)

The cardinality of this set is given by (see [26])

|Eq,η,m,ℓ(w)| =
∑

w∈Tw,ℓ,µ

ℓ−1∏
i=0

NMq (m, η, wi), (3)

where w = [w0, . . . , wℓ−1] denotes the decomposition of the sum-rank weight w into ℓ non-

negative integers wi such that
∑ℓ−1

i=0 wi = w and wi ≤ µ for all i. The set of all such

decompositions is denoted by Tw,ℓ,µ. The cardinality expression in (3) can be efficiently computed

using a dynamic programming approach, as described in [26].

The term NMq (m, η, wi) represents the number of matrices of size m× η of rank wi over the

finite field Fq. It can be calculated using the following formula [30, Chapter 13] [31]

NMq (m, η, wi) =

wi−1∏
j=0

(qm − qj)(qη − qj)
qwi − qj

=

[
η

wi

]
q

wi−1∏
j=0

(qm − qj)

=

[
m

wi

]
q

wi−1∏
j=0

(qη − qj),

where
[
a
b

]
q

denotes the q-binomial coefficient, also known as the Gaussian binomial coefficient,

which is defined as [
a

b

]
q

:=
b∏

i=1

qa−b+i − 1

qi − 1
=

b−1∏
i=0

(qa−i − 1)

(qb−i − 1)
.

Here, a and b are integers with a ≥ b ≥ 0, and q is a prime power.

9

The Gaussian binomial coefficient satisfies the following inequality [32]

q(a−b)b ≤
[
a

b

]
q

≤ γqq
(a−b)b,

with γq defined as

γq :=
∞∏
i=1

(1− q−i)−1.

In the following, we present expressions for the probability that two subspaces intersect in a

fixed-dimensional space and the probability of one subspace being a subspace of another.

Let A and B be two subspaces of Fµ
q with dimensions a and b, respectively.

We define the conditional probability P∩
q,µ,a,b(j) as the probability that the intersection of A

and B has dimension exactly j, given their dimensions a and b. This probability is given by

(see [28])

P∩
q,µ,a,b(j) := Pr[dim(A ∩ B) = j | a, b] =

[
µ−a
b−j

]
q

[
a
j

]
q
q(a−j)(b−j)[

µ
b

]
q

. (4)

Next, we define the probability that A is a subspace of B, denoted by P⊆
q,µ (a ⊆ b), where

a ≤ b. This probability is given by [32]

P⊆
q,µ (a ⊆ b) := Pr[A ⊆ B | a, b] =

[
b
a

]
q[

µ
a

]
q

. (5)

Remark 2. The probabilities P∩
q,µ,a,b(j) and P⊆

q,µ (a ⊆ b) hold whether A and B are both drawn

uniformly at random from Gq(Fµ
q), or one of them is fixed and the other is drawn uniformly at

random from Gq(Fµ
q).

Remark 3. The probability P⊆
q,µ (a ⊆ b) is equal to the intersection probability P∩

q,µ,a,b(b) (or

P∩
q,µ,a,b(a)) when the dimension of the intersection is equal to the dimension of the smaller

subspace A, i.e.,

P⊆
q,µ (a ⊆ b) = P∩

q,µ,a,b(b) =

[
µ−a
b−a

]
q[

µ
b

]
q

=

[
b
a

]
q[

µ
a

]
q

if a ≤ b,

P⊆
q,µ (b ⊆ a) = P∩

q,µ,a,b(a) =

[
a
b

]
q[

µ
b

]
q

if b ≤ a.

This relationship holds because A is a subspace of B if and only if the dimension of their

intersection is the same as that of A.

10

C. Linear Codes

A linear code over Fqm with dimension k and length n is a k-dimensional subspace of Fn
qm ,

denoted as C[n, k]Fqm
. The minimum sum-rank distance of C[n, k]Fqm

w.r.t to n is defined as

dmin = min
c1,c2∈C[n,k]Fqm

c1 ̸=c2

{
d
(n)
ΣR(c1, c2)

}
.

When the minimum distance dmin of a linear code C[n, k]Fqm
is known, we refer to C[n, k]Fqm

as an C[n, k, dmin]Fqm
code. We define the unique decoding radius τ of a code with minimum

distance dmin as

τ :=

⌊
dmin − 1

2

⌋
.

This is the maximum weight of errors (in the respective metric) that can be uniquely decoded

by the code. In this paper, we concentrate on codes with distance properties in the sum-rank

metric. To emphasize that the sum-rank distance is computed with respect to the length profile

n = [n1, n2, . . . , nℓ], we denote such codes as C[n, k]Fqm
. In the special case where all blocks

have the same length η, resulting in a total length of n = ηℓ, we use the notation C[n, k]Fqm
.

A matrix G ∈ Fk×n
qm is called a generator matrix of the code C[n, k]Fqm

if and only if the

rows of G form a basis for C[n, k]Fqm
. In other words, the linear combinations of the rows of

G generate all the codewords in C[n, k]Fqm
.

Additionally, a matrix H ∈ F(n−k)×n
qm is called a parity-check matrix of C[n, k]Fqm

if its rows

form a basis for the right kernel (i.e., the null space) of the generator matrix G.

D. Channel Model

Consider a codeword c ∈ C[n, k]Fqm
that is corrupted by an error e of sum-rank weight w.

The received word y is then given by

y = c+ e.

The error vector e ∈ Fn
qm with sum-rank weight wtΣR(e) = w can be partitioned into blocks

e(1), . . . , e(ℓ) according to the length profile n. This partitioned vector can be decomposed as

e = aB =
[
a(1) | · · · | a(ℓ)

]
· diag(B(1), . . . ,B(ℓ)), (6)

where a(i) ∈ Fwi
qm , B(i) ∈ Fwi×ni

q with rkq(a
(i)) = rkq(B

(i)) = wi for all i ∈ {1, . . . , ℓ}, and

w =
∑ℓ

i=1wi. It follows that e(i) = a(i)B(i) for i ∈ {1, . . . , ℓ}, where the entries of a(i) form a

basis over Fq of the column space of e(i) and the rows of B(i) form a basis over Fq of its row

space.

11

E. Error Support

In the following, we define the notions of row support and column support for vectors in the

sum-rank metric.

Definition 4 (Row and Column Support). Let e ∈ Fn
qm be of sum-rank weight w.

• Row Support: The row support of e is defined as

ER := E (1)R × E
(2)
R × · · · × E

(ℓ)
R ,

where E (i)R ⊆ Fni
q is the Fq-row space of B(i) ∈ Fwi×ni

q and thus of e(i) as in (6) for all

i ∈ {1, . . . , ℓ}.

• Column Support: The column support of e is defined as

EC := E (1)C × E
(2)
C × · · · × E

(ℓ)
C ,

where E (i)C ⊆ Fm
q is the Fq-column space of e(i). Specifically, each entry of e(i) ∈ Fqm is

expanded as a vector in Fm
q using a fixed basis of Fqm over Fq. The column support is then

defined as the Fq-span of these expanded vectors, for all i ∈ {1, . . . , ℓ}.

Assume E to be either a row or column support of the error as defined in Definition 4. We

denote by dimΣ(E) the sum dimension of an error support:

dimΣ(E) :=
ℓ∑

i=1

dim(E (i)).

The intersection of two supports E1 and E2 is defined as

E1 ∩ E2 :=
(
E (1)1 ∩ E

(1)
2

)
× · · · ×

(
E (ℓ)1 ∩ E

(ℓ)
2

)
.

Given two supports E1 and E2, we say that E2 is a row super-support of E1, denoted by

E1 ⊆ E2, if and only if E (i)1 ⊆ E
(i)
2 for all i ∈ {1, . . . , ℓ}.

Definition 5. Let µ be a positive integer and 0 ≤ w ≤ ℓµ. For w ∈ Tw,ℓ,µ, we define the set of

all supports as

Ξq,µ(w) :=
{
F1 × · · · × Fℓ : Fi ⊆ Fµ

q : dim(Fi) = wi

}
.

12

F. Linearized Reed–Solomon Codes

LRS codes, introduced by Martı́nez-Peñas in [7], are a class of codes in the sum-rank metric.

An LRS code of length n, dimension k, and length partition n = [n1, . . . , nℓ] over Fqm is denoted

by CLRS[n, k].

The key properties of LRS codes are:

• LRS codes achieve the Singleton-like bound in the sum-rank metric, i.e., their minimum

sum-rank distance is dmin = n−k+1 [7], [33]. Therefore, LRS codes are called maximum

sum-rank distance (MSRD) codes.

• Consequently, LRS codes can uniquely decode errors of sum-rank weight up to

τ =

⌊
n− k
2

⌋
.

• LRS codes have some restrictions on their parameters: the number of blocks ℓ must satisfy

ℓ ≤ q − 1, and the length of each block ni must satisfy ni ≤ m for all i ∈ {1, . . . , ℓ}

(see [7]).

III. PROBLEM DESCRIPTION

This section presents and categorizes decoding problems in the sum-rank metric, relevant to

various coding theory and cryptography applications. Starting with the most generic problem,

we introduce progressively specific scenarios.

A. Sum-Rank Syndrome Decoding Problem

The sum-rank syndrome decoding problem generalizes both the syndrome decoding problem

in the Hamming metric and the rank syndrome decoding problem, thereby encompassing a wide

range of cryptosystems such as WAVE [22], BIKE [23], HQC [24] (which are based on the

Hamming metric), and RQC [25] (which is based on the rank metric).

Problem 1 (Sum-Rank Syndrome Decoding Problem).

• Instance:

– A linear sum-rank metric code C[n, k]Fqm
⊆ Fn

qm with parity-check matrix H ∈

F(n−k)×n
qm .

– A syndrome s ∈ Fn−k
qm and an integer t > 0.

• Objective: Find an error vector e such that s = eH⊤ and wtΣR(e) = t.

13

The sum-rank syndrome decoding problem is particularly interesting due to its applicability

across different metrics and cryptosystems. A solution to this problem is not guaranteed.

The algorithm introduced in [26] provides a generic decoding approach that addresses the

sum-rank syndrome decoding problem for error weights up to n− k.

B. Decoding Beyond the Unique Radius

The following problem can be seen as a special case of the sum-rank syndrome decoding

problem (see Problem 1). In this case, we assume that a specific codeword, corrupted by an error

of known weight, has been received. Under this assumption, the weight of the error, denoted

by w, is known, and we set the decoding radius accordingly to w. This ensures that at least

one solution exists, although it may not be unique, similar to the general syndrome decoding

problem.

We first consider the problem of decoding beyond the unique radius for arbitrary sum-rank

metric codes.

Problem 2 (Beyond Unique Decoding for Sum-Rank Metric Codes).

• Instance:

– Linear sum-rank metric code C[n, k]Fqm
⊆ Fn

qm with unique decoding radius τ .

– Error vector e
$← Ew with wtΣR(e) = w ≥ τ .

– Received vector y = c+ e with c ∈ C[n, k]Fqm
.

• Objective: Find a codeword c ∈ C[n, k]Fqm
, such that wtΣR(y − c) = w.

Problem 2 extends the unique decoding problem by allowing error weights that exceed the

unique decoding radius. Unlike unique decoding, multiple codewords may satisfy the decoding

condition, and a solution is not guaranteed to be unique. The generic decoder introduced in [26]

can efficiently address this problem for any linear sum-rank metric code without relying on its

structure, handling error weights up to n− k.

Next, we specialize this problem for LRS codes.

Problem 3 (Beyond Unique Decoding for LRS codes).

• Instance:

– LRS code CLRS[n, k] ⊆ Fn
qm , y ∈ Fn

qm .

– Error vector e
$← Ew with wtΣR(e) = w ≥ τ .

14

– Received vector y = c+ e ∈ Fn
qm with c ∈ CLRS.

• Objective: Find a codeword c ∈ CLRS, such that wtΣR(y − c) = w.

Problem 3 is a specialization of Problem 2 for LRS codes. This specialization allows us

to exploit the inherent structure of LRS codes, potentially leading to more efficient decoding

algorithms. We compare the complexity of the generic decoder for Problem 2, as introduced

in [26], with our proposed randomized decoder (see Section VI) tailored for LRS codes.

The FL system is a rank-metric code-based cryptosystem that uses Gabidulin codes, which

are a special case of LRS codes. Problem 3 is itself a generalization of the decoding problem

considered in [28], which focused on Gabidulin codes. Our proposed randomized decoder

generalizes the decoder introduced in [28] to the sum-rank metric. We first introduced this

generalization in [27].

Our proposed decoder and complexity analysis for the sum-rank metric could be valuable for

future cryptosystems that are similar to the FL system but operate in the sum-rank metric, or

for different cryptosystems that rely on problems like Problem 3 in the sum-rank metric.

C. Unique Decoding Problem

The unique decoding problem is a specific case of Problem 2, where the error weight does

not exceed the unique decoding radius, ensuring that there is exactly one solution within this

radius.

Problem 4 (Unique Decoding Problem).

• Instance:

– A linear sum-rank metric code C[n, k]Fqm
⊆ Fn

qm with unique decoding radius τ .

– An error vector e
$← Ew with w = wtΣR(e) ≤ τ .

– A received vector y = c+ e where c ∈ C[n, k]Fqm
.

• Objective: Determine the unique codeword c ∈ C[n, k]Fqm
such that wtΣR(y − c) ≤ τ .

In this case, the decoder is guaranteed to find exactly one solution as long as the error weight

is within the unique decoding radius. Efficient polynomial-time decoders are available for sev-

eral well-known algebraic codes, such as Reed–Solomon codes, Bose–Chaudhuri–Hocquenghem

(BCH) codes, and Goppa codes in the Hamming metric [30], as well as Gabidulin codes in the

15

rank metric [2], and LRS codes in the sum-rank metric [7], provided that the code structure is

known.

However, in cryptosystems such as McEliece-like cryptosystems, where the code structure

is intentionally obfuscated to increase security, decoding becomes much more challenging for

unauthorized parties. This further highlights the importance of efficient decoders, particularly in

cases where the error weight stays within the unique decoding radius.

D. Channel Model

In Problem 2, Problem 3 and Problem 4, the error vector e is drawn uniformly at random

from Ew, the set of all vectors in Fn
qm with sum-rank weight w. This is done by first determining

a rank profile w ∈ Tw,ℓ,µ according to the distribution

Pr[w] =
1

|Eq,η,m,ℓ(w)|

ℓ∏
i=1

NMq (m, η, wi). (7)

Then, for each i ∈ {1, . . . , ℓ}, an element e(i) ∈ Fηi
qm of rank weight wi is drawn independently

and uniformly at random from the set of all elements in Fηi
qm of rank weight wi, as described

in [26]. The resulting error vector e satisfies wtΣR(e) = w and is uniformly distributed in Ew.

The received word y is then considered to be of the form y = c+e with c ∈ C[n, k]Fqm
⊆ Fn

qm .

IV. GENERIC DECODING IN THE SUM-RANK METRIC

In this section, we summarize the generic decoding algorithm for the sum-rank metric intro-

duced by Puchinger et al. [26], [34]. Their analysis focuses on solving a special instance of

Problem 1, where the syndrome is chosen such that at least one solution exists. This scenario

applies to both Problem 2 and Problem 4. In their derivation of the lower bound, they assume

that at most one solution exists within the decoding radius, with no alternative solutions possible.

As a result, the lower bound applies only to Problem 4.

The decoding algorithm proceeds by guessing possible error supports according to a probability

distribution, which is a key design criterion that can be optimized to maximize the decoder’s

success probability. In each iteration of the decoding loop, a new support is guessed, and the

decoder attempts to correct the error based on that support. If the guess is incorrect, the loop

continues with another guess. The success probability for each iteration depends on the support-

guessing distribution. The worst-case complexity is determined by evaluating all possible error

16

rank profiles, with the worst-case profile, denoted by wwc, representing the maximum number

of operations needed for the decoder to succeed.

Remark 4. In [26, Remark 17], it was shown that an error e with row support ER and column

support EC can be uniquely recovered if either a row super support FR ⊇ ER or a column

super support FC ⊇ EC is found, both with sum-rank weight v, such that w ≤ v < dmin. The

sum-rank weight v cannot exceed

vmax := min

{
n− k,

⌊
m

η
(n− k)

⌋}
. (8)

Decoding beyond the unique erasure decoding radius (i.e. error weights larger than dmin− 1)

is possible up to vmax. This situation is analogous to the classical information-set-decoding (ISD)

algorithm in the Hamming metric, where a support of size n−k is selected. Successful decoding

occurs if the corresponding submatrix of the parity-check matrix formed by these columns is of

full rank, ensuring a unique solution to the system of linear equations. In the Hamming case,

the probability that the submatrix is full rank is typically assumed to be close to 1, which is

especially true for large field sizes. However, as shown in [35], for the sum-rank metric, the

probability of finding a valid decoding support under these conditions can be significantly lower,

depending on parameter choices. Within this paper, we similarly assume this probability to be

close to 1 in our analysis, though for certain parameter sets, it might be advisable to check

whether this assumption holds in practice.

Algorithm 1 describes the decoding process, which selects the appropriate type of (row or

column) support. When m is smaller than η, the algorithm selects the row support; otherwise, it

chooses the column support. For the sake of simplicity, we will henceforth refer to the selected

support type as simply “support” throughout the remainder of this paper, with the understanding

that the decoding algorithm makes this choice based on the given parameters.

A. Improved Simple Bound on the Worst-Case Success Probability

Recall that we denoted the worst-case rank profile as wwc. In [26, Theorem 16], the authors

derive lower and upper bounds on the expected run time Wgen of Algorithm 1 to decode an error

pattern with rank profile wwc.

17

Algorithm 1: Generic Sum-Rank Decoder [26]
Input : Parameters: q, m, n, k, ℓ, w and v with w ≤ v ≤ vmax

Received vector y ∈ Fn
qm

Parity-check matrix H ∈ F(n−k)×n
qm of an Fqm-linear sum-rank

metric code C

Output : Vector c′ ∈ C such that wtΣR(y − c′) = w

1 e′ ← 0

2 η ← n/ℓ

3 µ← min{m, η}

4 while H(r − e′)⊤ ̸= 0 or wtΣR(e
′) ̸= w do

5 F ← Draw random support F ⊆ Fµ
q × · · · × Fµ

q of sum dimension v

6 if η < m then

7 e′ ← Column erasure decoding w.r.t. F , H , y (cf. [26, Theorem 13])

8 else

9 e′ ← Row erasure decoding w.r.t. F , H , y (cf. [26, Theorem 14])

10 return y − e′

Given an error rank profile w ∈ Tw,ℓ,µ and a super-support rank profile v ∈ Tv,ℓ,µ, we compute

the probability φq,µ(v,w) that the error support lies within the guessed super support as [26]

φq,µ(v,w) :=
ℓ∏

i=1

P⊆
q,µ (wi ⊆ vi) , (9)

where P⊆
q,µ (wi ⊆ vi) is the probability as in (5).

Using this probability, we define φ(max)
q,µ,v (w) as the maximum probability over all super-support

rank profiles v ∈ Tv,ℓ,µ
φ(max)
q,µ,v (w) := max

v∈Tv,ℓ,µ
φq,µ(v,w).

Further let vcompµ(w, v) be a function vcompµ : Tw,ℓ,µ × Z≥0 → Tv,ℓ,µ that for a given integer

v ∈ Z≥0 returns a rank profile such that

φ(max)
q,µ,v (w) = φq,µ(vcompµ(w, v),w).

The function vcompµ(w, v) can be implemented efficiently, see [26].

18

With these definitions in place, Puchinger et al. [26, Theorem 16] provide the following bounds

on the expected runtime Wgen of Algorithm 1 for Problem 4

W (LB)
gen,wc = W (iter)

gen |Tw,ℓ,µ|−1Qw,ℓ,µ, (10)

W (UB)
gen,wc = W (iter)

gen Qw,ℓ,µ, (11)

W̃ (UB)
gen,wc = W (iter)

gen

(
ℓ+ w − 1

ℓ− 1

)
γℓqq

w(µ− v
ℓ
), (12)

with

Qw,ℓ,µ :=
∑

w∈Tw,ℓ,µ

φ(max)
q,µ,v (w)

−1
, (13)

where W (iter)
gen represents the complexity of one iteration of the generic decoding algorithm. To be

more precise, W (iter)
gen is the sum of the complexities of two main components: drawing an error

super support and performing the row/column erasure decoding, as outlined in Algorithm 1.

The complexity of drawing an error super support is in the order of Õ(n3m2 log2(q)) bit

operations. Meanwhile, the row/column-erasure decoding involves O((n− k)3m3) operations

over Fq. While these complexities are asymptotic approximations and neglect constant factors,

they provide useful estimates for large input sizes. For finite lengths, the exact complexities

depend on the specific implementation details of the underlying algorithms. Therefore, for the

purpose of plotting and practical considerations, we approximate W (iter)
gen ≈ n3m3, combining the

dominant terms of both components.

The previous upper bound W̃ (UB)
gen,wc on the expected runtime of Algorithm 1 can be rather loose

when the parameters are closer to the Hamming metric, i.e., when ℓ → n for fixed η and/or

η → 1 (see Figure 1). To address this, we introduce a new, tighter upper bound in Theorem 1.

Theorem 1. Let c be a codeword of a sum-rank-metric code C[n, k]Fqm
with minimum sum-rank

distance dmin. Additionally, let e be an error of sum-rank weight w < dmin with a rank profile

corresponding to the worst-case rank profile wwc. Then Algorithm 1 in the context of Problem 1

returns a solution w.r.t. an error e′ ∈ Fn
qm with the weight w. Each iteration of Algorithm 1 has

complexity W (iter)
gen . The overall expected worst-case runtime, also referred to as the complexity

Wgen,wc of Algorithm 1 is upper bounded by

Wgen,wc ≤ W̃ (UB,improved)
gen,wc , (14)

19

with

W̃ (UB,improved)
gen,wc := W (iter)

gen

(
ℓ+ w − 1

ℓ− 1

)
qw(µ− v

ℓ
) ·min

(
γℓq,

(
1− q−µ

1− q−1

)w)
.

Proof. To prove the theorem, we will show that

Wgen,wc ≤ W (iter)
gen

(
ℓ+ w − 1

ℓ− 1

)
qw(µ− v

ℓ
)

(
1− q−µ

1− q−1

)w

.

Starting from the bound in (11), it suffices to show that

Qw,ℓ,µ ≤
(
ℓ+ w − 1

ℓ− 1

)
qw(µ− v

ℓ
)

(
1− q−µ

1− q−1

)w

.

By the definition of Qw,ℓ,µ in (13), we can bound Qw,ℓ,µ as

Qw,ℓ,µ ≤ |Tw,ℓ,µ|︸ ︷︷ ︸
≤(ℓ+w−1

ℓ−1) (cf. [26])

· max
w∈Tw,ℓ,µ

φ(max)
q,µ,v (w)

−1
,

where

max
w∈Tw,ℓ,µ

φ(max)
q,µ,v (w)

−1
= max

w∈Tw,ℓ,µ

{
φq,µ(v

′,w)
−1

: v′ = vcompµ(w, v)
}
. (15)

Next, we can bound φq,µ(v
′,w)−1 as

φq,µ(v
′,w)

−1
=

w∏
i=1

[
µ
wi

]
q[

v′i
wi

]
q

≤
(
1− q−µ

1− q−1

)w

·
w∏
i=1

qwi(µ−v′i), (16)

where the inequality follows from[
a
b

]
q[

c
b

]
q

=
qb(a−b)

qb(c−b)
·

w∏
i=1

(1− q−a)(1− q−a+1) · · · (1− q−a+b−1)

(1− q−c)(1− q−c+1) · · · (1− q−c+b−1)
≤ qb(a−c) · 1− q

−a

1− q−1
.

Substituting (16) into (15) yields

Qw,ℓ,µ ≤
(
ℓ+ w − 1

ℓ− 1

)
·
(
1− q−µ

1− q−1

)w

· max
w∈Tw,ℓ,µ

{
q
∑ℓ

i=1 wi(µ−v′i) : v′ = vcompµ(w, v)
}
.

The remainder of the proof follows from the proof in [26, Proposition 21], which leads to the

desired result

Wgen,wc ≤ W̃ (UB,improved)
gen,wc .

Figure 1 illustrates the existing bounds from Puchinger et al. [26] alongside the new improved

bound W̃ (UB,improved)
gen,wc given by (14). The figure shows the complexity as a function of the number

of blocks ℓ for a fixed code length n, where the code length is defined as n = ℓη. This

20

1 2 3 4 5 6 10 12 15 20 30 60
0

50

100

150

200

C
ol

um
n

Su
pp

or
t

R
ow

Su
pp

or
t

ℓ

lo
g
2
(C

om
pl

ex
ity

)

W̃
(UB)
gen,wc W̃

(UB,improved)
gen,wc W

(UB)
gen,wc W

(LB)
gen,wc

1 2 3 4 5 6

100

125

150

175

ℓ

lo
g
2
(C

om
pl

ex
ity

)

Fig. 1. Illustration of the improved upper bound on the average complexity of Algorithm 1 for q = 2, m = 20, n = 60,

k = 30, t = 9, s = 10. At ℓ = 3, the algorithm transitions from guessing the column support to guessing the row support.

representation allows for the analysis of how the bounds and the improved bound behave as

the number of blocks varies while keeping the code length and rate constant.

The existing bounds include the lower bound W
(LB)
gen,wc, the upper bound W

(UB)
gen,wc, and the

simplified upper bound W̃
(UB)
gen,wc, as defined in (10), (11), and (12), respectively. For a fair

comparison, we used the same parameters as those presented in one of the figures from the

original paper. The improved bound W̃
(UB,improved)
gen,wc is significantly tighter and closer to the

21

upper bound W (UB)
gen,wc, particularly in the region near the Hamming metric, which corresponds to

cases where ℓ → n and η → 1. This suggests that the new simplified bound provides a better

approximation of the algorithm’s complexity compared to the previous simplified upper bound

W̃
(UB)
gen,wc, especially when the sum-rank metric closely resembles the Hamming metric.

B. Success Probability Analysis for the Average Case

We now consider the channel model described in Section III-D and begin by deriving the

success probability for the case of unique decoding, where exactly one solution exists. Addi-

tionally, we derive an upper bound on the success probability for decoding beyond the unique

decoding radius, using RCU arguments. This upper bound accounts for alternative solutions that

the decoder in Algorithm 1 may return in this scenario.

In this analysis, we assume that the support drawing distribution is known. In the subsequent

section, we will use the probabilities derived here to formalize an optimization problem with

respect to the support drawing distribution.

In Line 5 of Algorithm 1, we need to draw a suitable super support F = F1 × · · · × F ℓ,

where F ⊆ Fµ
q × · · · × Fµ

q , each F i has dimension vi for i ∈ {1, . . . , ℓ}, and
∑ℓ

i=1 vi = v.

The distribution from which these super supports are drawn is a critical design parameter of the

algorithm and requires careful optimization to maximize the algorithm’s performance.

To draw the super support F , we first draw a suitable rank profile v = [v1, v2, . . . , vℓ] ∈ Tv,ℓ,µ.

Let S be a discrete random variable over Tv,ℓ,µ, and denote the probability distribution of S as

αv, i.e.,

αv := Pr[S = v].

Moreover, let α denote the probability vector for S, such that α = [αv1 , . . . , αv|Tv,ℓ,µ|], where

v1, . . . ,v|Tv,ℓ,µ| ∈ Tv,ℓ,µ and α ∈ D(Tv,ℓ,µ).

After drawing the rank profile v according to the distribution αv, the next step is to construct

the super support F . We draw F uniformly from the set Ξq,µ(v), which contains all valid

super supports for the given rank profile v. Each block F i is drawn independently from the

set of subspaces of Fµ
q with dimension vi. By controlling the distribution αv, we influence the

distribution of the super support F and aim to minimize the expected complexity of the decoding

process.

The following theorem gives the success probability for uniquely decoding a solution using

a single iteration of Algorithm 1 under the average-case setting.

22

Theorem 2. Let C ⊆ Fn
qm be a linear sum-rank metric code with length n and dimension k. Let

c ∈ C be a codeword and consider a channel model as described in Section II-D, where the

error e is drawn uniformly at random from Eq,η,m,ℓ(w), as defined in (2). Let wtΣR(e) = w, and

assume that y = c + e. Let vmax denote the maximum sum-rank weight of the guessed super

support, as defined in (8). Define the event Eunique as the event that Algorithm 1 outputs c in a

single iteration for the scenario of Problem 2. The probability of Eunique is given by

Pr [Eunique] =
1

|Eq,η,m,ℓ(w)|

vmax∑
v′=w

∑
w∈Tw,ℓ,µ

φq,µ,v′(w) ·
ℓ∏

i=1

NMq (m, η, wi), (17)

where φq,µ,v′(w) is the average probability defined in (18).

Proof. The average probability of decoding success can be expressed as a sum over all possible

super space dimensions v′ and error weight decompositions w, weighted by the probability of

each error weight decomposition

Pr [Eunique] =
vmax∑
v′=w

∑
w∈Tw,ℓ,µ

Pr [w] · φq,µ,v′(w).

Substituting the expression for Pr [w] from (7), we arrive at the expression given in (17)

Pr [Eunique] =
1

|Eq,η,m,ℓ(w)|

vmax∑
v′=w

∑
w∈Tw,ℓ,µ

φq,µ,v′(w) ·
ℓ∏

i=1

NMq (m, η, wi),

completing the proof.

An upper bound on the probability of obtaining alternative solutions when using random

linear sum-rank-metric codes is provided by the upcoming theorem. For the analysis, we define

φq,µ,v(w) as the average probability over all super-support rank profiles

φq,µ,v(w) :=
∑

v∈Tv,ℓ,µ

αv · φq,µ,v(v,w), (18)

where αv is the probability distribution over the super-support rank profiles.

Theorem 3 (Random Coding Union Bound). Let C be a random code of length n and cardinality

|C| = qmk over Fqm , where each codeword is drawn uniformly at random from the ambient space

Fn
qm . Suppose that the received word y ∈ Fn

qm is a noisy version of a codeword c ∈ C, corrupted

by an error vector e ∈ Fn
qm of sum-rank weight w, i.e., y = c+e. Let v be an integer satisfying

w ≤ v ≤ vmax.

23

The probability Pr [ERCU] of one iteration of Algorithm 1 to output an alternative solution c′

with c′ ̸= c is upper bounded by

Pr [ERCU] ≤ p
(UB,gen)
RCU ,

where

p
(UB,gen)
RCU := qm(k−n)

∑
w∈Tw,ℓ,µ

φq,µ,v(w)
ℓ∏

i=1

NMq (m, η, wi),

and φq,µ,v(w) is the average probability defined in (18).

Proof. By assumption, each codeword in the codebook C is drawn uniformly at random over

Fn
qm . Let cj ∈ C with cj ̸= c be one such alternative codeword with j ∈ {1, . . . , qmk − 1}, and

define Xj as the event that Algorithm 1 can decode this codeword. Then

Pr [Xj] =
∑

e′∈Fn
qm

wtΣR(e′)=w

1

qmn
· φq,µ,v(ψ(e

′)).

Since φq,µ,v(ψ(e
′)) only depends on the rank profile of e′, we can change the sum to be over

all rank profiles w ∈ Tw,ℓ,µ and multiply by the number of error vectors that have the same rank

profile

Pr [Xj] =
∑

w∈Tw,ℓ,µ

1

qmn
· φq,µ,v(w)

ℓ∏
i=1

NMq (m, η, wi).

The total probability of successful decoding is given by the union of the events X1, . . . ,Xqmk−1,

which can be upper bounded by

Pr

qmk−1⋃
j=1

Xj

 ≤ qmk−1∑
j=1

Pr [Xj] ≤ qmk Pr [Xj] = p
(UB,gen)
RCU .

Substituting the expression for Pr [Xj] yields the desired upper bound on the success probability.

Combining Theorem 3 and Theorem 2, we can derive bounds on the success probability

of Algorithm 1 for one iteration to return at least one solution. We state these bounds in the

following lemma.

Theorem 4. Let C be a random code of length n and size qmk over Fqm , where each codeword

is drawn uniformly at random from the ambient space Fn
qm . Suppose that the received word

y ∈ Fn
qm is a noisy version of a codeword c ∈ C, corrupted by an error vector e ∈ Fn

qm with

24

wtΣR(e) = w, i.e., y = c + e. The success probability of Algorithm 1 to output at least one

solution satisfies

Pr[success] ≥ 1

|Eq,η,m,ℓ(w)|

vmax∑
v′=w

∑
w∈Tw,ℓ,µ

φq,µ,v′(w) ·
ℓ∏

i=1

NMq (m, η, wi),

and

Pr[success] ≤
(

1

|Eq,η,m,ℓ(w)|
+ qm(k−n)

) vmax∑
v′=w

∑
w∈Tw,ℓ,µ

φq,µ,v′(w) ·
ℓ∏

i=1

NMq (m, η, wi).

Proof. First, we prove the lower bound on the success probability. Recall that we assume the

received word y ∈ Fn
qm is a noisy version of a codeword c ∈ C, corrupted by an error vector

e ∈ Fn
qm with wtΣR(e) = w, i.e., y = c+ e. This implies that the codeword c is always within

the decoding radius of the received word y. Using the expression for Pr[Eunique] from Theorem 2,

we have

Pr[success] ≥ Pr[Eunique] =
1

|Eq,η,m,ℓ(w)|

vmax∑
v′=w

∑
w∈Tw,ℓ,µ

φq,µ,v′(w) ·
ℓ∏

i=1

NMq (m, η, wi).

Next, we prove the upper bound on the success probability. Using union bound arguments

and the expressions for Pr[ERCU] and Pr[Eunique] from Theorem 3 and Theorem 2, respectively,

we obtain

Pr[success] ≤ Pr[Eunique] + Pr[ERCU]

=
1

|Eq,η,m,ℓ(w)|

vmax∑
v′=w

∑
w∈Tw,ℓ,µ

φq,µ,v′(w) ·
ℓ∏

i=1

NMq (m, η, wi)

+ qm(k−n)

vmax∑
v′=w

∑
w∈Tw,ℓ,µ

φq,µ,v′(w) ·
ℓ∏

i=1

NMq (m, η, wi)

=

(
1

|Eq,η,m,ℓ(w)|
+ qm(k−n)

) vmax∑
v′=w

∑
w∈Tw,ℓ,µ

φq,µ,v′(w) ·
ℓ∏

i=1

NMq (m, η, wi),

which concludes the lemma.

From Theorem 4 we get that to find an optimal distribution αv to draw v from Tv,ℓ,µ we need

to maximize the term

max
α∈D(Tv,ℓ,µ)

∑
w∈Tw,ℓ,µ

∑
v∈Tv,ℓ,µ

αv · φq,µ(v,w) ·
ℓ∏

i=1

NMq (m, η, wi),

where D(Tv,ℓ,µ) is the set of all valid PMFs over Tv,ℓ,µ as defined in (1).

25

C. Optimizing the Support-Drawing Distribution via Linear Programming

The process of drawing a super support from a known distribution can be further broken

down. Instead of drawing a rank profile v ∈ Tv,ℓ,µ according to αv, we can draw an ordered

rank profile v′ ∈ Jv,ℓ,µ according to a distribution α̃v′ , where v′ = sort(v) is obtained by sorting

the elements of v in non-increasing order. This simplification is possible due to symmetry, as

the probability of drawing a particular rank profile remains the same for all permutations of that

profile.

After drawing the ordered rank profile v′, we perform a uniformly random permutation to

obtain the final rank profile v. The relation between the two probability distributions is given by

αv =
α̃sort(v)

|Sℓ,µ(sort(v))|
=

α̃sort(v)

|Sℓ,µ(v)|
. (19)

By reducing the problem to optimizing the distribution α̃v′ of ordered rank profiles, we have

reduced the number of unknowns since we have |Jv,ℓ,µ| ≤ |Tv,ℓ,µ|.

In summary, the process of drawing a suitable super support F can be broken down into three

steps:

1) Draw an ordered rank profile v′ ∈ Jv,ℓ,µ according to a distribution α̃v′ , which is the

criterion we need to optimize, and then apply a uniformly random permutation to obtain

the rank profile v.

2) For each i ∈ {1, . . . , ℓ}, draw F i from the set of all spaces of dimension vi, independently

for all blocks.

3) Combine the individual blocks F i to form the overall super support F = F1 × · · · ×F ℓ.

By making use of (19) we can reduce the number of unknowns and instead maximize

max
α̃∈D(Jv,ℓ,µ)

∑
w∈Jw,ℓ,µ

∑
v∈T ≥w

v,ℓ,µ

|Sℓ,µ(w)|
|Sℓ,µ(v)|

α̃sort(v)φq,µ(v,w)
ℓ∏

i=1

NMq (m, η, wi)

= max
α̃v′∈D(Jv,ℓ,µ)

∑
v′∈Jv,ℓ,µ

α̃v′ · f(v′),

(20)

where

f(v′) :=
∑

w∈Jw,ℓ,µ

|Sℓ,µ(w)|
|Sℓ,µ(v′)|

 ∑
v′′∈Sℓ,µ(v′)

φq,µ,v(v
′′,w)

 ℓ∏
i=1

NMq (m, η, wi).

This optimization problem can be solved via linear program (LP) methods, where the objective

function is (20) with |Jv,ℓ,µ| unknowns. Although we have reduced the number of unknowns by

26

restricting the optimization to the ordered set Jv,ℓ,µ, it is important to note that the cardinality

of this set, and consequently the number of unknowns, can still grow super-polynomially with

the parameters v, ℓ, and µ. Furthermore, computing the coefficients of the constraints requires

summing over the set Jw,ℓ,µ, which can be computationally demanding due to its potentially

large cardinality. Even if we successfully derive the optimal support-drawing distribution through

this process, implementing an efficient algorithm to sample from this distribution poses another

significant challenge. This limitation motivates the need for alternative approaches to simplify

the optimization problem and develop more practical sampling algorithms.

D. Efficient Optimization of the Support-Drawing Distribution in Generic Decoding

In this section, we propose an efficient method to optimize the support-drawing distribution,

addressing the computational challenges discussed earlier. By assuming independence between

the sum-rank metric blocks, we greatly simplify the problem. Instead of drawing a complete rank

profile vector v ∈ Tw,ℓ,µ with a fixed total rank v, we independently draw the rank vi for each of

the ℓ blocks. As a result, the sum rank v =
∑ℓ

i=1 vi becomes a random variable. To prevent it from

becoming unbounded, we constrain its expected value, E[v], to match a predetermined relative

sum-rank weight v/ℓ. This assumption reduces the complexity of the optimization problem by

focusing on the distributions for individual blocks, and it enables efficient sampling from the

optimized distribution, overcoming the practical limitations of the previous approach.

Although this heuristic approach may not always yield the optimal solution that accounts

for the dependencies between the ranks of the guessed supports across different blocks, it still

provides a good approximation. We demonstrate this numerically in Section IV-E by comparing

the performance of the heuristic solution with solutions that consider these dependencies, for

parameters where the more complex optimization method is feasible.

Let α(m)
i denote the marginal probability of drawing a super support Fi with dimension vi,

where 0 ≤ vi ≤ µ for i ∈ {1, . . . , ℓ}, and let α(m) = [α
(m)
0 , . . . , α

(m)
µ] represent the marginal

probability vector. Assuming that the dimension of each subspace Fi is drawn independently

according to α(m), the probability of a given rank profile v = [v1, . . . , vℓ] ∈ Tv,ℓ,µ is given by

αv =
ℓ∏

i=1

α(m)
vi
. (21)

We define the following two quantities

B̃q,m,η(w, v, ℓ) :=
∑

w∈Tw,ℓ,µ

∑
v∈Tv,ℓ,µ

αv NMq (m, η, wi)P
⊆
q,µ (wi ⊆ vi) , (22)

27

and

Bq,m,η(w, v, ℓ) :=
∑

w∈Tw,ℓ,µ

∑
v∈Tv,ℓ,µ

ℓ∏
i=1

α(m)
vi

NMq (m, η, wi)P
⊆
q,µ (wi ⊆ vi) , (23)

where (23) is a special case of (22) using our independence assumption. In Appendix A, we

show that (23) is efficiently computable in polynomial time. Using the definition of Bq,m,η(w, v, ℓ)

from (23) and the relaxation in (21), we can restate Theorem 2, Theorem 3, and Theorem 4 in

the following corollaries, respectively.

Corollary 1. The probability Pr[ERCU] of having an alternative solution in Algorithm 1 for a

random linear code of length n and cardinality M = qmk over Fqm can be upper bounded as

Pr[ERCU] ≤ qm(k−n)

vmax∑
v=w

B̃q,m,η(w, v, ℓ).

Corollary 2. The probability Pr[Eunique] that Algorithm 1 outputs a unique solution c for a

random linear code of length n and cardinality M = qmk over Fqm is given by

Pr[Eunique] =
1

|Eq,η,m,ℓ(w)|

vmax∑
v=w

B̃q,m,η(w, v, ℓ).

Corollary 3. The success probability of Algorithm 1 to output at least one solution satisfies

Pr[success] ≥ 1

|Eq,η,m,ℓ(w)|

vmax∑
v=w

B̃q,m,η(w, v, ℓ),

and

Pr[success] ≤
(

1

|Eq,η,m,ℓ(w)|
+ qm(k−n)

) vmax∑
v=w

B̃q,m,η(w, v, ℓ).

From Corollary 3, under our independence assumption, the success probability is proportional

to the term
vmax∑
v=w

B̃q,m,η(w, v, ℓ) =
vmax∑
v=w

Bq,m,η(w, v, ℓ), (24)

which we aim to maximize over all possible α(m) ∈ D({0, . . . , µ}).

28

In the following, we further upper bound the expression in (24) and propose a method to

maximize this upper bound, to obtain a valid solution for α(m) ∈ D({0, . . . , µ}). That is
vmax∑
v=w

Bq,m,η(w, v, ℓ) =
vmax∑
v=t

∑
w∈Tt,ℓ,µ

∑
v∈Tv,ℓ,µ

ℓ∏
i=1

α(m)
vi

NMq (m, η, wi)P
⊆
q,µ (wi ⊆ vi)

≤
∑

w∈{0,...,µ}ℓ

∑
v∈{0,...,µ}ℓ

ℓ∏
i=1

α(m)
vi

NMq (m, η, wi)P
⊆
q,µ (wi ⊆ vi)

=

(
µ∑

w=0

µ∑
v=0

α(m)
v NMq (m, η, w)P

⊆
q,µ (w ⊆ v)

)ℓ

, (25)

where the last equality follows from the fact that we’re summing over all possible ℓ-tuples of wi

and vi, and for each tuple, we’re computing the product of functions that depend only on wi and

vi. Since each (wi, vi) pair is independent and the summations are over the same finite ranges,

the combined sum over all vectors can be expressed as the ℓ-th power of a single sum over w and

v. This is due to the distributive property of multiplication over addition and the independence

of each component in the tuples, allowing us to factor the multiple sums and products into a

single term raised to the power of ℓ.

To maximize the right-hand side of (25), it suffices to maximize the expression

µ∑
w′=0

µ∑
v′=0

α
(m)
v′ NMq (m, η, w

′)P⊆
q,µ (w

′ ⊆ v′) . (26)

This expression is closely related to the average probability that a randomly drawn super space

Fi contains the error space Ei in a single block, averaged over all possible rank weights w′. The

average single-block success probability is given as
µ∑

w′=0

Pr[w′]

µ∑
v′=0

α
(m)
v′ P⊆

q,µ (w
′ ⊆ v′) , (27)

where Pr[w′] is the marginal probability of an error of rank weight w′ occurring in a single

block.

In the asymptotic setting, where η and m are fixed and the number of blocks ℓ → ∞, the

assumption of independence between blocks becomes valid due to the law of large numbers

and the concept of typical sequences from statistical mechanics. In this regime, the empirical

distribution of error weights in the blocks converges to the marginal distribution Pr[w′], which

can be approximated by the Boltzmann distribution [36]

29

Pr[w′] =
NMq (m, η, w

′)∑µ
w′′=0 NMq (m, η, w′′)e−λw′′ · e−λw′

, (28)

where λ is the unique solution to the weight constraint

E[w′] =

µ∑
w′′=0

w′′ · Pr[w′′] =
w

ℓ
.

By substituting (28) into (27), we obtain the single-block success probability under the asymptotic

error-weight distribution.

Maximizing the single-block success probability in (27) effectively maximizes the overall

success probability in the asymptotic regime. Although (26) represents an upper bound on the

success probability, this upper bound becomes tight as ℓ→∞ due to the convergence properties

established by the law of large numbers. Therefore, optimizing this upper bound is justified

because it aligns with maximizing the actual success probability in the asymptotic setting.

This connection reveals that optimizing (26) to obtain an optimal marginal distribution α
(m)
v′

for the guessed super-support dimensions is beneficial for maximizing (24).

To optimize (26), our approach focuses on the marginal distribution α(m) ∈ D({0, . . . , µ})

rather than directly optimizing α, aiming to approximate the optimal average rank profile for

the super support. Since directly optimizing α(m) results in a distribution independent of the

number of blocks ℓ, we impose the constraint α(m)
i = xi

ℓ
, where xi ∈ Z≥0 represents the number

of occurrences of rank i across the ℓ blocks.

We then maximize the objective in (25) using linear integer programming with appropriate

constraints and non-negativity conditions. This method assumes independence of rank weights

across the ℓ blocks, which holds asymptotically as ℓ→∞ for fixed η and m.

By applying this method, we obtain a solution x = [x0, . . . , xµ], from which we construct the

ordered rank profile v̂ ∈ Jw,ℓ,µ as

v̂ = [µ, . . . , µ︸ ︷︷ ︸
xµ times

, µ− 1, . . . , µ− 1︸ ︷︷ ︸
xµ−1 times

, . . . , 1, . . . , 1︸ ︷︷ ︸
x1 times

, 0, . . . , 0︸ ︷︷ ︸
x0 times

], (29)

where each element i ∈ {0, . . . , µ} appears exactly xi times in the vector v̂. We then have that

α̃
(heu)
v′ :=

1 if v′ = v̂,

0 otherwise.
(30)

30

Using the relation in (19), we obtain the overall probability for v, i.e., α(heu)
v . For this specific

PMF we can write (22) as

B̃q,m,η(w, v, ℓ) =
∑

w∈Tw,ℓ,µ

ℓ∏
i=1

NMq (m, η, wi)P
⊆
q,µ (wi ⊆ v̂i) .

As shown in Appendix A, this expression can be efficiently computed in polynomial time since

it is a special case of (23) for a fixed vector v = v̂.

Thus, the bounds on the overall expected runtime provided in the following theorem, which

are general for any support-guessing distribution, can be efficiently computed for our specific

support-guessing distribution given by (29) and (30).

Theorem 5. Under the same assumptions as in Corollary 3, the overall expected runtime

Wgen,RCU of Algorithm 1 to output at least one solution is bounded by

W
(LB)
gen,RCU ≤ Wgen,RCU ≤ W

(UB)
gen,RCU,

with

W
(LB)
gen,RCU := Werasure−dec

((
1

|Eq,η,m,ℓ(w)|
+ qm(k−n)

) vmax∑
v=w

B̃q,m,η(w, v, ℓ)

)−1

, (31)

and

W
(UB)
gen,RCU := Werasure−dec

(
1

|Eq,η,m,ℓ(w)|

vmax∑
v=w

B̃q,m,η(w, v, ℓ)

)−1

, (32)

where Werasure−dec denotes the cost of one iteration of Algorithm 1 and Werasure−dec ∈ O((n− k)3m3)

operations over Fq and we neglect the complexity of drawing from αv.

Proof. For the lower bound on the complexity, we consider the worst-case scenario for the

complexity of each iteration, denoted by Werasure−dec. The expected number of iterations until

success is the reciprocal of the success probability. Using the upper bound on the success

probability from Corollary 3, the lower bound on the overall expected runtime satisfies

W
(LB)
gen,RCU = Werasure−dec

((
1

|Eq,η,m,ℓ(w)|
+ qm(k−n)

) vmax∑
v=w

B̃q,m,η(w, v, ℓ)

)−1

.

For the upper bound on the complexity, we use the cost of one iteration Werasure−dec, which

is O((n− k)3m3) operations over Fq according to [26, Theorem 13 and Theorem 14]. Using

the heuristic probability distribution for the guessing super support as in (29), we can neglect

the complexity of drawing the rank profile of the guessing support. The expected number of

31

iterations until success is the reciprocal of the success probability. Using the lower bound on the

success probability from Corollary 3, the upper bound on the overall expected runtime satisfies

W
(UB)
gen,RCU = Werasure−dec

(
1

|Eq,η,m,ℓ(w)|

vmax∑
v=w

Bq,m,η(w,v, ℓ)

)−1

,

which concludes the theorem.

Note that the assumption made in Theorem 5, which neglects the complexity of drawing from

αv, is valid since, in our solution, we only need to permute the support-guessing rank profile v̂

uniformly at random.

E. Numerical Results for the Generic Decoding Algorithm

In this section, we compare the complexity analysis of using a support-drawing distribution

derived from the method described in Section IV-D for the average case against the worst-case

bounds from [26]. We evaluate the average complexity over all error patterns for a specific sum-

rank weight and plot the logarithmic complexity (base 2) versus the number of blocks ℓ, while

keeping the code parameters and field size qm constant. The length of each individual block η

is adjusted as ℓ varies.

Figure 2 shows the complexity for generic decoding beyond the unique decoding radius with

parameters q = 2, m = 20, n = 60, k = 30, t = 9, and v = 10 while in Figure 3, we increase v

to vmax. We include the upper bound W (UB)
gen,RCU (32) and the lower bound W (LB)

gen,RCU (31) for the

expected complexity of Algorithm 1. The lower bound reflects the effect of decoding beyond

the unique decoding radius and accounts for alternative solutions.

The figures show that the effect of alternative solutions, indicated by the divergence between

the upper and lower bounds, becomes more prominent near the rank metric (i.e., when ℓ

approaches 1) for the chosen parameters. However, this behavior can vary depending on the

parameters, as seen in Figure 4, which uses the parameters q = 2, m = 6, n = 36, k = 22,

t = 10, and v = 10. In this case, a significant difference between the lower and upper bounds

persists even when the number of blocks does not correspond to the rank metric.

With the increase of v to vmax in Figure 3, the upper and lower bounds for the worst-case

scenario become even looser. The upper bound, in particular, deviates significantly from the

complexity of the Prange algorithm, denoted as WPrange, and given by [37]

WPrange = W (iter)
gen

(
n
w

)(
v
w

) ,

32

1 2 3 4 5 6 10 12 15 20 30 60
20

50

100

150

200

C
ol

um
n

Su
pp

or
t

R
ow

Su
pp

or
t

ℓ

lo
g
2
(C

om
pl

ex
ity

)
W

(LB)
gen,wc

W
(UB)
gen,wc

W
(UB)
gen,RCU

W
(LB)
gen,RCU

WPrange

1 2 3 4 5 6
75

100

125

150

175

ℓ

lo
g
2
(C

om
pl

ex
ity

)

Fig. 2. Complexity comparison for generic decoding with parameters: q = 2, m = 20, n = 60, k = 30, t = 9, and v = 10.

1 2 3 4 5 6 10 12 15 20 30 60
20

40

60

80

100

120

C
ol

um
n

Su
pp

or
t

R
ow

Su
pp

or
t

ℓ

lo
g
2
(C

om
pl

ex
ity

)

W
(LB)
gen,wc

W
(UB)
gen,wc

W
(UB)
gen,RCU

W
(LB)
gen,RCU

WPrange

10 20 30 30 30 30 30 30 30 30 30 30
v

1 2 3 4 5 6
40

60

80

100

120

ℓ

lo
g
2
(C

om
pl

ex
ity

)

Fig. 3. Complexity comparison for generic decoding with parameters: q = 2, m = 20, n = 60, k = 30, t = 9 and v = vmax.

especially at ℓ = 60, which corresponds to the special case of the Hamming metric. In this

case, not only does the complexity of our solution coincide with the Prange algorithm, but the

algorithm itself is exactly the Prange algorithm.

Additionally, in Figure 3, for ℓ < 12, the complexity of our solution falls below the lower

bound of the worst-case scenario. This demonstrates that worst-case bounds may not always

provide accurate estimates for real-world scenarios. For instance, when selecting parameters

33

6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36
20

30

40

50

60

70

80

ℓ (axis not linear)

lo
g
2
(C

om
pl

ex
ity

)
W

(LB)
gen,wc

W
(UB)
gen,wc

W
(UB)
gen,RCU

W
(LB)
gen,RCU

Fig. 4. Complexity comparison for generic decoding with parameters: q = 2, m = 6, n = 36, k = 22, t = 10 and v = 10.

for cryptosystems based on sum-rank metric codes, relying solely on worst-case bounds may

lead to underestimating the actual complexity of practical attacks in certain regimes. The lower

bound W
(LB)
gen,RCU provides a closer approximation to the actual complexity in practice than the

worst-case bounds from [26].

We performed extensive computations using LP to account for dependencies between the

blocks, as described in Section IV-C, for the parameters used in Figures 2 and 3. For these

parameters this approach is feasible for ℓ up to 10 and we obtained the exact same support-

guessing distribution corresponding to the rank profiles as our efficient solution. This is partic-

ularly interesting, as our efficient method is expected to yield tighter results for larger block

sizes, i.e., as ℓ→ n. Thus, our findings indicate that for these parameters, the efficient approach

remains effective even at lower block counts.

Table I summarizes the individual bounds and their applicable decoding scenarios.

34

TABLE I

OVERVIEW OF THE BOUNDS AND THEIR APPLICABLE SCENARIOS.

Bound Applies to Conditions
W

or
st

ca
se

W
(LB)
gen,wc Problem 4 Exactly one solution exists for the worst-case rank profile channel

W
(UB)
gen,wc Problem 1 At least one solution exists for the worst-case rank profile channel

A
ve

ra
ge

ca
se

W
(UB)
gen,RCU Problem 1 At least one solution exists; exact when exactly one solution exists

W
(LB)
gen,RCU Problem 1 At least one solution exists; accounts for alternative solutions

V. GENERIC DECODING FOR LARGE ERROR WEIGHTS

In the previous section, we focused on decoding for low error weights, specifically when the

error weight w satisfies w ≤ dmin− 1, as erasure decoding is not possible beyond this threshold,

according to [26, Theorem 13 and Theorem 14]. We explored unique decoding for Problem 4 up

to w ≤ dmin − 1 and going beyond unique decoding is possible for w ≤ min{n− k, m
η
(n− k)}

(see [26]).

In this section, we introduce a generic decoding algorithm (Algorithm 2) that aims to solve

Problem 1. The proposed algorithm is inspired by the Prange-like algorithm for the Hamming

metric, as presented in [22]. Our analysis of the algorithm focuses on the asymptotic case ℓ→∞

and its average performance. The following proposition establishes the range of relative weights

for which solutions to Problem 1 can be found efficiently using Algorithm 2.

Proposition 1. Consider a Fqm-linear sum-rank-metric code of length n = ηℓ, dimension k = ηκ

with parity check matrix H ∈ F(n−k)×n
qm and R := k

n
= κ

ℓ
where κ ∈ Z≥0 and 0 ≤ κ ≤ ℓ. Let

the sum-rank weight be defined with respect to the length partition of constant block length, i.e.,

n = [n1, . . . , nℓ] = [η, . . . , η]. Define

ā :=

∑µ
i=0 i · NMq (m, η, i)

qmη
,

as the average rank weight of a single block if drawn uniformly at random. Then, for the relative

35

Algorithm 2: PrangeSumRank

Input : H ∈ Fη(ℓ−κ)×ηℓ)
qm , s ∈ Fη(ℓ−κ)

qm and w ∈ Z≥0

Output : eH⊤ = s and wtΣR(e) = w

1 µ← min{m, η}

2 e← 0 ∈ Fηℓ
qm

3 while wt
(n)
ΣR(e) ̸= w do

4 H ′ ← 0 ∈ Fη(ℓ−κ)×ηℓ
qm

5 while rkqm(H
′
[1:η(ℓ−κ)]) ̸= η(ℓ− κ) do

6 P
$← Any ℓ× ℓ permutation matrix

7 P ′ ← P ⊗ Iη

8 H ′ ←HP ′

9 A←H ′
[1:η(ℓ−κ)]

10 B ←H ′
[η(ℓ−κ)+1:ηℓ]

11 w1
$← {0, . . . , κµ}

12 e′ $← {x ∈ Fκℓ
qm : wt

[nκ+1,...,nℓ]
ΣR (e′) = w1}

13 e← ((s− e′B)A−⊤, e′)(P ′)⊤

14 return e

weight wrel := w/n in the interval [w−
easy, w

+
easy], where

w−
easy :=

1−R
η
· ā,

w+
easy :=

1−R
η
· ā+ Rµ

η
,

a solution to Problem 1 can be found in probabilistic polynomial time using the Prange-like

Algorithm 2.

Proof. To solve Problem 1, we want to find, for a given syndrome s, an error e of sum-rank

weight w such that eH⊤ = s. The matrix H is a full-rank matrix and therefore contains an

invertible submatrix A ∈ F(n−k)×(n−k)
qm . Without loss of generality, assume that this matrix is

formed by the first n− k = η(ℓ− κ) positions, i.e. we have

H = [A | B] . (33)

36

Assume e = [e′′, e′] ∈ Fηℓ
qm with e′′ ∈ Fη(ℓ−κ)

qm and e′ ∈ Fηκ
qm . Then, by (33), we have

e′′ = (s− e′B⊤)(A−1)
⊤
.

The idea is to arbitrarily choose e′ of length k = ηκ. Then, on average, the expected (partial)

sum-rank weight of the remaining ℓ− κ blocks is

E
[
wt

([nκ+1,...,nℓ])
ΣR (e′′)

]
= ā · (ℓ− κ).

The average probability of the sum-rank weight of e is then

E
[
wt

(n)
ΣR(e)

]
= E

[
wt

([n1,...,nκ])
ΣR (e′)

]
︸ ︷︷ ︸

=:w̄1

+E
[
wt

([nκ+1,...,nℓ])
ΣR (e′′)

]
= w̄1 + ā · (ℓ− κ),

where w̄1 is determined by the distribution of e′, which we can choose freely. Nonetheless, we

have 0 ≤ w̄1 ≤ µκ, and therefore

ā · (ℓ− κ)︸ ︷︷ ︸
=nw−

easy

≤ E
[
wt

(n)
ΣR(e)

]
≤ µκ+ ā · (ℓ− κ)︸ ︷︷ ︸

=nw+
easy

.

From this, we deduce that any weight in the interval w ∈ [w−
easyn,w

+
easyn] can be reached

probabilistically in polynomial time using a distribution for e′ with w̄1 = w − w−
easyn such that

E
[
wt

(n)
ΣR(e)

]
= w and which is sufficiently concentrated around its expectation. Algorithm 2

implements this approach, where in Line 6 to Line 8, the parity-check matrix H is permuted

block-wise among the ℓ blocks, i.e., the permutation is applied to the block indices but not within

the blocks. Here, ⊗ denotes the Kronecker product, which is used to construct the block-wise

permutation matrix. This permutation is reversed in Line 13.

The proposition above provides the interval [w−
easy, w

+
easy] for which a solution to Problem 1 can

be found in probabilistic polynomial time using Algorithm 2. Combining this with the Gilbert-

Varshamov bound for the sum-rank metric, we have the following summary of the relative weight

intervals:

• wrel ∈ [w−, w+]: A solution to Problem 1 is likely to exist (Gilbert-Varshamov bound for

the sum-rank metric, see [33])

• wrel ∈ [w−
easy, w

+
easy]: A solution to Problem 1 can be found in probabilistic polynomial time

using a Prange-like algorithm, as stated in the proposition above.

Figure 5 and Figure 6 show the regions of hardness for finding a solution using Algorithm 2

and the bounds on the relative weight intervals for successful decoding plotted against the code

37

rate R for different parameters. These results apply asymptotically (ℓ→∞, for fixed m and µ)

and on average. The ”no solution”, ”hard”, and ”easy” regions indicate the difficulty of finding

a solution for different code rates.

In Figure 5, the parameters are set to m = η = 2, q = 2, while in Figure 6, the parameters

are m = η = 6, q = 2. Comparing the two figures, we observe that the ”hard” region for large

relative weights becomes smaller as the values of m and η increase. This indicates that it is

easier for Algorithm 2 to decode errors of large relative weight when m and η are larger.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

no solution

hard

easy

hard

R

w
re
l

w−

w−
easy

w+
easy

Fig. 5. Regions of hardness for Algorithm 2 and bounds on the relative weight intervals for successful decoding vs code rate

R = k/n for parameters: m = η = 2, q = 2 (ℓ → ∞, average-case).

38

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

no solution

hard

easy

hard

R

w
re
l

w−

w−
easy

w+
easy

Fig. 6. Regions of hardness for Algorithm 2 and bounds on the relative weight intervals for successful decoding vs code rate

R = k/n for parameters: m = η = 6, q = 2 (ℓ → ∞, average-case).

VI. RANDOMIZED DECODING OF LINEARIZED REED–SOLOMON CODES

In this section, we consider the probabilistic decoding algorithm introduced in [27] to solve

Problem 3. In [27], the complexity of this decoder was analyzed for the worst-case rank profile.

This algorithm generalizes the randomized decoder for Gabidulin codes from [28] to LRS codes.

We revisit the decoder from [27] and present two new contributions:

• We adapt the methods from [26] to efficiently compute worst-case bounds and sample the

support rank profile for the randomized decoder for LRS codes.

• We extend the average-case analysis from Section IV to the randomized decoder, deriving an

objective function to optimize the support-drawing distribution, motivated by the asymptotic

setting.

The proposed decoder relies on two key aspects. First, we consider an underlying LRS code.

Recall that LRS codes are MSRD codes with a minimum sum-rank distance dmin = n− k + 1.

Efficient algorithms exist to decode LRS codes up to the unique decoding radius τ = n−k
2

.

We consider LRS codes of length n partitioned into constant block lengths n = [n1, . . . , nℓ] =

[η, . . . , η] and dimension k over Fqm , denoted by CLRS. Additionally, LRS codes are restricted

to ℓ ≤ q − 1 and ni ≤ m for all i ∈ {1, . . . , ℓ}.

39

Second, we focus on decoding beyond the unique decoding radius, where the sum-rank weight

of the error w exceeds τ , i.e., wtΣR(w) = w > τ . The error excess beyond the unique decoding

radius is defined as

ξ := w − τ.

Note that while 2ξ is always an integer, ξ itself does not necessarily need to be an integer.

As discussed in Section III, for errors with weight w ≤ τ , Problem 3 has at most one solution.

However, for w > τ , multiple solutions may exist. The number of solutions can vary, being either

polynomially or exponentially bounded in terms of the code parameters and depending on the

structure of the code. This behavior has been studied for LRS codes in [38]. Following the

reasoning in [28], we analyze the complexity of finding at least one solution. If the code is

list-decodable, this process can be repeated to obtain a list of solutions.

A. Erasures in the Sum-Rank Metric

We consider an error of the form as described in Section II-D. The error e can be further

decomposed into a sum of three types of error vectors

e = eF + eR + eC,

where eF represents full errors, eR represents row erasures, and eC represents column erasures.

The sum-rank weights of these error vectors are denoted by wF , wR, and wC , respectively, such

that wtΣR(eF) = wF , wtΣR(eR) = wR, and wtΣR(eC) = wC (see [29]).

Each of the three error vectors can be decomposed as in (6)

eF = aFBF with aF ∈ FwF
qm and BF ∈ FwF×n

q ,

eR = aRBR with aR ∈ FwR
qm and BR ∈ FwR×n

q ,

eC = aCBC with aC ∈ FwC
qm and BC ∈ FwC×n

q .

For full errors, neither aF nor BF are known. For row erasures, aR is known but BR is unknown.

For column erasures, aC is unknown but BC is known.

An efficient algorithm for LRS codes was proposed in [29], capable of correcting combinations

of full errors, row erasures, and column erasures up to

2wF + wC + wR ≤ n− k, (34)

40

with a complexity of O(n2) operations over Fqm . We estimate this complexity, denoted as

Wee−dec, over Fq as O(m2n2) and approximate it, similar to the arguments in Section IV, as

Wee−dec ≈ m2n2. (35)

We denote this error-erasure decoder by DEC(y,aR,BC), which takes as input the received

word y = c + e, along with a basis aR of the column support of eR (row erasures) and/or a

basis BC of the row support of eC (column erasures). The decoder outputs a valid codeword ĉ

if the condition in (34) is satisfied; otherwise, it returns ∅.

B. Randomized Decoding Algorithm

We consider an error e with row support ER and column support EC . Unlike the generic

decoding algorithm, where we guess a super support that must completely contain the actual

error support to succeed, the randomized approach aims to guess only parts of the error supports

and utilizes an error-and-erasure decoder to succeed with a smaller number of guesses. The steps

are as follows:

For each block i ∈ ℓ, we have E (i)R ⊆ Fη
q and E (i)C ⊆ Fm

q . As shown in [28], for Gabidulin

codes, guessing a combination of row and column supports does not improve success, and it is

more effective to guess from a smaller ambient space. Since this result applies block-wise in the

sum-rank metric, we set µ = min{m, η} and guess from ER if µ = η, otherwise from EC .

This ensures the guessed support is always a subspace of Fµ
q . For simplicity, we use E to

denote the error support, whether from ER or EC .

To guess parts of E , we first draw a corresponding rank profile u = [u1, . . . , uℓ] ∈ Zℓ
≥0

according to some PMF denoted as βu := Pr[u]. Then, a support U is drawn uniformly at

random from Ξq,µ(u) with u := dimΣ(U). Define ϵ as the sum dimension of the intersection

space between the guessed space U and the actual error support E , i.e.,

ϵ := dimΣ(U ∩ E).

The number of full errors wF is reduced by ϵ, so wF = w − ϵ, while the number of column or

row erasures increases by u, corresponding to the guessed parts of U . For these guessed parts,

we assume knowledge of the column support but not the row support (or vice versa), effectively

trading errors for erasures 2.

2This approach is reminiscent of the generalized minimum distance (GMD) decoding strategy introduced by Forney [39] for

Hamming metric codes, and later extended to the rank metric in [40] by Bossert et al..

41

The error-and-erasure decoder takes as input a vector containing w − ϵ full errors and u

erasures. From the decoding condition in (34), we have

2(w − ϵ) + u ≤ n− k,

which implies that for successful decoding, we need to have

ϵ ≥ ϵmin := w +
u− (n− k)

2
= ξ +

u

2
. (36)

If the intersection between the guessed spaces and the actual error support is sufficiently large,

an error-erasure decoder can successfully decode. From (36), the valid range for u is u ∈

{2ξ, . . . , n−k}, with the lower bound ensuring ϵ ≥ 0 and the upper bound corresponding to the

most favorable case, where ϵ = w. In the latter case, u ≤ n− k, which is the maximum erasure

decoding capability for LRS codes. The performance of the randomized decoder depends on

the choice of the PMF βu used to draw the rank profile u. The optimal choice of βu and the

analysis of the algorithm’s success probability will be discussed in the following sections.

Algorithm 3 outlines the proposed approach. It can be easily generalized to variable block

lengths and other sum-rank metric codes that support efficient error-and-erasure decoders.

42

Algorithm 3: Randomized Sum-Rank Metric Decoder for LRS codes
Input : Parameters: q, m, η, ℓ, w and u with 2ξ ≤ u ≤ n− k

Received vector y ∈ Fn
qm

LRS code CLRS of length n = ℓη and dimension k

Error-erasure decoder DEC(·, ·, ·) for CLRS

Output : Vector c′ ∈ CLRS such that wtΣR(y − c′) = w

1 c′ ← ∅

2 µ← min{m, η}

3 while c′ = ∅ or wtΣR(y − c′) ̸= w do

4 u← Draw rank profile for the guess space according to βu

5 U $← Ξq,µ(u)

6 if η < m then

7 BC ← Basis of U

8 c′ ← DEC(y, ∅,BC) /* Error-erasure decoding with row erasures */

9 else

10 aR ← Basis of U

11 c′ ← DEC(y,aR, ∅) /* Error-erasure decoding with column erasures */

12 return c′

The following lemma provides a useful result that contributes to the derivation of the average

complexity of the randomized approach in Algorithm 3.

Lemma 1. For a fixed error e = [e1, . . . , eℓ] ∈ Fn
qm with rank profile w = [w1, . . . , wℓ] ∈ Zℓ

≥0

and a given rank profile u = [u1, . . . , uℓ] ∈ Zℓ
≥0, let E and U be the error space and guessed

space, respectively, where U is chosen uniformly from Ξq,µ(u). Further, let Sj denote the event

that dimΣ(E ∩ U) = j. The probability of Sj given e and u is then

Pr[Sj|e,u] = Pr[Sj|w,u] =
(

ℓ

⊛
i=1

P∩
q,µ,wi,ui

)
(j), (37)

with (
ℓ

⊛
i=1

P∩
q,µ,wi,ui

)
(j) :=

(
P∩
q,µ,w1,u1

⊛ · · ·⊛ P∩
q,µ,wℓ,uℓ

)
(j),

43

being the ℓ-fold discrete convolution (denoted by ⊛) of the probability distributions P∩
q,µ,wi,ui

evaluated at j for all i = 1, . . . , ℓ. Here, P∩
q,µ,wi,ui

represents the probability distribution of the

intersection dimension between the error space and the guessed space in the i-th shot.

Proof. Given the error e = [e1, . . . , eℓ] ∈ Fn
qm with rank profile w = [w1, . . . , wℓ] ∈ Zℓ

≥0 and

the rank profile u = [u1, . . . , uℓ] ∈ Zℓ
≥0 of the guessed support, let Vi be a random variable

that corresponds to the dimension of the intersection of the i-th guessed space U (i) with the i-th

actual error space E (i) for i ∈ {1, . . . , ℓ}. By (4), we have that P∩
q,µ,wi,ui

(j) is the probability of

that event, i.e.,

Pr[Vi = j|e,u] = P∩
q,µ,wi,ui

(j).

Note that the probability Pr[Vi = j|e,u] depends only on the rank weights wi and ui of the

error and guessed support in the i-th shot, respectively, and not on the specific error vector e.

Thus, we can write

Pr[Vi = j|e,u] = Pr[Vi = j|w,u] = P∩
q,µ,wi,ui

(j).

Since we are interested in the probability distribution of the sum of random variables, i.e.,

V =
∑ℓ

i=1 Vi, the resulting probability distribution is given by the ℓ-fold discrete convolution of

the probability distributions of the random variables Vi for i ∈ {1, . . . , ℓ}. Thus,

Pr[V = j|e,u] = Pr[V = j|w,u] =
(

ℓ

⊛
i=1

P∩
q,µ,wi,ui

)
(j),

with (
P∩
q,µ,w1,u1 ⊛P∩

q,µ,w2,u2

)
(j) :=

∞∑
r=−∞

P∩
q,µ,w1,u1

(r)P∩
q,µ,w2,u2

(j − r). (38)

Finally, we have that Sj is the event that V = j, which proves the claim.

The probability of the event Sj given the rank profiles of the error and the guessed support,

as stated in Lemma 1, can be further expanded using the concept of rank profiles. The following

proposition expresses this probability.

Proposition 2. Let e = [e1, . . . , eℓ] ∈ Fn
qm be a fixed error with rank profile w = [w1, . . . , wℓ] ∈

Zℓ
≥0, and let u = [u1, . . . , uℓ] ∈ Zℓ

≥0 be a given rank profile. Further, let µ = min{η,m} and

ϵ ∈ {0, . . . , ℓµ}. Then, we can write (37) from Lemma 1 as

Pr[Sϵ|w,u] =
∑

ϵ∈Tϵ,ℓ,µ

ℓ∏
i=1

P∩
q,µ,wi,ui

(ϵi). (39)

44

Proof. Starting from the right-hand side of (39), we have∑
ϵ∈Tϵ,ℓ,µ

ℓ∏
i=1

P∩
q,µ,wi,ui

(ϵi) =
∑

µ≥ϵ1,...,ϵℓ≥0
ϵ1+···+ϵℓ=ϵ

ℓ∏
i=1

P∩
q,µ,wi,ui

(ϵi)

=

(
ℓ

⊛
i=1

P∩
q,µ,wi,ui

)
(ϵ)

= Pr[Sϵ|w,u],

where the first equality follows from the definition of the set of rank profiles, the second equality

follows from the definition of discrete convolution as defined in (38), and the last equality

follows from the recursive application of the definition of discrete convolution. This completes

the proof.

The probability of successful decoding is given by the sum of the probabilities of the events

Sϵ over all feasible values of the total intersection dimension ϵ. Since these events are mutually

exclusive, we define

ϕµ(u,w) :=

min{u,w}∑
ϵ=ϵmin

Pr[Sϵ | u,w], (40)

where ϕµ(u,w) denotes the probability of successful decoding. The lower bound ϵmin, defined

in (36), ensures that the intersection support has enough dimensions for successful decoding.

The upper bound min{u,w} reflects that the intersection cannot have a greater dimension than

either of the supports.

Given a probability distribution βu over the rank profiles u, the overall probability of successful

decoding for a fixed error rank profile w is

ϕµ,u(w) :=
∑

u∈Tu,ℓ,µ

βu · ϕµ(u,w). (41)

C. Worst-Case Complexity

When decoding beyond the unique decoding radius for LRS codes (Problem 3), multiple

solutions may exist, and the proposed decoder (Algorithm 3) lacks a mechanism to identify the

original codeword among them. To make the complexity analysis exact, we assume a genie-aided

version of the decoder that can identify the correct solution and allows us to stop the decoder

at the iteration when the original codeword is found. Consequently, only the upper bound on

the expected complexity applies to the non-genie-aided decoder, similar to the bounds derived

in [26] for the generic decoder.

45

We analyze the worst-case expected complexity over all possible rank profiles of errors with

wtΣR(e) = w. We derive lower and upper bounds on this complexity and provide algorithms

to efficiently compute these bounds. Additionally, we present methods to optimize the guessing

support distribution for this worst-case scenario.

Determining the optimal sum-rank weight u ∈ {2ξ, . . . , n − k} for the guessing support to

minimize the expected complexity of Algorithm 3 is not straightforward. The success probability

bounds from [28] for the rank metric are convex in u, suggesting that the probability is maximized

at u = 2ξ or u = n − k. However, this does not guarantee that these values always yield the

optimal expected complexity. Similarly, for the sum-rank metric, we cannot be certain, though

these extreme values for u remain important points of interest. For these two specific values of

u, we can express the success probability from (40) as follows. When u = 2ξ ≤ w, we have

ϕµ(u,w) =
u∑

ϵ=u

Pr[Sϵ|u,w] =
ℓ∏

i=1

P⊆
q,µ (ui ⊆ wi) . (42)

On the other hand, when u = n− k ≥ w, we have

ϕµ(u,w) =
w∑

ϵ=w

Pr[Sϵ|u,w] =
ℓ∏

i=1

P⊆
q,µ (wi ⊆ ui) . (43)

Notably, choosing either u = 2ξ or u = n−k simplifies the expression for the success proba-

bility, as the convolution in (40) reduces to a simple product over the blocks. This simplification

is advantageous for our analysis of the decoder’s performance.

When u = n−k, the success probability matches that of the fully generic decoding algorithm,

as the expressions in (42) and (9) are identical. In this case, the bounds from [26] apply directly,

with the only difference being the per-iteration complexity, which is replaced by that of the

error-and-erasure decoder for LRS codes. Therefore, setting u = n − k offers no improvement

in success probability over the fully generic approach.

When u = 2ξ and u ≤ w, the algorithms from [26] require adjustments. We present these

modifications below, using the notation

ϕ′
µ(u,w) :=

ℓ∏
i=1

P⊆
q,µ (ui ⊆ wi) . (44)

From (43) follows the worst-case expected number of iterations of Algorithm 3 for a given

PMF of the guessing support, denoted as β̃u := Pr[u] by

max
w∈Tw,ℓ,µ

E[#iterations] = max
w∈Tw,ℓ,µ

 ∑
u∈Tu,ℓ,µ

β̃uϕ
′
µ(u,w)

−1

. (45)

46

The problem of minimizing the worst-case expected number of iterations over all valid

distributions β̃u on Tu,ℓ,µ can be formulated as a linear program. While this linear program

can be solved numerically using standard methods for small values of µ, ℓ, and u, the number

of unknowns, i.e., β̃u ∈ [0, 1], grows rapidly as these parameters increase. Consequently, solving

the linear program directly becomes computationally prohibitive for larger problem instances.

To address this computational challenge, we adopt the approach proposed by Puchinger et

al. [26], which introduces a randomized mapping ucompµ : Tw,ℓ,µ×Z≥0 → Tu,ℓ,µ. This mapping

aims to maximize the probability ϕ′
µ(ucompµ(w, u),w) for a given w ∈ Tw,ℓ,µ by randomly

selecting an output vector from multiple possible candidates for each input, providing a more

computationally tractable approach to the problem.

Rather than directly choosing a vector u ∈ Tu,ℓ,µ, we first select a vector w ∈ Tw,ℓ,µ at random

according to a designed distribution γw on Tw,ℓ,µ, and then set u← ucompµ(w, u). For a fixed

error e, this allows us to bound the probability as follows

Pr(U ⊆ Ee) =
∑

u∈Tu,ℓ,µ

β̃u · ϕ′
µ(u,we) ≥ γwe · ϕ′

µ(ucompµ(we, u),we).

Using this bound, we can minimize the following upper bound on the worst-case expected

number of iterations, instead of directly minimizing (45)

max
w∈Tw,ℓ,µ

E[#iterations] ≤ max
w∈Tw,ℓ,µ

(
γw · ϕ′

µ(ucompµ(w, u),w)
)−1

,

over all valid probability mass functions β̃u on Tu,ℓ,µ.

The randomized mapping ucompµ is formally defined in Appendix B-A and its correctness

is proofed in Lemma 2.

We adapt the support-drawing algorithm from [26] to handle cases where the sum dimension

of the guessed support is smaller than that of the error support. The modified version, shown

in Algorithm 4, retains the structure of the original algorithm but is adjusted to account for this

dimension difference.

We define the probability distribution γw as follows

γw :=
(
ϕ′
µ(ucompµ(w, u),w) · Q̃ℓ,w,µ

)−1

∀w ∈ Tw,ℓ,µ, (46)

where Q̃ℓ,w,µ is defined as

Q̃ℓ,w,µ :=
∑

w∈Tw,ℓ,µ

ϕ′
µ(ucompµ(w, u),w)−1. (47)

47

Algorithm 4: DrawRandomSupport(u,w, µ)

Input : Integers u, µ, w ∈ Z≥0 with u ≤ w

Output : U of sum dimension u

1 Draw w ∈ Tw,ℓ,µ according to the distribution γw defined in (46).

2 u← ucompµ(w, u)

3 U $← Ξµ,ζ(u)

4 return U

The following proposition presents bounds on the expected number of iterations.

Proposition 3. Let e ∈ Fn
qm be an error of sum-rank weight w and let u be an integer with

u ≤ w. If U is a sub-support that is drawn by Algorithm 4 with input u and w, then we have

|Tw,ℓ,µ|−1Q̃ℓ,w,µ ≤ Pr(U ⊆ Ee)
−1 ≤ Q̃ℓ,w,µ,

where Q̃ℓ,w,µ is defined as in (47), and Ee denotes the error support corresponding to the error

vector e.

Proof. Denote by γw the distribution of w = ucompµ(Ee), where w is a random variable with

probability mass function γw as defined in (46). By the law of total probability, we have

Pr(U ⊆ Ee) =
∑

w∈Tw,ℓ,µ

γw · ϕ′
µ(ucompµ(w, u),we)

≥ γwe · ϕ′
µ(ucompµ(we, u),we)

= Q̃−1
ℓ,w,µ,

where the last equality follows from the definition of γw in (46). This proves the upper bound

on Pr(U ⊆ Ee)
−1. For the lower bound, we observe that for all w ∈ Tw,ℓ,µ

ϕ′
µ(ucompµ(w, u),we) ≤ ϕ′

µ(ucompµ(w, u),w),

which yields

Pr(U ⊆ Ee) =
∑

w∈Tw,ℓ,µ

γw · ϕ′
µ(ucompµ(w, u),we)

≤
∑

w∈Tw,ℓ,µ

γw · ϕ′
µ(ucompµ(w, u),w)

= Q̃ℓ,w,µ,

48

where the last equality follows from the definitions of Q̃ℓ,w,µ in (47) and the design distribution

γw in (46), which proves the claim.

Using Proposition 3, we can formulate the following theorem about the expected runtime of

the genie-aided version of Algorithm 3.

Theorem 6. Consider a genie-aided version of Algorithm 3 for an LRS code CLRS of length n,

dimension k, and length partition n with constant block length ni = η for all i ∈ {1, . . . , ℓ}.

Let e ∈ Fn
qm be an error of sum-rank weight τ < w ≤ n− k, and let c ∈ CLRS be a codeword.

We consider the success event of the algorithm returning the originally transmitted codeword c

when given input y = e+ c and parameter u with u = 2ξ.

Each iteration of Algorithm 3 costs W (iter)
rand . By including also the expected number of iterations,

we can bound the overall expected runtime Wrand of the genie-aided version of Algorithm 3 by

W
(LB)
rand ≤ Wrand ≤ W

(UB)
rand ,

where, for µ = min{η,m}, we define (see (47) for Q̃ℓ,w,µ)

W
(LB)
rand := |Tw,ℓ,µ|−1 · Q̃ℓ,w,µ,

W
(UB)
rand := W

(iter)
rand · Q̃ℓ,w,µ.

Proof. The bounds follow directly from Proposition 3 by multiplying the cost of a single iteration

Witer by the expected number of iterations:

W
(LB)
rand := |Tw,ℓ,µ|−1 · Q̃ℓ,w,µ ≤ Wrand

≤ Witer · Q̃ℓ,w,µ =: W
(UB)
rand .

Remark 5. The complexity of one iteration W
(iter)
rand in Theorem 6 is determined by two main

components. First, the support drawing algorithm from [26] can be easily adapted to our case,

which yields a complexity of Õ(n3m2 log2(q)) bit operations.

Second, the overall complexity W (iter)
rand is then the sum of the complexity of the support drawing

algorithm and the complexity of the error and erasure decoder, which is of the order of O(n2m2)

operations over Fq (see (35)). Similar to the complexity analysis for the worst-case scenario in

the generic decoding algorithm, we approximate W (iter)
rand with the two dominating terms in each

of the complexities as W (iter)
rand ≈ n3m2 when we plot or evaluate the complexities.

49

To evaluate the bounds from Theorem 6, we must compute Q̃ℓ,w,µ. Direct computation using

(47) is infeasible, as the number of summands |Tw,ℓ,µ| can grow super-polynomially with w,

depending on ℓ and µ. In Appendix B-B, we show, following [26, Lemma 22], how to compute

this efficiently in Õ(wun3µ3 log2(q)) bit operations.

D. Average Complexity

We analyze the average complexity of the randomized decoding algorithm over all possible

error vectors e with sum-rank weight w, similar to the analysis for the generic decoder in

Section IV-B. Although Algorithm 3 operates on an LRS code with significant structure, we use

random coding arguments akin to the generic decoding approach to estimate the average success

probability when decoding beyond the unique decoding radius. This accounts for the additional

codeword solutions that may appear in this regime. Note that since LRS codes are not random

codes, applying random coding arguments only yields an approximation for the lower bound.

Adapting Theorem 4, we replace the expression for the success probability of one iteration

of the decoding loop to obtain bounds for our randomized decoder.

Corollary 4. Let C be a random Fqm-linear code of length n and dimension k over Fqm , where

each codeword is drawn uniformly at random from Fn
qm . Suppose the received word y = c+ e,

where c ∈ C and e ∈ Fn
qm with wtΣR(e) = w. Assume we have an error-and-erasure decoder

that can correct combinations of errors and erasures up to the condition in (34). Then, the

success probability of Algorithm 3 to output at least one solution satisfies:

Pr[success] ≥ 1

|Eq,η,m,ℓ(w)|

vmax∑
u′=w

∑
w∈Tw,ℓ,µ

ϕq,µ,u′(w)
ℓ∏

i=1

NMq (m, η, wi),

and

Pr[success] ≤
(

1

|Eq,η,m,ℓ(w)|
+ qm(k−n)

) vmax∑
u′=w

∑
w∈Tw,ℓ,µ

ϕq,µ,u′(w)
ℓ∏

i=1

NMq (m, η, wi).

Proof. The proof follows the same steps as in Theorem 4, replacing φq,µ,v′(w) with ϕq,µ,u′(w).

E. Optimizing the Support-Drawing Distribution in Randomized Decoding of LRS Codes

We propose a heuristic approach to optimize the support-drawing distribution used in Algo-

rithm 3. Inspired by the asymptotic analysis in Section IV-D, we aim at maximizing the average

50

intersection between the guessed support and the actual error support, thereby increasing the

probability of successful decoding.

To simplify the optimization, we consider an asymptotic setting where the number of blocks

ℓ tends to infinity. In this context, we approximate the rank weight distributions of the error

and the guessed support by their marginal distributions for a single block, assuming they are

independently and identically distributed across blocks.

Let β(m)
u := Pr[dim(U (i)) = u] denote the marginal distribution of the rank weight of the

guessed support U (i) for a single block i, where u ∈ {0, . . . , µ}. The joint distribution of the

guessing rank profile u is then

βu =
ℓ∏

i=1

β(m)
ui
. (48)

We introduce the random variable Z, representing the dimension of the intersection between

the guessed support and the error support for a single block. Our objective is to maximize the

expected value E[Z], as a larger average intersection increases the probability of successful

decoding with an error-and-erasure decoder, which requires a sufficiently large intersection

dimension (see (36)). The expectation E[Z] can be computed as

E[Z] =
µ∑

ϵ=0

µ∑
w′=0

µ∑
u′=0

β(m)
u · Pr[w′] · P∩

q,µ,w′,u(ϵ),

where Pr[w′] is the marginal distribution of the error rank weight for a single block.

The distribution β(m) can be optimized using LP methods to maximize E[Z], similar to the

approach in Section IV-D.

The following theorem provides bounds on the expected runtime of the randomized sum-rank

decoder (Algorithm 3) based on the success probability bounds derived in Corollary 4.

Theorem 7. Under the same assumptions as in Corollary 4, the overall expected runtime

Wrand,RCU of Algorithm 3 to output at least one solution is bounded by

W
(LB)
rand,RCU ≤ Wrand,RCU ≤ W

(UB)
rand,RCU,

with

W
(LB)
rand,RCU := Wee−dec

((
1

|Eq,η,m,ℓ(w)|
+ qm(k−n)

) vmax∑
u=w

Cq,m,η(ℓ, w, u)

)−1

,

and

W
(UB)
rand,RCU := Wee−dec

(
1

|Eq,η,m,ℓ(w)|

vmax∑
u=w

Cq,m,η(ℓ, w, u)

)−1

,

51

where

Cq,m,η(ℓ, w, u) :=

min{u,w}∑
ϵ=ϵmin

∑
w∈Tw,ℓ,µ

∑
u∈Tu,ℓ,µ

∑
ϵ∈Tϵ,ℓ,µ

ℓ∏
i=1

β(m)
ui
· P∩

q,µ,wi,ui
(ϵi) · NMq (m, η, wi),

and Wee−dec ∈ O(n2m2) over Fq denotes the complexity of the error and erasure decoder

from [29] as defined in Section VI-B.

Proof. The proof follows similar arguments as in Theorem 5. The main difference is that the

bounds on the success probability are replaced by the expressions derived in Corollary 4, which

involve the definitions from (39), (40), (41), and (48). The complexity of one iteration of

Algorithm 3 is given by Wee−dec, which is the complexity of the error and erasure decoder

used in the randomized algorithm.

Remark 6. The function Cq,m,η(ℓ, w, u) plays a crucial role in determining the complexity bounds

of the randomized sum-rank syndrome decoder. It can be computed efficiently using a dynamic

programming routine similar to Algorithm 5 in polynomial time.

VII. NUMERICAL RESULTS

We compare the performance of the randomized decoding algorithm for LRS codes with the

generic decoder . Figures 7 and 8 illustrate the expected complexities for both algorithms under

two different parameter sets, ensuring that the total number of bits, calculated as m log2(q) = 144,

remains constant.

In both figures, we set n = 48 and k = 24, resulting in a minimum sum-rank distance

dmin = 25, and a unique decoding radius τ =
⌊
n−k
2

⌋
= 12. We consider errors with sum-rank

weight w = τ + ξ = 13, where the error excess is ξ = 1.

The results show a significant reduction in complexity for the randomized decoding algorithm

compared to the generic decoder across both parameter sets. This improvement highlights the

advantage of leveraging the structural properties of LRS codes. Although the relative gain

decreases as the parameters approach those of the Hamming metric, the randomized decoder

still maintains a lower complexity in both the worst-case and average-case settings.

VIII. CONCLUSION AND OUTLOOK

In this paper, we developed and analyzed algorithms to address the general sum-rank metric

decoding problem, with a focus on both worst-case and average-case complexities. We derived

52

1 2 3 4 6

200

400

600

800

1,000

ℓ

lo
g
2
(C

om
pl

ex
ity

)
W

(LB)
gen,wc

W
(UB)
gen,wc

W
(UB)
gen,RCU

W
(LB)
gen,RCU

W
(LB)
rand

W
(UB)
rand

W
(UB)
rand,RCU

W
(LB)
rand,RCU

Fig. 7. Complexity comparison of generic decoding vs. randomized decoding beyond the unique decoding radius for parameters:

q = 23, m = 48, n = 48, k = 24, w = 13, u = 2, v = 24.

2 3 4 6 8 12 16 24 48

200

400

600

800

1,000

ℓ

lo
g
2
(C

om
pl

ex
ity

)

W
(LB)
gen,wc

W
(UB)
gen,wc

W
(UB)
gen,RCU

W
(LB)
gen,RCU

W
(LB)
rand

W
(UB)
rand

W
(UB)
rand,RCU

W
(LB)
rand,RCU

WPrange
16 24 48

0

20

40

60

80

100

120

140

ℓ

lo
g
2
(C

om
pl

ex
ity

)

Fig. 8. Complexity comparison of generic decoding vs. randomized decoding beyond the unique decoding radius for parameters:

q = 26, m = 24, n = 48, k = 24, w = 13, u = 2, v = 24.

a tighter upper bound for the results in [26] and extended their work to the average-case

scenario, with a particular focus on decoding beyond the unique decoding radius. Additionally, we

improved the randomized decoding algorithm for LRS codes, building on our previous work [27].

Furthermore, we introduced a Prange-like algorithm for the sum-rank metric that effectively

handles larger error weights in the asymptotic setting, where ℓ→∞.

53

Future research could adapt techniques that improved Prange’s original ISD algorithm in the

Hamming metric [41]–[44] to the generic and randomized decoding algorithms in the sum-rank

metric. Given the hybrid nature of the sum-rank metric, these methods may particularly benefit

the Hamming-like error structure and reduce complexity, especially when ℓ is large.

Another direction is to apply improvements from generic decoding algorithms in the rank

metric, such as those in [45], or extend algebraic techniques like [46] to the sum-rank metric.

These approaches could yield substantial complexity reductions for specific parameter regimes

in the sum-rank metric.

A list decoding algorithm for Gabidulin codes based on Gröbner bases was introduced in [47],

enabling error correction beyond the unique decoding radius. This approach can be easily adapted

for LRS codes. However, as no upper bound on the list size is known, it is difficult to assess

the overall complexity of the algorithm, making it challenging to compare with our approach.

Establishing tighter complexity bounds for this algorithm remains an open problem and could

be a promising direction for future research.

APPENDIX A

EFFICIENT COMPUTATION OF Bq,m,η(w, v, ℓ)

The quantity Bq,m,η(w, v, ℓ) defined in (23) can also be computed recursively as follows

Bq,m,η(w, v, ℓ) =

α
(m)
v NMq (m, η, w)P

⊆
q,µ (w ⊆ v) if ℓ = 1

min{µ,w}∑
w′=0

min{µ,v}∑
v′=w′

α
(m)
v′ NMq (m, η, w

′)P⊆
q,µ (w

′ ⊆ v′)

·Bq,m,η(w − w′, v − v′, ℓ− 1)

else

.

This expression can be computed in polynomial time using dynamic programming; see Algo-

rithm 5.

APPENDIX B

APPENDIX FOR SECTION VI

A. Definition of ucomp and Proof of Correctness

The computation of ucompµ(w, u) is described in Algorithm 6. and Lemma 2 proofs its

correctness. The randomization step in Line 6 of Algorithm 6 is crucial to avoid bias towards

54

Algorithm 5: Compute the term Bq,m,η(w, v, ℓ) in the sum (24) for a given v.
Input : Parameters: q, m, n, k, ℓ, w and v with v ≥ 0

Output : Value of Bq,m,η(w, v, ℓ)

Initialize: N(v′, w′, ℓ′) = 0 ∀w′ ∈ {0, . . . , w}, v′ ∈ {0, . . . , v}, ℓ′ ∈ {0, . . . , ℓ}

1 if v < w then

2 return 0

3 for w′ ∈ {0, . . . , w} do

4 for v′ ∈ {w′, . . . , v} do

5 if v′ ≤ µ then

6 N(v′, w′, 1)← α
(m)
v′ NMq (m, η, w

′)P⊆
q,µ (v

′ ⊆ w′)

7 for ℓ′ ∈ {2, . . . , ℓ} do

8 for w′ ∈ {0, . . . , w} do

9 for v′ ∈ {w′, . . . , v} do

10
N(v′, w′, ℓ′)←

min{µ,w′}∑
w′′=0

min{µ,v′}∑
v′′=w′′

N(v′ − v′′, w′ − w′′, ℓ′ − 1)

· α(m)
v′′ NMq (m, η, w

′′)P⊆
q,µ (v

′′ ⊆ w′′)

11 return N(v, w, ℓ)

specific positions, particularly when ℓ is large. This contrasts with a deterministic choice, which

may lead to suboptimal results. In the Hamming case, where η = 1 and n = ℓ, such randomization

is essential for the effectiveness of Prange’s generic decoder. However, our analysis does not

explicitly take this randomness property into account and instead relies on ϕ′
µ(ucompµ(w, u),w),

which is not randomized, despite ucompµ being a randomized function.

Lemma 2. Let w ∈ Tw,ℓ,µ and let u ≤ w. Then, u = ucompµ(w, u), with ucompµ as in

Algorithm 6, maximizes ϕ′
µ(u,w), i.e.,

ϕ′
µ(ucompµ(w, u),w) = max

u∈Tu,ℓ,µ
ϕ′
µ(u,w).

55

Algorithm 6: ucompµ(w, u)

Input : w ∈ Tw,ℓ,µ and u ∈ Z≥0 with u = 2ξ ≤ w

Output : u ∈ Tu,ℓ,µ such that u = argmaxu′∈Tu,ℓ,µ ϕ
′
µ(u

′,w)

1 u = [u1, . . . , uℓ]← w

2 δ ← w − u

3 while δ > 0 do

4 J1 ← {i ∈ {1, . . . , n} : ui > 0}

5 J2 ← {i ∈ J1 : wi = minj∈J1{wj}}

6 J3 ← {i ∈ J2 : ui = maxj∈J2{uj}}

7 h
$← J3

8 uh ← uh − 1

9 δ ← δ − 1

10 return u

Proof. By (44) we have that

ϕ′
µ(u,w) :=

ℓ∏
i=1

P⊆
q,µ (ui ⊆ wi) =

[
wi

ui

]
q[

µ
ui

]
q

.

The factor by what this expression is increased if we decrease ui by 1 is[
wi

ui−1

]
q
/
[

µ
ui−1

]
q[

wi

ui

]
q
/
[

µ
ui

]
q

=

ui∏
j=1

qµ−ui+j − 1

qwi−ui+j − 1
·
u−1∏
j=1

qwi−ui+1+j − 1

qµ−ui+1+j − 1

=
qµ − 1

qwi − 1
·
ui−1∏
i=j

(qwi−ui+1+j − 1)(qµ−ui+j − 1)

(qµ−ui+1+j − 1)(qwi−ui+j − 1)︸ ︷︷ ︸
=

(qwi−1)(qµ+1−qui)

(qµ−1)(qwi+1−qui)

=
qµ+1 − qui

qwi+1 − qui
.

This increase factor is monotonically increasing in ui for a fixed wi and µ, and decreasing in

wi for a fixed ui. Consequently, the maximum increase of (44) is obtained by decreasing the

largest ui among the smallest wi. By adopting a greedy approach and incrementally adjusting

such positions, a global maximum can be reached as this strategy ensures optimal increase

56

in subsequent steps. Thus, (44) is optimized by incrementally decreasing ui by one while

maintaining ui ≥ 0 and ensuring
∑ℓ

i=1 ui ≥ u. This method aligns with the operations performed

by ucompµ(w, u) as described in Algorithm 6.

B. Efficient Computation of Q̃ℓ,w,µ

Fortunately, we can employ a similar approach to [26, Lemma 22] and compute Q̃ℓ,w,µ as

Q̃ℓ,w,µ = ℓ! ·M(w, ℓ, µ, u),

where M(w, ℓ, µ, u) can be computed using Algorithm 7. To do so, we first initialize a global

table {M(w′, ℓ′, µ′, u′)}µ
′≤µ,u′≤u

w′≤w,ℓ′≤ℓ with M(w′, ℓ′, µ′, u′) = −1 for all entries. Then, we call Algo-

rithm 7 with input parameters w, ℓ, µ, and u.

By applying arguments similar to those in [26, Proposition 23], we can show that the com-

plexity of computing Q̃ℓ,w,µ using this approach is Õ(wun3µ3 log2(q)) and thus polynomially

bounded.

57

Algorithm 7: Fill Table {M(w′, ℓ′, µ′, u′)}µ
′≤µ,u′≤u

w′≤w,ℓ′≤ℓ

Input : Integers w′ ≤ w, ℓ′ ≤ ℓ, µ′ ≤ µ, u′ ≤ u

Global table {M(w′, ℓ′, µ′, u′)}µ
′≤µ,u′≤u

w′≤w,ℓ′≤ℓ

Global parameters q and µ

Output : M(w′, ℓ′, µ′, u′)

1 if M(w′, ℓ′, µ′, u′) = −1 then

2 if ℓ′ = w′ = u′ = 0 then

3 x← 1

4 else

5 if ℓ′ ≥ 1 and 0 ≤ w′ ≤ ℓ′µ′ and 0 ≤ u′ ≤ min{ℓ′µ,w′} then

6 x← 0

7 for w1 ∈ {µ, . . . , ⌊w/ℓ⌋} do

8 δmin ← max{1, ℓ′(w1 + 1)− w)}

9 δmax ← max{i ∈ Z≥0 : 1 ≤ i ≤ ℓ′ + 1, w1i ≤ w}

10 for δ ∈ {δmin, . . . , δmax} do

11 u1 ← max{u′ − (w′ − δw1), 0} u(1) ← ucompµ([w1, . . . , w1], u1)

12 ρ← 1
δ!
·
∏δ

i=1

([
µ

u
(1)
i

]
q
·
[

w1

u
(1)
i

]
q

−1
)

13 x← x+ ρ ·M(w′ − δw1, ℓ
′ − δ, w1 + 1, u′ − u1)

14 else

15 x← 0

16 return M(w′, ℓ′, µ′, u′)

REFERENCES

[1] H. F. Lu and P. V. Kumar, “A Unified Construction of Space-Time Codes with Optimal Rate-Diversity Tradeoff,” IEEE

Transactions on Information Theory, vol. 51, no. 5, 2005.

[2] E. M. Gabidulin, “Theory of Codes with Maximum Rank Distance,” Probl. Inf. Transm., vol. 21, no. 1, pp. 3–16, 1985.

[3] A. Wachter, V. Sidorenko, M. Bossert, and V. V. Zyablov, “On (Partial) Unit Memory Codes Based on Gabidulin

Codes,” Problems of Information Transmission, vol. 47, no. 2, pp. 117–129, Jun. 2011. [Online]. Available:

https://doi.org/10.1134/S0032946011020049

[4] A. Wachter-Zeh and V. Sidorenko, “Rank Metric Convolutional Codes for Random Linear Network Coding,” in 2012

https://doi.org/10.1134/S0032946011020049

58

International Symposium on Network Coding (NetCod). Cambridge, MA, USA: IEEE, Jun. 2012, pp. 1–6. [Online].

Available: http://ieeexplore.ieee.org/document/6261875/

[5] A. Wachter-Zeh, M. Stinner, and V. Sidorenko, “Convolutional Codes in Rank Metric With Application to Random

Network Coding,” IEEE Transactions on Information Theory, vol. 61, no. 6, pp. 3199–3213, Jun. 2015. [Online].

Available: http://ieeexplore.ieee.org/document/7090997/

[6] D. Napp, R. Pinto, J. Rosenthal, and P. Vettori, “MRD Rank Metric Convolutional Codes,” in 2017 IEEE International

Symposium on Information Theory (ISIT). Aachen, Germany: IEEE, Jun. 2017, pp. 2766–2770. [Online]. Available:

http://ieeexplore.ieee.org/document/8007033/

[7] U. Martı́nez-Peñas, “Skew and Linearized Reed–Solomon Codes and Maximum Sum Rank Distance Codes Over Any

Division Ring,” Journal of Algebra, vol. 504, pp. 587–612, 2018, publisher: Elsevier.

[8] U. Martı́nez-Peñas and F. R. Kschischang, “Reliable and Secure Multishot Network Coding Using Linearized

Reed–Solomon Codes,” IEEE Transactions on Information Theory, vol. 65, no. 8, pp. 4785–4803, 2019, publisher: IEEE.

[9] H. Bartz, T. Jerkovits, and J. Rosenkilde, “Fast Kötter–Nielsen–Høholdt Interpolation over Skew Polynomial Rings and

its Application in Coding Theory,” Designs, Codes and Cryptography, vol. 92, no. 2, pp. 435–465, Feb. 2024. [Online].

Available: https://link.springer.com/10.1007/s10623-023-01315-4

[10] H. Bartz and S. Puchinger, “Decoding of Interleaved Linearized Reed–Solomon Codes with Applications to Network

Coding,” in 2021 IEEE International Symposium on Information Theory (ISIT), 2021, pp. 160–165.

[11] U. Martı́nez-Peñas and F. R. Kschischang, “Universal and Dynamic Locally Repairable Codes With Maximal Recoverability

via Sum-Rank Codes,” IEEE Transactions on Information Theory, vol. 65, no. 12, pp. 7790–7805, 2019.

[12] R. W. Nóbrega and B. F. Uchôa-Filho, “Multishot Codes for Network Coding Using Rank-Metric Codes,” in 2010 Third

IEEE International Workshop on Wireless Network Coding. IEEE, 2010, pp. 1–6.

[13] P. Gaborit, O. Ruatta, and J. Schrek, “On the Complexity of the Rank Syndrome Decoding Problem,” IEEE Trans. Inform.

Theory, vol. 62, no. 2, pp. 1006–1019, 2016.

[14] J. K. Gibson, “Severely Denting the Gabidulin Version of the Mceliece Public Key Cryptosystem,” Designs, Codes and

Cryptography, vol. 6, no. 1, pp. 37–45, Jul. 1995. [Online]. Available: http://link.springer.com/10.1007/BF01390769

[15] K. Gibson, “The Security of the Gabidulin Public Key Cryptosystem,” in Advances in Cryptology — EUROCRYPT

’96, G. Goos, J. Hartmanis, J. Van Leeuwen, and U. Maurer, Eds. Berlin, Heidelberg: Springer Berlin

Heidelberg, 1996, vol. 1070, pp. 212–223, series Title: Lecture Notes in Computer Science. [Online]. Available:

http://link.springer.com/10.1007/3-540-68339-9 19

[16] R. Overbeck, “Extending Gibson’s Attacks on the GPT Cryptosystem,” in Coding and Cryptography, O. Ytrehus, Ed.

Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, vol. 3969, pp. 178–188, series Title: Lecture Notes in Computer

Science. [Online]. Available: http://link.springer.com/10.1007/11779360 15

[17] H. Rashwan, E. M. Gabidulin, and B. Honary, “Security of the GPT Cryptosystem and Its Applications to

Cryptography,” Security and Communication Networks, vol. 4, no. 8, pp. 937–946, Aug. 2011. [Online]. Available:

https://onlinelibrary.wiley.com/doi/10.1002/sec.228

[18] A. Wachter-Zeh, S. Puchinger, and J. Renner, “Repairing the Faure-Loidreau Public-Key Cryptosystem,” in IEEE

International Symposium on Information Theory (ISIT), Jun. 2018, pp. 2426–2430, place: Vail, Colorado, USA.

[19] F. Hörmann, H. Bartz, and A.-L. Horlemann, “Distinguishing and Recovering Generalized Linearized Reed–Solomon

Codes,” in Code-Based Cryptography, J.-C. Deneuville, Ed. Cham: Springer Nature Switzerland, 2023, vol. 13839,

pp. 1–20, series Title: Lecture Notes in Computer Science. [Online]. Available: https://link.springer.com/10.1007/

978-3-031-29689-5 1

http://ieeexplore.ieee.org/document/6261875/
http://ieeexplore.ieee.org/document/7090997/
http://ieeexplore.ieee.org/document/8007033/
https://link.springer.com/10.1007/s10623-023-01315-4
http://link.springer.com/10.1007/BF01390769
http://link.springer.com/10.1007/3-540-68339-9_19
http://link.springer.com/10.1007/11779360_15
https://onlinelibrary.wiley.com/doi/10.1002/sec.228
https://link.springer.com/10.1007/978-3-031-29689-5_1
https://link.springer.com/10.1007/978-3-031-29689-5_1

59

[20] C. Faure and P. Loidreau, “A New Public-Key Cryptosystem Based on the Problem of Reconstructing p-Polynomials,” in

Coding and Cryptography. Springer, 2006, pp. 304–315.

[21] J. Renner, S. Puchinger, and A. Wachter-Zeh, “LIGA: A Cryptosystem Based on the Hardness of Rank-Metric List and

Interleaved Decoding,” Designs, Codes, and Cryptography, vol. 89, pp. 1279–1319, 2021.

[22] T. Debris-Alazard, N. Sendrier, and J.-P. Tillich, “Wave: A New Family of Trapdoor One-Way Preimage Sampleable

Functions Based on Codes,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), vol. 11921 LNCS, 2019, iSSN: 16113349.

[23] N. Aragon, P. Barreto, S. Bettaieb, L. Bidoux, O. Blazy, J.-C. Deneuville, P. Gaborit, S. Gueron, T. Güneysu, C. A. Melchor,

R. Misoczki, E. Persichetti, N. Sendrier, J.-P. Tillich, V. Vasseur, and G. Zémor, “BIKE: Bit Flipping Key Encapsulation,”

2020, submission to NIST Post-Quantum Cryptography Standardization Process, Round 3.

[24] C. A. Melchor, N. Aragon, S. Bettaieb, L. Bidoux, O. Blazy, J.-C. Deneuville, P. Gaborit, E. Persichetti, and G. Zémor,

“Hamming Quasi-Cyclic (HQC),” 2020, submission to NIST Post-Quantum Cryptography Standardization Process, Round

3.

[25] C. A. Melchor, N. Aragon, S. Bettaieb, L. Bidoux, O. Blazy, M. Bros, A. Couvreur, J.-C. Deneuville,

P. Gaborit, A. Hauteville, and G. Zémor, “Rank Quasi-Cyclic (RQC),” 2020. [Online]. Available: https:

//pqc-rqc.org/doc/rqc-specification 2020-04-21.pdf

[26] S. Puchinger, J. Renner, and J. Rosenkilde, “Generic Decoding in the Sum-Rank Metric,” IEEE Transactions on Information

Theory, vol. 68, no. 8, 2022.

[27] T. Jerkovits, H. Bartz, and A. Wachter-Zeh, “Randomized Decoding of Linearized Reed–Solomon Codes Beyond the

Unique Decoding Radius,” in 2023 IEEE International Symposium on Information Theory (ISIT), 2023, pp. 820–825.

[28] J. Renner, T. Jerkovits, H. Bartz, S. Puchinger, P. Loidreau, and A. Wachter-Zeh, “Randomized Decoding of Gabidulin

Codes Beyond the Unique Decoding Radius,” in Post-Quantum Cryptography, J. Ding and J.-P. Tillich, Eds. Cham:

Springer International Publishing, 2020, pp. 3–19.

[29] F. Hörmann, H. Bartz, and S. Puchinger, “Error-Erasure Decoding of Linearized Reed–Solomon Codes in the Sum-Rank

Metric,” in 2022 IEEE International Symposium on Information Theory (ISIT), 2022, pp. 7–12.

[30] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes. North Holland Publishing Co., 1977,

published: Hardcover.

[31] T. Migler, K. E. Morrison, and M. Ogle, “Weight and Rank of Matrices Over Finite Fields,” 2004, arXiv: math/0403314

[math.RA]. [Online]. Available: https://arxiv.org/abs/math/0403314

[32] R. Kötter and F. R. Kschischang, “Coding for Errors and Erasures in Random Network Coding,” IEEE Transactions on

Information theory, vol. 54, no. 8, pp. 3579–3591, 2008, publisher: IEEE.

[33] E. Byrne, H. Gluesing-Luerssen, and A. Ravagnani, “Fundamental Properties of Sum-Rank-Metric Codes,” IEEE

Transactions on Information Theory, vol. 67, no. 10, 2021.

[34] S. Puchinger, J. Renner, and J. Rosenkilde, “Generic Decoding in the Sum-Rank Metric,” in IEEE International Symposium

on Information Theory - Proceedings, vol. 2020-June, 2020, iSSN: 21578095.

[35] T. Jerkovits, F. Hörmann, and H. Bartz, “An Error-Code Perspective on Metzner–Kapturowski-Like Decoders,”

2024, submitted to IEEE Transactions on Information Theory Version Number: 1. [Online]. Available: https:

//arxiv.org/abs/2409.18488

[36] H. S. Couvée, T. Jerkovits, and J. Bariffi, “Bounds on Sphere Sizes in the Sum-Rank Metric and Coordinate-Additive

Metrics,” Apr. 2024, arXiv:2404.10666 [cs, math]. [Online]. Available: http://arxiv.org/abs/2404.10666

[37] E. Prange, “The Use of Information Sets in Decoding Cyclic Codes,” IEEE Transactions on Information Theory, vol. 8,

no. 5, pp. 5–9, Sep. 1962. [Online]. Available: http://ieeexplore.ieee.org/document/1057777/

https://pqc-rqc.org/doc/rqc-specification_2020-04-21.pdf
https://pqc-rqc.org/doc/rqc-specification_2020-04-21.pdf
https://arxiv.org/abs/math/0403314
https://arxiv.org/abs/2409.18488
https://arxiv.org/abs/2409.18488
http://arxiv.org/abs/2404.10666
http://ieeexplore.ieee.org/document/1057777/

60

[38] S. Puchinger and J. Rosenkilde, “Bounds on List Decoding of Linearized Reed–Solomon Codes,” in 2021 IEEE

International Symposium on Information Theory (ISIT), 2021, pp. 154–159.

[39] G. Forney, “Generalized Minimum Distance Decoding,” IEEE Transactions on Information Theory, vol. 12, no. 2, pp.

125–131, Apr. 1966. [Online]. Available: http://ieeexplore.ieee.org/document/1053873/

[40] M. Bossert, E. Costa, E. M. Gabidulin, E. Schulz, and M. Weckerle, “Verfahren und Kommunikationsvorrichtung zum

Dekodieren von mit einem Rang-Code codierten Daten,” EU Patent EP20 040 104 458, 2003.

[41] J. Stern, “A Method for Finding Codewords of Small Weight,” in Coding Theory and Applications, G. Cohen and

J. Wolfmann, Eds. Berlin/Heidelberg: Springer-Verlag, 1989, vol. 388, pp. 106–113, series Title: Lecture Notes in

Computer Science. [Online]. Available: http://link.springer.com/10.1007/BFb0019850

[42] D. J. Bernstein, T. Lange, and C. Peters, “Smaller Decoding Exponents: Ball-Collision Decoding,” in Advances in

Cryptology – CRYPTO 2011, D. Hutchison, T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern, J. C. Mitchell, M. Naor,

O. Nierstrasz, C. Pandu Rangan, B. Steffen, M. Sudan, D. Terzopoulos, D. Tygar, M. Y. Vardi, G. Weikum, and

P. Rogaway, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, vol. 6841, pp. 743–760, series Title: Lecture

Notes in Computer Science. [Online]. Available: http://link.springer.com/10.1007/978-3-642-22792-9 42

[43] A. May, A. Meurer, and E. Thomae, “Decoding Random Linear Codes in O˜(2ˆ0.054n),” in Advances in Cryptology

– ASIACRYPT 2011, D. Hutchison, T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern, J. C. Mitchell, M. Naor,

O. Nierstrasz, C. Pandu Rangan, B. Steffen, M. Sudan, D. Terzopoulos, D. Tygar, M. Y. Vardi, G. Weikum, D. H. Lee,

and X. Wang, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, vol. 7073, pp. 107–124, series Title: Lecture

Notes in Computer Science. [Online]. Available: http://link.springer.com/10.1007/978-3-642-25385-0 6

[44] A. Becker, A. Joux, A. May, and A. Meurer, “Decoding Random Binary Linear Codes in 2ˆ(n/20): How 1 + 1 =

0 Improves Information Set Decoding,” in Advances in Cryptology – EUROCRYPT 2012, D. Hutchison, T. Kanade,

J. Kittler, J. M. Kleinberg, F. Mattern, J. C. Mitchell, M. Naor, O. Nierstrasz, C. Pandu Rangan, B. Steffen, M. Sudan,

D. Terzopoulos, D. Tygar, M. Y. Vardi, G. Weikum, D. Pointcheval, and T. Johansson, Eds. Berlin, Heidelberg: Springer

Berlin Heidelberg, 2012, vol. 7237, pp. 520–536, series Title: Lecture Notes in Computer Science. [Online]. Available:

http://link.springer.com/10.1007/978-3-642-29011-4 31

[45] N. Aragon, P. Gaborit, A. Hauteville, and J.-P. Tillich, “Improvement of Generic Attacks on the Rank Syndrome

Decoding Problem,” Oct. 2017. [Online]. Available: https://hal.archives-ouvertes.fr/hal-01618464

[46] M. Bardet, M. Bros, D. Cabarcas, P. Gaborit, R. Perlner, D. Smith-Tone, J.-P. Tillich, and J. Verbel, “Improvements of

Algebraic Attacks for Solving the Rank Decoding and MinRank Problems,” in Advances in cryptology – ASIACRYPT

2020, S. Moriai and H. Wang, Eds. Cham: Springer International Publishing, 2020, pp. 507–536.

[47] A.-L. Horlemann and M. Kuijper, “A Module Minimization Approach to Gabidulin Decoding Via Interpolation,” Journal

of Algebra Combinatorics Discrete Structures and Applications, vol. 5, pp. 29–43, Dec. 2017.

http://ieeexplore.ieee.org/document/1053873/
http://link.springer.com/10.1007/BFb0019850
http://link.springer.com/10.1007/978-3-642-22792-9_42
http://link.springer.com/10.1007/978-3-642-25385-0_6
http://link.springer.com/10.1007/978-3-642-29011-4_31
https://hal.archives-ouvertes.fr/hal-01618464

	Introduction
	Preliminaries
	Notation
	Sum-Rank Metric
	Linear Codes
	Channel Model
	Error Support
	Linearized Reed–Solomon Codes

	Problem Description
	Sum-Rank Syndrome Decoding Problem
	Decoding Beyond the Unique Radius
	Unique Decoding Problem
	Channel Model

	Generic Decoding in the Sum-Rank Metric
	Improved Simple Bound on the Worst-Case Success Probability
	Success Probability Analysis for the Average Case
	Optimizing the Support-Drawing Distribution via Linear Programming
	Efficient Optimization of the Support-Drawing Distribution in Generic Decoding
	Numerical Results for the Generic Decoding Algorithm

	Generic Decoding for Large Error Weights
	Randomized Decoding of Linearized Reed–Solomon Codes
	Erasures in the Sum-Rank Metric
	Randomized Decoding Algorithm
	Worst-Case Complexity
	Average Complexity
	Optimizing the Support-Drawing Distribution in Randomized Decoding of LRS Codes

	Numerical Results
	Conclusion and Outlook
	Appendix A: Efficient computation of Bq, m, (w, v,)
	Appendix B: Appendix for Section VI
	Definition of `3́9`42`"̇613A``45`47`"603Aucomp and Proof of Correctness
	Efficient Computation of ,w,

	References

