elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Rapid unsupervised economic assessment of urban flood damage using SAR images

Eudaric, Jeremy und Andrés, Camero und Kasra, Rafiezadeh Shahi und Heidi, reibich und Sandro, Martinis und Xiao Xiang, Zhu (2024) Rapid unsupervised economic assessment of urban flood damage using SAR images. EGU General Assembly 2024, 2024-04-14 - 2024-04-19, Vienna. doi: 10.5194/egusphere-egu24-532.

[img] PDF
294kB

Kurzfassung

Climate change projections for 2030 indicate a concerning increase in the frequency of floods, which is expected to result in significant economic damages and losses on a global scale. The growth of urbanization has indeed increased flood risk, highlighting the need for a prompt evaluation of economic losses to facilitate rapid response and effective reconstruction. However, providing timely and accurate economic damage assessment immediately after a flood event is difficult and associated with high uncertainty. Remote sensing data can support this task, but challenges such as cloud cover, infrequent return times from satellites, and the lack of ground truth data make supervised approaches challenging. To address these challenges, we propose a new economic damage assessment approach based on the analysis of multi-temporal and multi-source, Synthetic Aperture Radar (SAR) images before and after the flood peak with an unsupervised change detection method. This method utilizes computer vision techniques, specifically a pixel-based approach with SAR data (Sentinel-1 and TerraSAR-X/TanDEM-X) to monitor changes in buildings and the flood extension. It employs various threshold techniques and parameters to determine the optimal threshold values for highlighting changes and the presence of water. By using this method, our aim is to obtain an economic model based on pixels, which represents the volume of water surrounding or on each building and the flood extension. The purpose of this study is to support governments in decision-making processes and enable insurers to efficiently assess and compensate for damages caused by flood events.

elib-URL des Eintrags:https://elib.dlr.de/207446/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Rapid unsupervised economic assessment of urban flood damage using SAR images
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Eudaric, JeremyChair of Data Science in Earth Observation, Department of Aerospace and Geodesy, Technical University / Earth Observation Center, German Aerospace Center (DLR)NICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Andrés, CameroEarth Observation Center, German Aerospace Center (DLR)NICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Kasra, Rafiezadeh ShahiSection Hydrology, GFZ German Research Centre for GeosciencesNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Heidi, reibichSection Hydrology, GFZ German Research Centre for GeosciencesNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Sandro, MartinisEarth Observation Center, German Aerospace Center (DLR)NICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Xiao Xiang, ZhuChair of Data Science in Earth Observation, Department of Aerospace and Geodesy, Technical University of Munich / Munich Center for Machine Learning, 80333, Munich, GermanyNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:April 2024
Referierte Publikation:Nein
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
DOI:10.5194/egusphere-egu24-532
Status:veröffentlicht
Stichwörter:Satellite imagery, floods, economy
Veranstaltungstitel:EGU General Assembly 2024
Veranstaltungsort:Vienna
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:14 April 2024
Veranstaltungsende:19 April 2024
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Künstliche Intelligenz
Standort: Oberpfaffenhofen , andere
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > EO Data Science
Hinterlegt von: Eudaric, Jeremy Nicolas
Hinterlegt am:22 Okt 2024 13:22
Letzte Änderung:07 Nov 2024 11:40

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.