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In lidar-based gust load alleviation, the wind profile ahead of the aircraft cannot be measured di-

rectly, but has to be reconstructed (estimated) based on the acquired line-of-sight measurements.

Such wind reconstruction algorithms typically include regularization in order to adequately

handle the noise within the data. This paper presents an empirical Bayesian approach to choose

optimal regularization parameters for any given set of measurements. Using simulations of

flight through turbulence, the Bayesian approach is compared with a former approach (based

on engineering guess) and an omniscient optimizer which yields the best achievable results for a

constant set of parameters by using the full knowledge of the wind field. The Bayesian approach

is shown to outperform the engineering guess and performs close to the omniscient optimizer

while purely relying on the lidar measurement data.

I. Introduction
Recent years have shown a renewed interest in the application of Doppler-lidar (light detection and ranging) wind

sensors for feedforward gust load alleviation (GLA). Gusts and turbulence cause structural loads on aircraft which

the aircraft structures must be designed to withstand. GLA controllers are dedicated flight control functions whose

aim is to actively reduce these loads by anticipating or reacting to the encountered gusts and turbulence. The use of

GLA controllers offers the potential to reduce structural loads on the aircraft, thereby improving safety of operations,

passenger comfort, and allowing for lighter aircraft design [1–4]. It has been shown that the usage of feedforward

GLA controllers based on remote lidar measurements increases the achievable performance of GLA functions, as these

measurements allow anticipating the oncoming disturbance [5–8].

In the context of gust and turbulence load alleviation, the most relevant wind component is typically the vertical

wind. However, Doppler lidars only measure the line-of-sight projection of the relative wind w.r.t. the aircraft, so the
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vertical wind ahead of the aircraft cannot be directly measured with a forward-looking sensor. Instead, it must be

estimated (reconstructed) based on the line-of-sight measurements acquired with the Doppler lidar sensor. This task is

performed by a wind reconstruction algorithm, which requires regularization to ensure a certain degree of smoothness

of the resulting estimated wind field: all actions of the feedforward GLA controller are based on the estimated wind

profiles, and the smoothness of these profiles reduces unnecessary control actions (and related actuator loads) due to

measurement noise. The regularization parameters have a significant impact on the accuracy of the estimation result –

which is the primary information that the feedforward GLA controller acts on – and hence significantly influences the

performance of the GLA function. Oversmoothing causes higher frequency components of the wind field to not be

captured by the wind reconstruction, but some degree of regularization is required to reduce the impact of measurement

noise. Additionally, the optimal choice of regularization depends on the lidar sensor, the atmospheric conditions, and

the wind conditions around the aircraft, as shown in a recent parameter study [9].

Previously, e.g., in [5] or [9], fixed regularization parameters (chosen based on engineering judgement) were used,

which produced suboptimal results. It was found in sensitivity studies of the lidar system [9] that when the parameters of

the system (e.g., laser power, measurement range, etc.) are varied, the optimal values for the regularization parameters

also change. It is therefore crucial to find a suitable set of regularization parameters.

This paper addresses the challenge of choosing optimal regularization parameters for any given configuration. To this

end, we reformulate the wind field estimation problem in a Bayesian framework. We demonstrate how the formerly used

Tikhonov regularization can be transferred to a Bayesian setting by introducing Gaussian smoothness priors. In the

Bayesian framework the optimal regularization parameters can then be found by optimizing the marginal likelihood.

The proposed method is adaptive to lidar parameters, atmospheric conditions, and the wind field itself without requiring

any explicit information about those variables, because it is fully reliant on the measurements. Additionally, it naturally

provides uncertainty estimates of the reconstructed wind field. However, by introducing regularization, the uncertainty

estimates can get overconfident, as observed in our study and discussed in [10].

The paper is structured in the following way: In Section II the wind estimation based on lidar measurements is explained,

and the application of the Bayesian approach to wind field reconstruction is described in section III. Section IV introduces

the error metric which is used to evaluate the performance of individual configurations in the frequency domain. In

Section IV the analysis setup and the reference cases are introduced. The simulation results are discussed in Section VI,

and the conclusions are presented in Section VII.
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II. Wind estimation based on lidar measurements

A. Doppler wind lidars

The wind field ahead of the aircraft is retrieved from measurements of a Doppler wind lidar. Such sensors utilize the

Doppler effect which describes a frequency shift of any observed wave caused by a relative motion between the emitter

and receiver (i.e., observer). With such a system, the atmospheric disturbance (the wind field) can be detected and

counteracted before it is encountered by the aircraft. The typical measurement distance for such systems is 50 to 300m.

The lidar emits short laser pulses, which typically last for a few tens of nanoseconds. Only a specific area ahead of the

aircraft is illuminated by the emitted light due to the low divergence of the laser beam. At each point of the laser beam,

a tiny fraction of the pulse is scattered by the air molecules (and possibly some aerosols, if present). By comparing the

frequency of the light scattered back to the lidar sensor with that of the emitted light, the relative velocity between

the aerosols/molecules which scattered the light back can be determined: if the sensor and the aerosols/molecules are

moving towards each other, a shift towards higher frequencies (so-called blue shift) is observed. Likewise, if they are

moving away from each other, the spectrum is shifted towards lower frequencies (red shift).

So-called coherent heterodyne detection principles with a laser source in the infrared domain are generally the best

choice if the presence of a sufficient number of aerosols can be assumed. For the alleviation of clear air turbulence

at high altitudes however, the aerosol concentration is often insufficient. If a high availability of the remote wind

measurement is desired (which a GLA function would require), a direct-detection principle with a laser source in the

ultraviolet domain should be used, since it can work with Rayleigh-scattering from air molecules. More details on

lidar-based remote wind measurement technologies and their respective capabilities can be found in the literature, for

instance in [11, 12] and references therein.

With Doppler lidar sensors, only the relative wind component in the direction of the laser beam is measured, as

illustrated in Fig. 1. The lidar sensor measures 𝑉𝐿𝑂𝑆 , which is the projection of 𝑉𝑇𝐴𝑆 (𝑀) at the measurement location

𝑀 onto the sensor’s line of sight (LOS). 𝑉𝑇𝐴𝑆 (𝑀) is a combination of the inertial speed 𝑉𝐾 of the aircraft and the

local vertical wind speed 𝑉𝑤𝑖𝑛𝑑 (𝑀) at the measurement location [9]. If the wind is measured at locations ahead of the

aircraft, then the direction of the laser beam (also called line-of-sight, LOS) is almost collinear with the flight path,

and the measured relative wind speed is determined mostly by the true airspeed. The most relevant wind component

for GLA is the vertical wind due to its direct effect on lift. Hence, this information has to be reconstructed from the

relative wind measurements. The missing information (other velocity components as well as the wind at locations that

were not directly measured) can be reconstructed by measuring the wind at locations with various vertical and lateral

offsets with respect to the aircraft’s flight path. Such offsets can be created by using multiple discrete line-of-sight

directions, as was done in the AWIATOR programme (Aircraft Wing with Advanced Technology Operation) [11, 13],
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or by pointing the sensor’s LOS off-center with a specific scan angle and rotating it around the aircraft’s longitudinal

axis, as shown in Fig. 1. This way measurements are performed in different (i.e., non-collinear) directions, and the

transversal components (lateral and vertical) of the wind can be estimated by analyzing the differences between the

individual measurements. This method implicitly assumes that the wind is sufficiently homogeneous between the

points where the measurements are made. This assumption is of course difficult to validate and strongly depends on

the current atmospheric conditions encountered by the aircraft and the distance between the locations at which the

considered measurements were performed. The closer the measurements are located, the more likely it is that this

assumption is valid. Reducing the distance (laterally and vertically) between the measurements would however lead

to reduced angles between the different line-of-sight directions, eventually leading to very small differences between

the sensor line-of-sight velocities that are measured. This has a major drawback because these measurements cannot

be perfect (noise, biases, etc.). In particular, the signal-to-noise ratio (signal being the difference due to the wind

transversal components and noise being linked to the noise on each measurement) becomes very poor when calculating

the difference between measurements taken under almost collinear directions. In other words, there will necessarily be a

trade-off to be made between the validity of the homogeneity assumption (linked to the distance of the measurements to

the flight path) and the signal-to-noise ratio for the reconstructed transversal wind components.

𝑉𝐾

−𝑉𝑤𝑖𝑛𝑑(𝑀) 𝑉𝑇𝐴𝑆(𝑀)

𝑉𝐿𝑂𝑆

𝜂

𝑛𝑟𝑜𝑡

𝑀𝑉𝑇𝐴𝑆(𝑀) = 𝑉𝐾 − 𝑉𝑤𝑖𝑛𝑑(𝑀)

Fig. 1 Lidar measurement geometry. The ratio of the velocities is distorted for readability [9]. (Reproduced by
copyright holder).

B. Wind field reconstruction

The aim of the wind reconstruction process is to determine the vertical wind velocities ahead of the aircraft based on the

lidar line-of-sight measurements and some requirements about the smoothness of the wind field. The measurements

are taken at the pulse repetition frequency of the lidar, which can be in the order of several kHz, and stored in a

buffer together with metadata such as the coordinates, the LOS directions, and the expected standard deviation of the

measurement.

The wind reconstruction algorithm takes all available lidar measurements which were taken within a certain range in

front of and behind the aircraft and reconstructs the most likely wind field. When reconstructing the wind profile, no
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assumption on a particular model structure and shape shall be assumed for the present gust(s) or turbulence. In this case,

a free-form model structure as described in [5] can be used. The idea is to represent the gust/turbulence wind field by a

mesh where a velocity vector is set for each node of the mesh. Any wind field can in principle be represented by such a

mesh, as long as enough nodes are taken. For the application to gust load alleviation, small-scale wind variations are not

relevant and there is no real benefit in using a very fine mesh [5]. The spatial extent of the mesh is defined by the lead

and lag times 𝜏lead/𝜏lag and the inertial speed of the aircraft 𝑉𝐾 .

The result of the wind reconstruction is a set of 𝑛 estimated vertical wind speeds at equidistant nodes of the free-form

wind field model, spanning from −𝜏lag𝑉𝐾 to 𝜏lead𝑉𝐾 (assuming that 𝜏lag and 𝜏lead are both positive), as shown in Fig. 2.

This wind profile is re-interpolated and provided as the input to the load alleviation controller, which generally runs at a

much faster rate than the wind reconstruction algorithm. The re-interpolation is not discussed further in this paper,

details can be found in [14]. The focus here is purely on the lidar measurements and the wind reconstruction process.

For details about the controller design, the interested reader may refer to [14–16].

The discrete rate at which the wind estimation is run can generally be chosen freely, but due to the relatively high

computational effort of the problem a rate of 10Hz is currently used. The reconstructed wind profile is hence updated

every 100ms, as visualized in Fig. 3, where reconstructed wind profiles of a turbulent wind field are shown for three

subsequent estimation windows made at the points 𝑥𝑖 , 𝑥𝑖+1, and 𝑥𝑖+2, respectively.

We denote the ideal set of measurements that a perfect lidar sensor would provide at the measurement locations

{𝑦𝑖 | 𝑖 = 1, . . . , 𝑚} (1)

with 𝑚 indicating the number of measurements currently stored in the buffer, as well as the set of measurements used

during the wind reconstruction by

{𝑧𝑖 | 𝑖 = 1, . . . , 𝑚} (2)

The lidar sensor is assumed to have been calibrated beforehand (or continuously during operation, e.g., with an

autocalibration feature). Measurements are assumed to be independent and subject to mean-free Gaussian measurement

noise defined by a respective standard deviation

{𝜎𝑖 | 𝑖 = 1, . . . , 𝑚} (3)
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Fig. 2 Wind estimation process from lidar measurements to controller wind field (adapted from [15]). Repro-
duced by copyright holder.

such that the measurement equation reads

𝑧𝑖 = 𝑦𝑖 + 𝜖𝑖 , 𝑖 = 1, . . . , 𝑚 (4)

with 𝜖𝑖 ∼ N(0, 𝜎𝑖).
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Fig. 3 Three subsequent estimation windows in the presence of simulated von Kármán turbulence

Let 𝜽 = [𝜃1, 𝜃2, . . . , 𝜃𝑛] be the vector of 𝑛 wind field model parameters, which describe the vertical wind speeds of the

free-form wind field model. For a given vector of wind field model parameters we can thus define the forward model

outputs

{𝜉𝑖 (𝜽) | 𝑖 = 1, . . . , 𝑚} (5)

which consist of the LOS wind speeds 𝜉𝑖 (𝜽) at the same location and conditions as the measurements 𝑧𝑖 based on the

free-form model and the parameters 𝜽 . The forward model can then be compared against the measurements to estimate

the wind field parameters. The relation of the measurements and the model parameter is given by

𝑧𝑖 = 𝜉𝑖 (𝜽) + 𝑑𝑖︸      ︷︷      ︸
𝑦𝑖

+𝜖𝑖 (6)

where 𝑑𝑖 denotes a model discrepancy of the free-form wind field model. The model discrepancy mainly concerns the

high-frequency components of the wind field, which are not important for gust load alleviation; hence, 𝑑𝑖 is omitted in

the following. Based on Eq. (6) we can define a probability density function (pdf) for the measurement data, given a
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vector of wind field model parameters

𝑝(𝑧𝑖 |𝜽) ∼ N (𝜉𝑖 (𝜽), 𝜎𝑖). (7)

Since the measurements 𝑧𝑖 are independent, the pdf of the measurement vector z is given by the product of the marginal

pdfs as

𝑝(z|𝜽) =
𝑚∏
𝑖=1

𝑝(𝑧𝑖 |𝜽) ∝ exp
(
− 1

2

𝑚∑︁
𝑖=1

(𝑧𝑖 − 𝜉𝑖 (𝜽))2

𝜎2
𝑖

)
. (8)

The likelihood function is defined by 𝜽 ↦→ 𝑝(𝒛 |𝜽) describing the likelihood of the data given model parameter. The

maximum likelihood (ML) estimate 𝜽 is obtained by minimizing the negative logarithm of the likelihood, which leads to

𝜽 = arg min
𝜽

(
𝜽 ↦→

𝑚∑︁
𝑖=1

(𝑧𝑖 − 𝜉𝑖 (𝜽))2

𝜎2
𝑖

)
. (9)

In [5] and [9] a regularized ML approach is applied to incorporate smoothing requirements in the estimated wind field.

A Gauss-Newton algorithm then solves the potentially non-linear least squares problem. In this work, we use a Bayesian

approach which derives a posterior probability density for the model parameters. The model parameters describe the

vertical wind speeds in the free-form wind field model and thus the posterior uncertainty can be used for uncertainty

quantification of the wind field estimate. Additionally, the Bayesian approach offers concepts to automatically estimate

the hyperparameter such as the weights for the smoothing penalties, purely based on the measurement data.

C. Orders of Magnitude for the Application to Gust Load Alleviation

In order to generate the input signal for the feedforward controller, the estimated wind profile is reinterpolated at the

controller sampling rate as described in [14, sect. 2.6]. It is important to choose the lead time 𝜏lead large enough to allow

sufficient anticipation time for the controller, but also small enough to still ensure a certain density of measurements

around the forward-most nodes of the estimation mesh. The required anticipation time is based on the flight speed and

the wind component with the longest wavelength of interest. The longest gust for which the aircraft has to be certified

according to CS25.341 has a length of 107m, so at 250m/s true airspeed a lead time of 0.5 s is enough to cover half of

the longest gust of interest, which already permits to initiate the adequate commands sufficiently early. As illustrated in

[7] on a fairly simple aeroelastic model, the achievable load alleviation performance increases very significantly with the

previewed horizon at first but the curve flattens out fairly quickly. The orders of magnitudes can hardly be transferred

from [7] to a fast jet aircraft (very different speeds, wind loading, number of flexible modes and load stations), but the

overall trend remains valid and this behavior explains the choice made of a lead time of 0.5 s, which may appear rather

short at first.
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The minimum and maximum frequencies to be captured by the lidar and the wind reconstruction algorithm generally

depend on the aircraft configuration. Generally, the frequency range of interest for feedforward GLA is approximately

in the range of 0.5Hz to 10Hz. Below 0.5Hz, the frequencies are low enough to be easily compensated by feedback

control functions that are not using the lidar information. Above 10Hz, the frequencies are typically too high to be

effectively countered by currently available actuators and are usually not relevant in terms of load levels. Generally, the

most relevant structural mode for GLA is the the first wing bending mode, which typically occurs between 1Hz and

5Hz [4, sect. 3.2].

III. Bayesian approach to wind field reconstruction
We use a Bayesian approach [17] to estimate the wind field parameters which builds on Bayes’ law

𝑝(𝜽 |z) = 𝑝(z|𝜽)𝑝(𝜽)
𝑝(z) , (10)

where 𝑝(z|𝜽) denotes the likelihood introduced above, 𝑝(𝜽) the prior distribution and 𝑝(z) a normalization constant,

also called marginal likelihood. The maximum a posteriori estimate of the posterior is directly related to the regularized

ML solution, which has been used in previous works for wind field reconstruction [6]. The reader is referred to VII for

further details.

A. Smoothing priors

In this work we use Gaussian smoothness priors [18, 19] to penalize the first and second derivative of the wind field

parameters in order to induce a certain degree of smoothness in the estimated wind field. A Gaussian prior has the

general form

𝑝(𝜽) = |Q|1/2

(2𝜋)𝑛/2 exp
(
−1

2
𝜽𝑇Q𝜽

)
(11)

with |Q| denoting the determinant of the precision (inverse covariance) matrix. The smoothing property is achieved

by enforcing correlation between the wind field nodes. We will derive the precision matrix Q from stochastic partial

differential equations (SPDE) [20, 21].

An SPDE is defined as

G𝑢(𝑥) = 𝜈(𝑥), 𝑥 ∈ 𝐷, (12)

where G denotes a differential operator, 𝑢 a stochastic process, and 𝜈 a white noise process over a domain 𝐷. The
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white noise process is uncorrelated and defines at every position 𝑥 a normal random variable with zero mean and finite

variance. The solution of the SPDE is a Gaussian Process (GP) with a covariance structure induced by the choice of G.

Indeed, there is a direct relationship between the operator G and the precision matrix Q of the Gaussian process 𝑢.

We state this relationship in the discretized version of Eq. (12):

𝚪u = v. (13)

In this context 𝚪 is a whitening matrix, transforming a correlated Gaussian random vector u into a white noise random

vector v. The precision matrix Q of the multivariate Gaussian random vector u is then given as

Q = 𝚪𝑇𝚪. (14)

In [20] it is shown that a certain choice of operator G induces well known covariance structures, e.g., a Matérn covariance.

Any type of correlated stochastic process will serve as a smoothing prior. We will use very fundamental SPDEs to

derive the precision matrix of the smoothing priors. A straightforward choice is the Laplace operator, e.g., G = 𝑑2

𝑑𝑥2 for

the 1-D case (vertical wind speed 𝑤𝑊 as a function of the aircraft position 𝑥). This operator requires the solution u to be

twice differentiable. Another possible choice is the Nabla operator, e.g., G = 𝑑
𝑑𝑥
for the 1-D case.

A discretization of both operators with finite differences on a grid of size 𝑛 in 1-D results in

𝚪1 =



−1 1 0 . . . 0

0 −1 1
. . .

...

...
. . .

. . .
. . . 0

0 . . . 0 −1 1

 (𝑛−1×𝑛)

𝚪2 =



−1 2 −1 0 . . . 0

0 −1 2 −1
. . .

...

...
. . .

. . .
. . .

. . . 0

0 . . . 0 −1 2 −1

 (𝑛−2×𝑛)

(15)

where 𝚪1 is the discretized Nabla operator and 𝚪2 the discretized Laplace operator with omitted boundary conditions.

The precision matrices are thus given as

Q1 = 𝚪𝑇1 𝚪1, (16)

Q2 = 𝚪𝑇2 𝚪2. (17)
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The weighted precision matrix combining a penalty for the first and second derivative eventually reads

Q12 = 𝛾1Q1 + 𝛾2Q2. (18)

Note that due to the omission of boundary conditions the precision matrix is singular and has no full column rank, which

will be discussed below.

In its initial design, the wind reconstruction algorithm only included a regularization of the second derivative, but not

the first [22]. It was found later that adding a small amount of regularization on the first derivative can be beneficial in

some cases [23]. However, using regularization based on only the first derivative can be harmful, as it penalizes linear

trends (e.g., wind gradients) just as much as a sawtooth profile with the same piecewise absolute gradient: 𝛾1 → ∞ and

𝛾2 = 0 produces a straight line with no slope as it infinitely penalizes any gradient. Terms of higher than second order

might theoretically be beneficial, but the effect will be very small compared to the first and second order terms. In this

paper, we apply regularization only on the first and second derivatives, because we do not want to enhance the wind

reconstruction algorithm itself, but exploit its full potential by optimizing the hyperparameters.

B. Posterior for linear models

We now recall the posterior distribution for the case that the wind field model depends linear on its parameters 𝜽.

Bayesian inference for a linear model is well-understood, see, e.g., [24], but nevertheless stated here for completeness.

In this case the likelihood reads

𝑝(ẑ|𝜽) ∝ exp
(
−1

2
∥ẑ − A𝜽 ∥2

)
(19)

with

𝑧𝑖 =
𝑧𝑖

𝜎𝑖
∀𝑖 = 1, . . . , 𝑚 and (20)

𝐴𝑖, 𝑗 =
𝜕

𝜕𝜃 𝑗

𝜉𝑖 (𝜽)
𝜎𝑖

∀𝑖 = 1, . . . , 𝑚. (21)

Applying Bayes’ law and omitting the normalization constant, we obtain

𝑝(𝜽 |ẑ) ∝ exp
(
−1

2
∥ẑ − A𝜽 ∥2 − 1

2
𝜽𝑇Q12𝜽

)
. (22)
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Since the measurement noise and the prior are Gaussian distributions the posterior also follows a Gaussian distribution

as

𝑝(𝜽 |ẑ) ∼ N (𝝁Post,𝚺Post). (23)

Analytical expression can be derived by comparing Eq. (22) to a normal distribution [18]. The mean vector and

covariance matrix are then obtained as

𝝁Post = (A𝑇A + Q12)−1A𝑇 ẑ (24)

𝚺Post = (A𝑇A + Q12)−1. (25)

For a Gaussian distribution the mean is also the mode of the distribution and thus the maximum a posteriori (MAP)

estimate reads 𝜽MAP = 𝝁Post.

We recall that the construction of the Gaussian smoothness priors with omitted boundary conditions led to improper

prior densities with singular precision matrix. However, the posterior density is still a proper density that defines a

unique 𝜽MAP if the matrices A and Q12 have a trivial common nullspace. We can interpret this fact as follows: in case

of an improper prior, sampling from the prior distribution is not possible since the covariance matrix does not exist.

However in the case of the posterior, the data in the likelihood and the prior together contain enough information to turn

the posterior in a proper density with defined mean and covariance.

C. Hyperparameter learning

The choice of the weights for the smoothing priors (hyperparameters) has a strong influence on the quality of the

reconstructed wind field. In the case of under-smoothing the wind field is too “oscillatory” and in the case of

over-smoothing the reconstruction is smooth but has large deviation from the true wind field. Within the Bayesian

approach there is a way to infer the regularization parameters from the data by maximizing the marginal likelihood [25].

This approach is referred to as empirical Bayesian approach [26]. The marginal likelihood is defined as

𝑝(ẑ) =
∫

𝑝(ẑ|𝜽)𝑝(𝜽)𝑑𝜽 . (26)

It is obtained by marginalizing the likelihood over the prior probability density. In the particular case of a linear model

with Gaussian noise and Gaussian prior, there exists an analytical form of the marginal likelihood. The log marginal
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likelihood then reads

log 𝑝(ẑ) = −1
2

log |AQ−1
12 A𝑇 + I| − 𝑚

2
log 2𝜋 − 1

2
ẑ𝑇 (AQ−1

12 A𝑇 + I)−1ẑ. (27)

The precision matrix Q12 depends on the choice of the hyperparameter 𝛾1 and 𝛾2. We highlight this dependence

explicitly by writing

log 𝑝(ẑ|𝛾1, 𝛾2) = − 1
2

log |AQ−1
12 (𝛾1, 𝛾2)A𝑇 + I|

− 𝑚

2
log 2𝜋

− 1
2

ẑ𝑇 (ÂQ−1
12 (𝛾1, 𝛾2)A𝑇 + I)−1ẑ. (28)

The marginal likelihood can now be optimized with respect to the hyperparameter, i.e.,

𝛾∗1, 𝛾
∗
2 = arg min

𝛾1 ,𝛾2

(
𝛾1, 𝛾2 ↦→ − log 𝑝(ẑ|𝛾1, 𝛾2)

)
. (29)

Using the optimized hyperparameters has often been interpreted as applying Occam’s razor, which states that “Models

should not be more complex than necessary to explain the data.”. This is achieved by optimizing the marginal likelihood,

since the first term is a penalty on complexity and the last term is a penalty on data-fit. The middle term is a constant

and can be neglected in optimization. It is important to note that the calculation of the marginal likelihood requires the

precision matrix Q12 to be invertible. Thus, in case of a smoothing prior with no boundary conditions, a small noise

term needs to be added on the diagonal to regularize the precision matrix.

Figure 4 illustrates the behavior of the regularization parameters and the wind field reconstruction for extreme choices

of the regularization parameters as well as for the optimized values. Very small regularization parameters (Fig. 4a) lead

to wind fields that attempt to follow the small scale variation of the turbulent wind, however, peaks are still missed and

sometimes the estimation even goes in the wrong direction. On the other hand, too large regularization parameters

(Fig. 4b) lead to a poor fit of the data, since the high frequency content is mostly lost. Figure 4d shows the result of the

wind field reconstruction with optimized hyperparameters obtained by optimizing the marginal likelihood (Fig. 4c). The

posterior mean yields a good representation of the wind field following a reasonable compromise between data fit and

complexity.

Additionally, Fig. 4 presents the uncertainty of the vertical wind field estimates indicated by the 95 % credible interval.

The 95 % credible interval is defined as the central region of 95 % posterior probability. Credible intervals take into

account the measurement noise (via the likelihood) and the regularization (via the prior). It is discussed in [10] that in
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(a) Under-smoothing: 𝛾1 = 𝛾2 = 1e−5 (b) Over-smoothing: 𝛾1 = 𝛾2 = 10

0.9993
0.9996

0.9999

1.0002

(c) Contour of marginal likelihood (d) Optimized smoothing: 𝛾1 = 0.1, 𝛾2 = 0.06

Fig. 4 Wind field reconstruction for one window of a simulated continuous turbulence.
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case of an over-smoothing prior the credible interval gets overconfident and the coverage of the true data is low. In

this case the prior assumptions overrule the data. On the other hand, for under-smoothing the credible interval purely

reflects the uncertainty due to measurement noise. In our study, we recover these effects as seen in Fig. 4a and in Fig. 4b.

The 95 % credible interval for the wind field prediction with optimized smoothing parameters represents a reasonable

interval for likely free-form model wind field reconstructions. The width of the interval is influenced by the smoothing

prior and the fact that the free-form model can not represent the high frequency content by construction. For feedforward

gust load alleviation we are interested in a good mean estimate covering the important (low) frequency content of the

wind field. Thus, in the remainder of the paper we purely focus on the posterior mean estimate.

IV. Evaluation metric
To automatically assess the performance of the lidar sensor and the wind reconstruction technique used, we apply the

frequency-domain metric introduced in [9]. The relevant information on this metric and its physical interpretation is

reminded in this section. The reader is referred to [9] for further details and explanations.

The proposed metric generally works by simulating a flight through broadband turbulence, and comparing the

reconstructed wind field to the turbulent wind field which the aircraft actually encountered. Theoretically, this analysis

could be performed with any turbulent wind spectrum, but we decide to use the broadband turbulence spectrum defined

in the EASA certification specification CS 25.341(b) [27], also known as von Kármán spectrum. The von Kármán

spectrum defines the spectral shape of the turbulent wind via the power spectral density (PSD) Φ𝑤 (Ω), which is a

function of the spatial frequency Ω. The spatial frequency is related to the temporal frequency 𝑓 via the true airspeed

𝑉𝑇𝐴𝑆 with Ω = 2𝜋 𝑓 /𝑉𝑇𝐴𝑆 [28]. In this paper, we will use this relationship and express the power spectral density

Φ𝑤 ( 𝑓 ) as a function of the temporal frequency for convenience.

In the first step, a flight through continuous turbulence is simulated using MATLAB©/Simulink©. Even though the lidar

simulation generally includes the coupled motion of the lidar and the aircraft (e.g., change of the lidar measurement

direction due to change of the aircraft’s attitude caused by turbulence or control surface deflections), this feature is

disabled in order to remove all effects of aircraft and control system characteristics from the analysis and focus purely on

the lidar performance. The movement of the lidar is hence unaffected by the surrounding turbulence; it is simulated as

moving with constant inertial speed and constant pitch offset (representing the trim angle of the aircraft). During the

simulation, the wind profile is continuously estimated at a rate of 10Hz and stored with its corresponding coordinates in

space. Since the estimation windows overlap spatially as shown in Sec. II.B, a time series can be assembled for each

relative position (with respect to the aircraft) as follows. At each time 𝑡 ∈ [𝑡𝑖 , 𝑡𝑖+1) between the estimation times 𝑡𝑖 and

𝑡𝑖+1, the wind at the current position 𝑥(𝑡) can be obtained by interpolating the estimated wind profile between the nodes
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surrounding that position:

𝑥(𝑡) = 𝑥𝑖 + Δ𝑥 = 𝑥𝑖 + (𝑡 − 𝑡𝑖)𝑉𝐾 .

The obtained time series is piecewise continuous: it remains continuous as long as no new estimation is performed, but

jumps may occur upon switching between two successively estimated wind profiles. A new estimation is performed

every Δ𝑡𝑒𝑠𝑡 = 100ms. This process is shown exemplarily for three successive estimation windows in Fig. 5, which

correspond to the estimation windows shown in Sec. II.B. The thick lines represent the segments which are stitched

together to form the time series, and the thin lines represent the portions of the original estimation windows that are

discarded when assembling the time series∗. The result at the end of step 1 is a piecewise continuous time series of the

estimated wind at the considered location. In the following, for conciseness, only the current position of the aircraft

nose is considered, but the process is identical and the obtained results would be fairly similar for other positions.
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Fig. 5 Stitching together subsequent estimation windows to obtain a piecewise continuous signal.

In the second step, the absolute error between the time signal obtained in step 1 and the turbulent wind field is determined

by calculating the difference signal Δ𝑤𝑊 . A segment of a reconstructed wind profile, the actual turbulent wind 𝑤𝑊 , and

the resulting difference signal Δ𝑤𝑊 are shown in Fig. 6.

The third step consists of obtaining the relative spectral error 𝜀( 𝑓 ) which describes the ratio of the PSD of the error
∗These portions are discarded for the present analysis, but do contain useful information for a preview-control-based gust load alleviation

controller, see e.g. [14].
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Fig. 6 Time signal produced to obtain the spectral error.

signal ΦΔ𝑤 over the PSD of the original turbulent wind, i.e.,

𝜀( 𝑓 ) = ΦΔ𝑤 ( 𝑓 )
Φ𝑤 ( 𝑓 )

. (30)

Equation (30) describes the amount of conserved spectral power for a given frequency and, as shown in [14], represents

the equivalent transfer function from the true vertical wind to the output of the wind reconstruction process. It includes

the errors caused by the measurement volume†, the lidar instrument errors, and the additional errors induced by the

required regularization in the wind estimation algorithm. A relative error 𝜀( 𝑓 ) of zero indicates that the turbulent wind

was perfectly reconstructed at this frequency, hence the spectral content of the error signal at this frequency is zero. On

the other hand, if the relative error is 1, the spectral content of the difference signal at this frequency is the same as that

of the original wind signal, so this frequency component was completely lost in the wind reconstruction process. Note

that values 𝜀 > 1 are locally possible due to several reasons, e.g., because the interpolation process used to obtain the

error signal Δ𝑤𝑊 may introduce small spectral components at certain frequencies. The progression of 𝜀( 𝑓 ) for the

example used in this section is shown in Fig. 7.
†Each measurement is not taken at an exact location but rather corresponds to an average line-of-sight relative wind velocity over a slender

volume along the laser beam.
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Fig. 7 Relative error 𝜀( 𝑓 ) and mean relative error 𝜀 between 0.5 and 10 Hz.

This formulation of the relative error characterizes the transfer function of the lidar sensor and the subsequent wind

reconstruction process, i.e., the transfer function from the turbulent wind to the reconstructed wind profile. The

knowledge of this transfer function can be used to tune a feedforward gust load alleviation controller, as shown in [14].

In order to obtain a single quantity which summarizes the performance of the lidar measurement and wind reconstruction

process, the average of the relative error 𝜀 within a certain frequency band can be used:

𝜀 =
1

𝑓𝑢 − 𝑓𝑙

∫ 𝑓𝑢

𝑓𝑙

𝜀( 𝑓 ) 𝑑𝑓 (31)

where 𝑓𝑙 and 𝑓𝑢 are the lower and upper frequency bounds, respectively. This mean relative error is used as the primary

indicator for the performance of lidar sensor and wind reconstruction algorithm configurations in this paper. For the

presented analysis, 𝑓𝑙 = 0.5Hz and 𝑓𝑢 = 10Hz were chosen: below 0.5Hz, the frequencies are low enough to be easily

compensated by feedback control functions that are not using the lidar information. The lidar and wind reconstruction

are expected to perform well at these frequencies, but their performance in this frequency range is not particularly

relevant for the considered application and therefore not included in the chosen performance metric. Above 10Hz,

the frequencies are typically‡ too high to be effectively countered by currently available actuators and are usually not

relevant in terms of load levels.
‡Depending on the aircraft and its flight control systems.
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V. Considered Test Case

A. Continuous Turbulence Scenario

In order to evaluate the empirical Bayesian approach outlined in Section III, three different methods to choose the

regularization parameters are compared based on a simulated flight through continuous von Kármán turbulence. The

chosen flight point represents high altitude cruise flight conditions of a typical business jet aircraft at an altitude of

40000 ft and a Mach number of 0.86 (true airspeed of approx. 254m/s). The simulation duration is 1000 seconds with

a wind estimation rate of 10Hz, which yields 10000 individual estimation windows. The simulated wind field has a

turbulence intensity (i.e., standard deviation) of 20m/s and a spatial resolution of approx. 25 cm, which yields a Nyquist

frequency of approx. 500Hz.

The wind field was produced prior to the simulation using a random-phase method. The von Kármán turbulence

spectrum has most of its spectral power concentrated at very low frequencies, so when running long simulations using

this spectrum, the high-amplitude/low-wavelength components of the spectrum can cause high absolute wind speeds over

several hundreds of meters. In order to avoid unrealistically high wind speeds, we eliminated all spectral components of

more than 2500m wavelength (i.e., all components below approx. 0.1Hz at the current flight point). This way we avoid

over-optimistic signal-to-noise ratios for the lidar, while the aeroelastic characteristics of the aircraft remain unaffected

because this frequency region is far below the frequency of the short-period motion.

B. Compared Methods

Three methods to choose the regularization parameters are compared: first, fixed values 𝛾1 = 0.128 and 𝛾2 = 0.22 were

used for all windows based on insights gained from the parameter study in [9]. This set of parameters will be referred to

as engineering guess for the remainder of this paper.

In the second case, the values were individually determined using the empirical Bayesian approach described in

Section III. For each estimation window, the marginal likelihood is optimized using a gradient based constraint non-linear

optimizer [29]. Eventually, the obtained optimal hyperparameters are used for the wind reconstruction. This approach

does not require the knowledge of the true wind field and thus could theoretically be applicable in an online setting.

However, since each call of the marginal likelihood is computationally expensive, approximations of the optimum would

likely be necessary for a real time application.

For the third case, a single set of optimal values 𝛾1 and 𝛾2 (same values used for all windows) is determined by

minimizing the mean spectral error 𝜀 between 0.5Hz and 10Hz as described in Eq. (31). Again, a gradient based

constraint optimizer [29] was used for optimization. Lower bounds for 𝛾1 and 𝛾2 were specified in order to limit the

jumps between subsequent estimation windows, as explained in subsection V.C. Unlike the first and second method, the
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optimization needs the results of all estimation windows for the full simulation duration, and it requires total information

about the actual wind field. Each call of the objective function thus requires re-estimating all estimation windows for a

new set of weights. We call this approach omniscient optimization. The omniscient optimization is a purely theoretical

case, as it requires full and exact information about the actual wind field, which cannot be acquired in-flight (making it

unfeasible for online wind estimation). It only serves as a reference case for assessing the other two, as it provides the

best achievable results (in the sense of the minimum mean spectral error) for a constant set of parameters 𝛾1 and 𝛾2 over

all estimation windows.

The results and the comparison of the three different methods are presented in Section VI.

C. Parameter constraints

As explained in Section IV, the continuous output of the wind estimation is obtained by stitching partial estimated

wind profiles from successive estimation windows together, where the spatial length Δ𝑥 of every segment corresponds

to the product of the aircraft’s inertial speed 𝑉𝐾 and the wind estimation update time, i.e., Δ𝑥 = 𝑉𝐾/ 𝑓𝑒𝑠𝑡 ≈ 25.4m

where 𝑓𝑒𝑠𝑡 = 10Hz is the refresh rate (“frequency”) of the wind estimation process. Generally, actual continuity of the

resulting combined signal is not ensured since individual windows can have different values at the start and end of the

segment than the previous/subsequent segment, which can be seen by the small jumps between profiles in Fig. 5. We

define the difference between two subsequent estimation windows at the boundary of their connection as

𝑒𝑖 = 𝑤𝑒𝑠𝑡 ,𝑖 (𝑥𝑏𝑜𝑢𝑛𝑑,𝑖) − 𝑤𝑒𝑠𝑡 ,𝑖−1 (𝑥𝑏𝑜𝑢𝑛𝑑,𝑖) , (32)

where 𝑥𝑏𝑜𝑢𝑛𝑑,𝑖 is the coordinate of the boundary between the 𝑖-th and 𝑖 + 1-th window, i.e.,

𝑥𝑏𝑜𝑢𝑛𝑑,𝑖 =
𝑖

𝑓𝑒𝑠𝑡
𝑉𝐾 . (33)

Note that 𝑒𝑖 is only defined for 𝑖 > 1 since window 𝑖 = 0 corresponds to 𝑡 = 0, where no previous estimation window is

available. The jumps described by 𝑒𝑖 should be avoided to some degree since they introduce spectral components in the

combined signal which have no physical meaning. However, they should not be removed via post-processing, but the

regularization parameters should be chosen in a way that such discontinuities only occur to a low extent in the first

place. In order to evaluate the impact of the regularization parameters on the extent of 𝑒𝑖 , a full factorial variation of 𝛾1

and 𝛾2 is conducted and the mean of the absolute differences between subsequent window segments at the respective

boundaries is determined for each combination

𝑒 =
1

𝑁𝑤 − 1

𝑁𝑤−1∑︁
𝑖=1

| 𝑒𝑖 |, (34)
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where 𝑁𝑤 is the number of wind estimation windows.

The progression of 𝑒 as a function of 𝛾1 and 𝛾2 is shown in Fig. 8. It is observable that the jumps tend to decrease

quadratically with 𝛾1 and 𝛾2. For a given target value of 𝑒, the relationship of 𝛾1 and 𝛾2 turns out to be almost perfectly

linear. This linear relationship allowed specifying a constraint for the a-posteriori optimization and the Bayesian

approach in order to implicitly force an upper bound for 𝑒. We decided to use 𝑒 ≤ 0.2𝑚/𝑠 as a limit, which leads to the

linear constraint

𝛾2 ≥ −0.291 𝛾1 + 0.024. (35)
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Fig. 8 Mean absolute jumps 𝑒 as function of regularization parameters.

VI. Results
The performance of the three investigated methods for choosing the regularization parameters, quantified using the

evaluation metric based on the spectral error, is shown in Fig. 9. The approach using fixed parameters clearly yields the

worst results, as its spectral error is by far the highest, and about 25% of the spectral content is lost already at 5Hz. This

clearly points to overregularization caused by a too high choice for 𝛾1 and 𝛾2. Interestingly, the empirical Bayesian

approach and the a-posteriori optimization method yield similar results in the frequency domain. The results using

the a-posteriori optimization method are slightly better (when measured using the proposed evaluation metric), as can

be seen by the vertical offset most pronounced at frequencies between 5 and 12m/s. However, the only goal of this
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Fig. 9 Comparison of the spectral error of the Bayesian approach against two references.

approach is to minimize the mean spectral error, whereas the empirical Bayesian approach does not explicitly consider

the frequency-domain based evaluation metric at all – it is only implicitly affected due to the penalty on the complexity

of the model as explained in subsection III.C. Even though these two approaches have different objective functions, both

produce very similar results.

Figure 10 exemplarily shows the progression of the reconstructed time signals for a spatial length of 200m. It can

be seen that the engineering guess causes oversmoothing, as most of the peaks are not captured well. The empirical

Bayesian approach and the omniscient optimization yield very similar results, but the omniscient case proves to be

capable of following the true wind slightly better, especially at its peaks (e.g., at approx. 5505m and 5615m) due to the

weaker regularization.

The distribution of regularization parameters of the three investigated approaches is shown in Fig. 11. The figure

visualizes the joint distribution as well as the marginal distributions in form of histograms. Additionally, a zoom at the

region of the linear constraint defined by Eq. (35) is plotted. In case of the omniscient optimization, the optimum is

found for 𝛾1 = 4e−7 and 𝛾2 = 0.024, whereas the median values obtained using the Bayesian approach are 𝛾1 = 0.05

and 𝛾2 = 0.025 (mean: 𝛾1 = 0.066, 𝛾2 = 0.071).

A possible explanation for the variation of parameters found by the Bayesian approach was sought in the inevitable local

variation of spectral content between windows, but a deeper investigation§ revealed that there is no obvious correlation
§This analysis is omitted in this paper for the sake of brevity.
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Fig. 10 Reconstructed wind profiles for the three tested methods (example window).

between the spectral content of the wind in the considered time window and the obtained values for 𝛾1 and 𝛾2. This

could be explained by the fact that the sensitivity of the reconstructed wind profiles in the time domain is relatively low

for such low values of 𝛾1 and 𝛾2, i.e., the parameter values are so small that even quite high relative changes do not

affect the shape of the reconstructed signal (and hence the transfer function) in any significant way. Additionally, both

parameters have somewhat similar effects: in the extreme case of 𝛾1 = 0 and 𝛾2 → ∞, the resulting profile will be a

straight line with any slope, but in the case of 𝛾1 → ∞ and 𝛾2 = 0, the resulting profile is a straight line with zero slope.
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Fig. 11 Distribution and fixed values of the regularization parameters.

A. Effects of the parameter constraint

As explained in section V.C, a linear constraint was applied for the a-posteriori optimization and the empirical Bayesian

approach to ensure a certain degree of smoothness of the time signal which is produced by combining the individual

estimation windows to evaluate the spectral error. The upper bound for the “jumps” between subsequent wind profiles,

which was used to derive the constraint (cf. Eq. (34)), can be chosen somewhat arbitrarily, so it is important to understand

its impact on the optimization results.

Figure 12 shows the cost function of the a-posteriori optimization (i.e., the mean spectral error 𝜀 between 0.5 and 10Hz)

as a function of 𝛾1 and 𝛾2. The white lines are isolines for the mean absolute jumps 𝑒 (cf. Sec. V.C). The red dot marks

the unconstrained minimum, and the red cross marks the constrained minimum for 𝑒 ≤ 0.2m/s. Without constraints on

the mean absolute jumps 𝑒, the optimal point of the cost function is found at 𝛾1 = 0 and 𝛾2 ≈ 0.002 (red dot in this

figure). At this point, the mean absolute jump value 𝑒 is 𝑒𝑜𝑝𝑡≈ 0.41m/s. Hence, setting an upper bound on 𝑒 lower

than this value will lead to a constrained optimum that differs from the unconstrained one. Based on the respective

orientations of (a) the gradient of the cost function and (b) the constraints on 𝑒, the constrained optima will always lie on

the (𝛾1 = 0, 𝛾2 ≥ 0.002) half-line. The optimum under the constraint 𝑒 ≤ 0.2m/s lies approximately at (0, 0.024), as
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already found numerically, and is marked with a red cross in this figure.

Fig. 12 Mean spectral error 𝜀 as a function of 𝛾1 and 𝛾2.

VII. Conclusions
This paper presents a methodology to adaptively choose optimal regularization parameters based on an empirical

Bayesian approach. It is shown that the developed method, which aims at optimizing the marginal likelihood without

requiring any information about the wind field itself, is generally able to produce similar results as the a-posteriori

method, which aims at reducing the error in the frequency domain and requires the full wind field information. It can be

seen that the reconstructed wind profiles in the time domain (and hence their representations in the frequency domain)

are not too sensitive w.r.t. variations of 𝛾1 and 𝛾2, as long as these remain in the low-value range. This is supported by

the fact that 97.5 % of the optimized regularization parameters are in the range 𝛾1, 𝛾2 ∈ [0.0, 0.5]. The results using the

a-posteriori optimization method are slightly better, i.e., on average 3.3% better conservation of spectral power, which

is expected as it uses this metric explicitly in its cost function. An additional insight of the study is that the “engineering

guess” for 𝛾1 and 𝛾2 was still too conservative, since the optimum obtained by the a-posteriori method yields much

lower values and in terms of the error metric on average 15% better conservation of spectral power could be achieved.
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A drawback of the Bayesian method is that the characterization of the transfer function of the lidar measurement and

wind reconstruction process cannot be determined a priori, and hence cannot be directly used for controller tuning. In

case of the omniscient optimizer, where an optimized set of regularization parameter values is found for all windows, the

transfer function is well known. The parameter estimation with the omniscient optimizer could be made semi-adaptive

by generating sets of optimal parameter values over a large number of points within an envelope (with varying flight

conditions and atmospheric parameters) and using a selection logic similar to gain scheduling. This however, would still

not be truly adaptive. The Bayesian method, on the other hand, is able to find optimal parameter values for any given

atmospheric conditions and thus paves the way for adaptive wind field estimation for different atmospheric conditions.
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Appendix A: Connection of the Bayesian approach to the regularized maximum likelihood
solution

This paper presents a Bayesian approach to solve the inverse problem for wind field reconstruction, whereas previous

works (e.g., [5, 9]) applied an approach based on the maximum likelihood solution with Tikhonov regularization. We

now show the connection between these two approaches. The goal is to show that the maximum a posteriori (MAP)

solution of the Bayesian approach given by Eq. (22) is equivalent to the maximum likelihood approach with Tikhonov

regularization.

The MAP solution is defined as

𝜽𝑀𝐴𝑃 = arg max
𝜽

𝑝(𝜽 |ẑ) (36)

This can be achieved by minimizing the negative logarithmic posterior and hence

𝜽𝑀𝐴𝑃 = arg min
𝜽

∥ẑ − A𝜽 ∥2 + 𝜽𝑇Q12𝜽 (37)

= arg min
𝜽

∥ẑ − A𝜽 ∥2 + 𝛾1𝜽
𝑇Q1𝜽 + 𝛾2𝜽

𝑇Q2𝜽 (38)

From the construction of the priors we know that

𝜽𝑇Q1𝜽 = 𝜽𝑇𝚪𝑇1 𝚪1𝜽 = (𝚪1𝜽)𝑇𝚪1𝜽 = ∥𝚪1𝜽 ∥2 (39)

𝜽𝑇Q2𝜽 = 𝜽𝑇𝚪𝑇2 𝚪2𝜽 = (𝚪2𝜽)𝑇𝚪2𝜽 = ∥𝚪2𝜽 ∥2 (40)

and thus we can also write Eq. (38) as:

𝜽𝑀𝐴𝑃 = arg min
𝜽

∥ẑ − A𝜽 ∥2 + 𝛾1∥𝚪1𝜽 ∥2 + 𝛾2∥𝚪2𝜽 ∥2 (41)

Equation (41) is exactly the expression for the maximum likelihood estimate with the Tikhonov regularization matrices

𝚪1, 𝚪2 and the corresponding weighting coefficients 𝛾1 and 𝛾2.
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