Kiehn, Daniel und Schultz, Julius und Fezans, Nicolas und Römer, Ulrich (2024) Adaptive Wind Field Estimation Using an Empirical Bayesian Approach. Journal of Guidance, Control, and Dynamics, 47 (11), Seiten 2386-2396. American Institute of Aeronautics and Astronautics (AIAA). doi: 10.2514/1.G008217. ISSN 1533-3884.
PDF
- Postprintversion (akzeptierte Manuskriptversion)
1MB |
Offizielle URL: https://arc.aiaa.org/doi/10.2514/1.G008217
Kurzfassung
In lidar-based gust load alleviation, the wind profile ahead of the aircraft cannot be measured directly, but has to be reconstructed (estimated) based on the acquired line-of-sight measurements. Such wind reconstruction algorithms typically include regularization in order to adequately handle the noise within the data. This paper presents an empirical Bayesian approach to choose optimal regularization parameters for any given set of measurements. Using simulations of flight through turbulence, the Bayesian approach is compared with a former approach (based on engineering guess) and an omniscient optimizer which yields the best achievable results for a constant set of parameters by using the full knowledge of the wind field. The Bayesian approach is shown to outperform the engineering guess and performs close to the omniscient optimizer while purely relying on the lidar measurement data.
elib-URL des Eintrags: | https://elib.dlr.de/207352/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||
Titel: | Adaptive Wind Field Estimation Using an Empirical Bayesian Approach | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 2 September 2024 | ||||||||||||||||||||
Erschienen in: | Journal of Guidance, Control, and Dynamics | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||
Band: | 47 | ||||||||||||||||||||
DOI: | 10.2514/1.G008217 | ||||||||||||||||||||
Seitenbereich: | Seiten 2386-2396 | ||||||||||||||||||||
Verlag: | American Institute of Aeronautics and Astronautics (AIAA) | ||||||||||||||||||||
ISSN: | 1533-3884 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | Load alleviation, lidar, adaptive algorithm, regularization, Bayes, Lastminderung, Regularisierung | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Luftfahrt | ||||||||||||||||||||
HGF - Programmthema: | Luftverkehr und Auswirkungen | ||||||||||||||||||||
DLR - Schwerpunkt: | Luftfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | L AI - Luftverkehr und Auswirkungen | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | L - Klima, Wetter und Umwelt, L - Flugzeugtechnologien und Integration, L - Virtuelles Flugzeug und Validierung | ||||||||||||||||||||
Standort: | Braunschweig | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Flugsystemtechnik > Flugdynamik und Simulation Institut für Flugsystemtechnik | ||||||||||||||||||||
Hinterlegt von: | Kiehn, Daniel | ||||||||||||||||||||
Hinterlegt am: | 20 Nov 2024 10:19 | ||||||||||||||||||||
Letzte Änderung: | 20 Nov 2024 10:19 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags