Zhu, Yue und Geiß, Christian und So, Emily (2024) Simulating urban expansion with interpretable cycle recurrent neural networks. GIScience and Remote Sensing, 61 (1), Seiten 1-22. Taylor & Francis. doi: 10.1080/15481603.2024.2363576. ISSN 1548-1603.
PDF
- Verlagsversion (veröffentlichte Fassung)
13MB |
Offizielle URL: https://www.tandfonline.com/doi/epdf/10.1080/15481603.2024.2363576?needAccess=true
Kurzfassung
Recent advances in deep learning have brought new opportunities for analyzing land dynamics,and Recurrent Neural Networks (RNNs) presented great potential in predicting land-use and land-cover (LULC) changes by learning the transition rules from time series data. However, implement-ing RNNs for LULC prediction can be challenging due to the relatively short sequence length ofmulti-temporal LULC data, as well as a general lack of interpretability of deep learning models. Toaddress these issues, we introduce a novel deep learning-based framework tailored for forecastingLULC changes. The proposed framework uniquely implements a cycle-consistent learning schemeon RNNs to enhance their capability of representation learning based on time-series LULC data.Moreover, a local surrogate approach is adopted to interpret the results of predicted instances. Wetested the method in a LULC prediction task based on time-series Landsat data of Shenzhen, China.The experiment results indicate that the cycle-consistent learning scheme can bring substantialperformance gains to RNN methods in terms of processing short-length sequence data. Also, thetests of interpretation methods confirmed the feasibility and effectiveness of adopting localsurrogate models for identifying the influence of predictor variables on predicted urban expansion instances.
elib-URL des Eintrags: | https://elib.dlr.de/207333/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||
Titel: | Simulating urban expansion with interpretable cycle recurrent neural networks | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 2024 | ||||||||||||||||
Erschienen in: | GIScience and Remote Sensing | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Ja | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||
Band: | 61 | ||||||||||||||||
DOI: | 10.1080/15481603.2024.2363576 | ||||||||||||||||
Seitenbereich: | Seiten 1-22 | ||||||||||||||||
Verlag: | Taylor & Francis | ||||||||||||||||
ISSN: | 1548-1603 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | urban expansion simulation | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Fernerkundung u. Geoforschung | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Deutsches Fernerkundungsdatenzentrum > Georisiken und zivile Sicherheit | ||||||||||||||||
Hinterlegt von: | Geiß, Christian | ||||||||||||||||
Hinterlegt am: | 12 Nov 2024 13:20 | ||||||||||||||||
Letzte Änderung: | 12 Nov 2024 13:20 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags