Rößl, Florian und Garcia Crespillo, Omar (2024) Robust GNSS Multipath Error Modeling based on Deep Quantile Regression with Gaussian Overbounding. In: 37th International Technical Meeting of the Satellite Division of The Institute of Navigation, Seiten 1402-1415. ION GNSS+, 2024-09-16 - 2024-09-20, Baltimore, MD, USA. doi: 10.33012/2024.19762.
PDF
- Nur DLR-intern zugänglich
6MB |
Offizielle URL: https://www.ion.org/publications/abstract.cfm?articleID=19762
Kurzfassung
Safety-critical navigation applications require safe localization error characterization. This requirements extends toglobal navigation satellite systems (GNSS), which are essential for on-board based navigation solutions for different transportation applications. Existing integrity monitoring systems, such as satellite-based augmentation systems (SBAS) or advanced receiver autonomous integrity monitoring (ARAIM), are only capable of providing a robust signal-in-space error description for civil aviation. However, for land-based applications, the local GNSS error, in particular multipath error, due to harsh environments, remains a critical challenge. In this work, an artificial intelligence (AI)-based GNSS code multipath error overbound model for safe error distribution characterization is presented. Two main contributions are made: First, a quantile regression loss function is designed to predict conservative quantiles based on a neural network, so that they are compatible for safety purposes. Second, the quantiles are used to obtain a Gaussian overbound, which describes the underlying error with a parametric distribution that ensures error bounding conditions. The proposed algorithm is first validated with a simple simulation example. Its use and benefit for multipath error modeling is then evaluated with real GNSS data in railway application. Results suggest the capability of this algorithm to reliably characterize multipath errors in challenging scenarios. The method and algorithm can be used for robust multipath distribution characterization in combination with positioning and integrity monitoring algorithms, such as horizontal-ARAIM for railway signaling.
elib-URL des Eintrags: | https://elib.dlr.de/207245/ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||
Titel: | Robust GNSS Multipath Error Modeling based on Deep Quantile Regression with Gaussian Overbounding | ||||||||||||
Autoren: |
| ||||||||||||
Datum: | 10 Oktober 2024 | ||||||||||||
Erschienen in: | 37th International Technical Meeting of the Satellite Division of The Institute of Navigation | ||||||||||||
Referierte Publikation: | Nein | ||||||||||||
Open Access: | Nein | ||||||||||||
Gold Open Access: | Nein | ||||||||||||
In SCOPUS: | Nein | ||||||||||||
In ISI Web of Science: | Nein | ||||||||||||
DOI: | 10.33012/2024.19762 | ||||||||||||
Seitenbereich: | Seiten 1402-1415 | ||||||||||||
Status: | veröffentlicht | ||||||||||||
Stichwörter: | GNSS, artificial intelligence, error modeling, multipath | ||||||||||||
Veranstaltungstitel: | ION GNSS+ | ||||||||||||
Veranstaltungsort: | Baltimore, MD, USA | ||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||
Veranstaltungsbeginn: | 16 September 2024 | ||||||||||||
Veranstaltungsende: | 20 September 2024 | ||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||
HGF - Programmthema: | Kommunikation, Navigation, Quantentechnologien | ||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||
DLR - Forschungsgebiet: | R KNQ - Kommunikation, Navigation, Quantentechnologie | ||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - GNSS Technologien und Dienste | ||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||
Institute & Einrichtungen: | Institut für Kommunikation und Navigation > Navigation | ||||||||||||
Hinterlegt von: | Rößl, Florian | ||||||||||||
Hinterlegt am: | 31 Okt 2024 10:54 | ||||||||||||
Letzte Änderung: | 31 Okt 2024 10:54 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags