elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Understanding activation patterns in artificial neural networks by exploring stochastic processes: Discriminating generalization from memorization

Lehmler, Stephan Johann und Saif-ur-Rehman, Muhammad und Glasmachers, Tobias und Iossifidis, Ioannis (2024) Understanding activation patterns in artificial neural networks by exploring stochastic processes: Discriminating generalization from memorization. Neurocomputing, 610, Seite 128473. Elsevier. doi: 10.1016/j.neucom.2024.128473. ISSN 0925-2312.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
5MB

Offizielle URL: https://dx.doi.org/10.1016/j.neucom.2024.128473

Kurzfassung

To gain a deeper understanding of the behavior and learning dynamics of artificial neural networks, mathematical abstractions and models are valuable. They provide a simplified perspective and facilitate systematic investigations. In this paper, we propose to analyze dynamics of artificial neural activation using stochastic processes, which have not been utilized for this purpose thus far. Our approach involves modeling the activation patterns of nodes in artificial neural networks as stochastic processes. By focusing on the activation frequency, we can leverage techniques used in neuroscience to study neural spike trains. Specifically, we extract the activity of individual artificial neurons during a classification task and model their activation frequency. The underlying process model is an arrival process following a Poisson distribution. We examine the theoretical fit of the observed data generated by various artificial neural networks in image recognition tasks to the proposed model’s key assumptions. Through the stochastic process model, we derive measures describing activation patterns of each network. We analyze randomly initialized, generalizing, and memorizing networks, allowing us to identify consistent differences in learning methods across multiple architectures and training sets. We calculate features describing the distribution of Activation Rate and Fano Factor, which prove to be stable indicators of memorization during learning. These calculated features offer valuable insights into network behavior. The proposed model demonstrates promising results in describing activation patterns and could serve as a general framework for future investigations. It has potential applications in theoretical simulation studies as well as practical areas such as pruning or transfer learning.

elib-URL des Eintrags:https://elib.dlr.de/207138/
Dokumentart:Zeitschriftenbeitrag
Titel:Understanding activation patterns in artificial neural networks by exploring stochastic processes: Discriminating generalization from memorization
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Lehmler, Stephan Johannstephan.lehmler (at) dlr.dehttps://orcid.org/0000-0002-6373-4074169503662
Saif-ur-Rehman, MuhammadNICHT SPEZIFIZIERTNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Glasmachers, TobiasNICHT SPEZIFIZIERTNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Iossifidis, IoannisNICHT SPEZIFIZIERTNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:19 September 2024
Erschienen in:Neurocomputing
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:610
DOI:10.1016/j.neucom.2024.128473
Seitenbereich:Seite 128473
Verlag:Elsevier
ISSN:0925-2312
Status:veröffentlicht
Stichwörter:Artificial neural networks;Stochastic modeling;Poisson process; Generalization;Memorization
HGF - Forschungsbereich:keine Zuordnung
HGF - Programm:keine Zuordnung
HGF - Programmthema:keine Zuordnung
DLR - Schwerpunkt:keine Zuordnung
DLR - Forschungsgebiet:keine Zuordnung
DLR - Teilgebiet (Projekt, Vorhaben):keine Zuordnung
Standort: Ulm
Institute & Einrichtungen:Institut für KI-Sicherheit
Hinterlegt von: Lehmler, Stephan
Hinterlegt am:14 Okt 2024 11:56
Letzte Änderung:15 Okt 2024 12:00

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.