elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Estimation of car body vibration from axle box acceleration by combining machine learning and model-based methods

Weiland, Tobias (2024) Estimation of car body vibration from axle box acceleration by combining machine learning and model-based methods. Masterarbeit, Technische Universität Berlin.

[img] PDF
6MB

Kurzfassung

The objective of this study was to develop a machine learning model to predict the vertical acceleration transfer between the axle box and the body of a train. The modelling was based on a data set from a project on predictive maintenance of modern railway infrastructure systems and included recordings from a on-board multi-sensor system with axle box acceleration (ABA) sensors and an inertial measurement unit (IMU). The data set was resampled, filtered, scaled, synchronised and split into training, validation and test sets in order to prepare the data for model training. Three neural network types were considered: conventional neural networks (NNs), convolutional neural networks (CNNs) and recurrent neural networks (RNNs). The models were implemented in Python and parameter optimisation was carried out, for example for the model width and model depth. The different approaches were evaluated and compared with each other. The study demonstrated that the development of a reliable prediction model is associated with considerable challenges. All model types exhibited severe underfitting during training and eventually reached a local minimum, resulting in suboptimal parameterisation and predictions that were close to zero. No parameter combination could be identified through optimisation that demonstrated superior prediction quality; instead, the configurations differed in the speed at which the plateau was reached. The suboptimal model quality can be attributed to the use of noisy and inconsistently correlated signals for training, which prevented the underlying dynamics from being accurately captured. Potential improvements include the inclusion of additional data, the investigation of multi-channel solutions with multiple sensors and the investigation of larger models with more computing power. Furthermore, modelling approaches that incorporate partial differential equations could represent promising avenues for future research.

elib-URL des Eintrags:https://elib.dlr.de/206944/
Dokumentart:Hochschulschrift (Masterarbeit)
Titel:Estimation of car body vibration from axle box acceleration by combining machine learning and model-based methods
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Weiland, Tobiastobias.weiland (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:2024
Open Access:Ja
Status:veröffentlicht
Stichwörter:machine learning, vibration, axle box acceleration, railway
Institution:Technische Universität Berlin
Abteilung:School of Electrical Engineering and Computer Science
HGF - Forschungsbereich:keine Zuordnung
HGF - Programm:keine Zuordnung
HGF - Programmthema:keine Zuordnung
DLR - Schwerpunkt:Digitalisierung
DLR - Forschungsgebiet:D IAS - Innovative autonome Systeme
DLR - Teilgebiet (Projekt, Vorhaben):D - SKIAS
Standort: Berlin-Adlershof
Institute & Einrichtungen:Institut für Verkehrssystemtechnik > Informationsgewinnung und Modellierung, BA
Hinterlegt von: Baasch, Dr. Benjamin
Hinterlegt am:07 Okt 2024 08:18
Letzte Änderung:10 Okt 2024 15:15

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.