elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Robust GNSS Multipath Error Modeling based on Deep Quantile Regression with Gaussian Overbounding

Rößl, Florian und Garcia Crespillo, Omar (2024) Robust GNSS Multipath Error Modeling based on Deep Quantile Regression with Gaussian Overbounding. In: 37th International Technical Meeting of the Satellite Division of The Institute of Navigation, Seiten 1402-1415. ION GNSS+, 2024-09-16 - 2024-09-20, Baltimore, MD, USA. doi: 10.33012/2024.19762.

[img] PDF
6MB

Offizielle URL: https://www.ion.org/publications/abstract.cfm?articleID=19762

Kurzfassung

Safety-critical navigation applications require safe localization error characterization. This requirements extends toglobal navigation satellite systems (GNSS), which are essential for on-board based navigation solutions for different transportation applications. Existing integrity monitoring systems, such as satellite-based augmentation systems (SBAS) or advanced receiver autonomous integrity monitoring (ARAIM), are only capable of providing a robust signal-in-space error description for civil aviation. However, for land-based applications, the local GNSS error, in particular multipath error, due to harsh environments, remains a critical challenge. In this work, an artificial intelligence (AI)-based GNSS code multipath error overbound model for safe error distribution characterization is presented. Two main contributions are made: First, a quantile regression loss function is designed to predict conservative quantiles based on a neural network, so that they are compatible for safety purposes. Second, the quantiles are used to obtain a Gaussian overbound, which describes the underlying error with a parametric distribution that ensures error bounding conditions. The proposed algorithm is first validated with a simple simulation example. Its use and benefit for multipath error modeling is then evaluated with real GNSS data in railway application. Results suggest the capability of this algorithm to reliably characterize multipath errors in challenging scenarios. The method and algorithm can be used for robust multipath distribution characterization in combination with positioning and integrity monitoring algorithms, such as horizontal-ARAIM for railway signaling.

elib-URL des Eintrags:https://elib.dlr.de/207245/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Robust GNSS Multipath Error Modeling based on Deep Quantile Regression with Gaussian Overbounding
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Rößl, Florianflorian.roessl (at) dlr.dehttps://orcid.org/0000-0003-2163-0493170688950
Garcia Crespillo, OmarOmar.GarciaCrespillo (at) dlr.dehttps://orcid.org/0000-0002-2598-7636NICHT SPEZIFIZIERT
Datum:10 Oktober 2024
Erschienen in:37th International Technical Meeting of the Satellite Division of The Institute of Navigation
Referierte Publikation:Nein
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
DOI:10.33012/2024.19762
Seitenbereich:Seiten 1402-1415
Status:veröffentlicht
Stichwörter:GNSS, artificial intelligence, error modeling, multipath
Veranstaltungstitel:ION GNSS+
Veranstaltungsort:Baltimore, MD, USA
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:16 September 2024
Veranstaltungsende:20 September 2024
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Kommunikation, Navigation, Quantentechnologien
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R KNQ - Kommunikation, Navigation, Quantentechnologie
DLR - Teilgebiet (Projekt, Vorhaben):R - GNSS Technologien und Dienste
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Kommunikation und Navigation > Navigation
Hinterlegt von: Rößl, Florian
Hinterlegt am:31 Okt 2024 10:54
Letzte Änderung:16 Dez 2024 15:11

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.