
Estimation of car body vibration from
axle box acceleration by combining
machine learning and model-based

methods

Studienabschlussarbeit

Tobias Weiland
453 148

08.07.2024

Supervisor: Prof. Dr.-Ing. C. Gühmann
Prof. Dr.-Ing. D. Kolossa

Technische Universität Berlin
School of Electrical Engineering and Computer Science

Department of Energy and Automation Technology
Chair of Electronic Measurement and Diagnostic Technology

Eidesstattliche Erklärung

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig und eigenhändig sowie ohne
unerlaubte fremde Hilfe und ausschließlich unter Verwendung der aufgeführten Quellen und
Hilfsmittel angefertigt habe.

Berlin, den 30th September 2024

Tobias Weiland, # 453 148 iii

Kurzfassung

Die vorliegende Studie hatte zum Ziel, ein Machine-Learning-Modell zur Vorhersage der ver-
tikalen Beschleunigungsübertragung zwischen dem Achslager und der Karosserie eines Zuges
zu entwickeln. Dafür wurde ein Datensatz aus einem Projekt zur vorausschauenden Wartung
moderner Eisenbahninfrastruktursysteme verwendet, welcher Aufzeichnungen eines Multis-
ensorsystems mit Achslagerbeschleunigungssensoren (ABA) und einer Inertialmesseinheit (IMU)
beinhält. Der Datensatz wurde neu abgetastet, gefiltert, skaliert, synchronisiert und in Trainings-
, Validierungs- und Testdatensätze aufgeteilt, um die Daten für das Modelltraining vorzubereiten.
Im Rahmen der Arbeit wurden drei neuronale Netzwerktypen berücksichtigt: konventionelle
neuronale Netze (NNs), Faltungsneuronale Netze (CNNs) und Rekurrente neuronale Netze
(RNNs). Die Modelle wurden in Python implementiert und es wurde eine Optimierung für
ausgewählte Parameter (z.b. für die Modellbreite und die Modelltiefe) durchgeführt. Die ver-
schiedenen Ansätze wurden miteinander verglichen und bewertet. Die Studie zeigte, dass die
Entwicklung eines zuverlässigen Vorhersagemodells mit erheblichen Herausforderungen ver-
bunden ist. Alle Modelltypen wiesen während des Trainings eine starke Unteranpassung auf
und erreichten schließlich ein lokales Minimum, was zu einer suboptimalen Parametrisierung
und Vorhersagen nahe Null führte. Durch die Optimierung konnte keine Parameterkombina-
tion gefunden werden, welche eine bessere Vorhersagegüte aufwies, stattdessen unterschieden
sich die Konfigurationen in der Geschwindigkeit, mit der das Plateau erreicht wurde. Die un-
zureichende Modellqualität lässt sich auf die Verwendung von verrauschten und uneinheitlich
korrelierten Signalen für das Training zurückführen, was dazu führte, dass die zugrunde lie-
gende Dynamik nicht exakt erfasst werden konnte. Als potenzielle Verbesserungen können die
Einbeziehung zusätzlicher Daten, die Untersuchung von Mehrkanal-Lösungen mit mehreren
Sensoren sowie die Untersuchung größerer Modelle mit mehr Rechenleistung genannt werden.
Des Weiteren könnten Modellierungsansätze, die partielle Differentialgleichungen einbeziehen,
potenzielle Forschungsfelder für die Zukunft darstellen.

Tobias Weiland, # 453 148 v

Abstract

The objective of this study was to develop a machine learning model to predict the vertical
acceleration transfer between the axle box and the body of a train. The modelling was based
on a data set from a project on predictive maintenance of modern railway infrastructure sys-
tems and included recordings from a on-board multi-sensor system with axle box acceleration
(ABA) sensors and an inertial measurement unit (IMU). The data set was resampled, filtered,
scaled, synchronised and split into training, validation and test sets in order to prepare the data
for model training. Three neural network types were considered: conventional neural networks
(NNs), convolutional neural networks (CNNs) and recurrent neural networks (RNNs). The
models were implemented in Python and parameter optimisation was carried out, for example
for the model width and model depth. The different approaches were evaluated and compared
with each other. The study demonstrated that the development of a reliable prediction model
is associated with considerable challenges. All model types exhibited severe underfitting dur-
ing training and eventually reached a local minimum, resulting in suboptimal parameterisation
and predictions that were close to zero. No parameter combination could be identified through
optimisation that demonstrated superior prediction quality; instead, the configurations differed
in the speed at which the plateau was reached. The suboptimal model quality can be attrib-
uted to the use of noisy and inconsistently correlated signals for training, which prevented the
underlying dynamics from being accurately captured. Potential improvements include the in-
clusion of additional data, the investigation of multi-channel solutions with multiple sensors
and the investigation of larger models with more computing power. Furthermore, modelling
approaches that incorporate partial differential equations could represent promising avenues for
future research.

Tobias Weiland, # 453 148 vii

Contents

List of Figures xi

List of Tables xiii

List of Abbreviations xv

1 Introduction 1

2 Theoretical Background 3
2.1 Railway Vehicle Vertical Dynamics . 3

2.1.1 Suspension Characteristics . 4
2.1.2 Suspension Modeling . 5
2.1.3 Quarter-Car Model . 7

2.2 Signal Processing . 9
2.2.1 Data Synchronisation . 10
2.2.2 Data Filtering . 11
2.2.3 Data Resampling . 12
2.2.4 Data Scaling . 13

2.3 Machine Learning . 14
2.3.1 Classical Neural Network . 15
2.3.2 Convolutional Neural Networks . 20
2.3.3 Recurrent Neural Network . 22

3 Description of the Database 25
3.1 Description of the Sensors used . 25
3.2 Data Exploration . 27

3.2.1 Data Structure . 27
3.2.2 Data Handling . 28
3.2.3 Sensor Selection . 28
3.2.4 Data Rating . 31

3.3 Data Preprocessing . 33
3.3.1 Bandpass Filter . 34
3.3.2 Data Synchronisation . 36
3.3.3 Data Scaling . 37
3.3.4 Preprocessing Evaluation . 37

4 Model Development and Evaluation 41
4.1 Classical Neural Network . 42

4.1.1 Architecture Selection and Initialisation 42
4.1.2 Hyperparameter Optimisation . 44
4.1.3 Training and Evaluation . 46

Tobias Weiland, # 453 148 ix

Contents

4.2 Convolutional Neural Network . 46
4.2.1 Architecture Selection and Initialisation 46
4.2.2 Hyperparameter Optimisation . 48
4.2.3 Training and Evaluation . 53

4.3 Recurrent Neural Network . 55
4.3.1 Architecture Selection and Initialisation 55
4.3.2 Hyperparameter Optimisation . 57
4.3.3 Training and Evaluation . 58

5 Further Results and Discussion 61
5.1 Comparison of the Modelling Results . 61
5.2 Spurious Local Minima . 65
5.3 Bias Variance Trade-Off . 65
5.4 Modification of the Database . 67
5.5 Alternative Model Approach . 70

6 Summary 73

Bibliography 75

x Tobias Weiland, # 453 148

List of Figures

1 Sensor Positioning in Two-Stage Suspension System. Modified from Rao 2021
[11] . 3

2 Hysteresis cycles in the force-displacement diagram of a hydraulic damper meas-
ured at a) 1 Hz, b) 10 Hz, c) 25 Hz [15] . 5

3 Mechanical half vehicle suspension model for vertical vibration analysis. Re-
drawn from [18] . 7

4 Modified Quarter-Car Model for ABA Data with excluded Wheel-Rail Contact.
Redrawn from [20] . 8

5 Schematic of the padding process after data synchronisation with an optimum
shift of 3 samples . 11

6 Schematic example of the amplitude response of a low pass filter with signific-
ant ripple in the passband . 11

7 Example of spectral images and aliasing caused by sampling rate conversion
using Polyphase Filters [28] . 13

8 Nonlinear model of a single neuron, labeled i. Redrawn from [33] 15
9 Fully connected feedforward network with one hidden layer and one output

layer [33] . 16
10 Hyperbolic tangent activation function . 19
11 One-dimensional max pooling operation with filter size 4x1. Redrawn from [37] 21
12 Schematic RNN with tanh activation function. Modified from https://dagshub.com/blog/rnn-

lstm-bidirectional-lstm/ . 22
13 Recurrent Neural Network: Schematic LSTM Network. Modified from https://dagshub.com/blog/rnn-

lstm-bidirectional-lstm/ . 23

14 Illustration of the sensors used (PCB-629A61 Acceleration sensor on the left
and MTi-10 3D Inertial Measurement Unit (IMU) on the right 25

15 Locomotive equipped with Multi-Sensor-System [43] 26
16 Distribution of journey length across all sessions 27
17 Plot of the acceleration signals from ABA1, ABA2, IMU and speed signal from

an exemplary journey . 30
18 Journey with weak correlation between Axle Box Acceleration (ABA) and Inertial

Measurement Unit (IMU) signal (C-rating) 31
19 Heatmap showing the relationships between the evacuation metrics and the

visual assessment of the data . 32
20 Frequency spectra of the raw and filtered IMU and ABA signals of an exemplary

journey . 34
21 Result of the bandpass filter with a low cut-off frequency of 6 Hz and a high

cut-off frequency of 18 Hz . 35
22 Plotted raw and processed signals for IMU and ABA as a result of preprocessing 39

Tobias Weiland, # 453 148 xi

List of Figures

23 Schematic Multilayer Perceptron (MLP) with two hidden layers and a width of
units 12 per layer . 43

24 Plotted prediction of classical neural network in comparison to the scaled input
and output signals . 45

25 Plotted predictions of two convolutional neural networks in comparison to the
scaled IMU Signal. Prediction 1: Convolutional Layer with RelU activation in
hidden layer, Prediction 2: Convolutional Layer with hyperbolic tangent activ-
ation in hidden layer . 48

26 Root Mean Squared Error of model prediction and scaled training data labels
for single hidden layer CNNs . 49

27 Root Mean Squared Error of model prediction and scaled training data labels
for double hidden layer CNNs . 50

28 Root Mean Squared Error of model prediction and scaled validation data labels
for single hidden layer CNNs . 51

29 Plotted predictions of two convolutional neural networks in comparison to the
scaled input and output signals . 52

30 Plotted predictions of a convolutional neural network at different steps of the
training process in comparison to the scaled IMU Signal 54

31 Plotted predictions of a recurrent neural network in comparison to the scaled
input and output signals . 57

32 Root Mean Squared Error of model prediction and scaled training data labels
from Recurrent Neural Network (RNN) models 58

33 Plotted predictions of a recurrent neural network at different steps of the training
process in comparison to the scaled IMU Signal 59

34 Root Mean Squared Error of model prediction and scaled validation data labels
for single hidden layer CNNs . 62

35 Plotted predictions of different neural networks in comparison to the scaled
input and output signals . 64

36 Scaled ABA and IMU signals of exemplary journeys with high correlation (up-
per plot) and low correlation (lower plot) . 67

37 Scatter plot of the ABA and IMU Signal from two exemplary journeys of the
training data . 68

38 Prediction of conventional NN in comparison to scaled input and output signals.
Model trained with only highly correlating IMU and ABA Signals 69

xii Tobias Weiland, # 453 148

List of Tables

1 Parameters for passive two-stage railway vehicle suspension system model [22] 9

2 Comparison of the sensor characteristics of the PCB-629A61 Acceleration sensor
and the MTi-10 3D Inertial Measurement Unit [41], [42] 26

3 Overview of the resulting sample shifts by signal synchronisation. Maximal,
minimal and mean value for each session . 36

4 Dynamic time warp score, pearson correlation coefficient, cosine similarity and
cross-correlation based factor 21 during the course of the prepocessing pipeline
(mean value for each session) . 38

5 Overview of the resulting RMSE of predictions and scaled IMU Signals from
different models . 61

6 Overview of the resulting RMSE of predictions and scaled IMU Signals from
different models when trained with modified train data set 69

Tobias Weiland, # 453 148 xiii

List of Abbreviations

CBM Condition-based Maintenance

DLR Deutsches Zentrum für Luft- und Raumfahrt e. V.

IMU Inertial Measurement Unit

ABA Axle Box Acceleration

GNSS Global Navigation Satellite System

NN Neural Network

NNs Neural Networks

CNN Convolutional Neural Network

CNNs Convolutional Neural Networks

RNN Recurrent Neural Network

RNNs Recurrent Neural Networks

MSD Multibody System Dynamics

MLP Multilayer Perceptron

LSTM Long Short-Term Memory

RelU Rectified Linear Unit

ELU Exponential Linear Unit

GRU Gated Recurrent Unit

RMSE Root Mean Squared Error

PINN Physics Informed Neural Network

PINNs Physics Informed Neural Networks

PDEs Partial Differential Equations

Tobias Weiland, # 453 148 xv

1 Introduction

Railway transportation of goods and passengers is considered an environmentally friendly and
energy efficient alternative to cars. Therefore, the development and expansion of railway infra-
structure is becoming increasingly important in many countries [1]. However, railway operators
face additional costs due to the high maintenance requirements of vehicles and the rail network.
Modern maintenance solutions have significant potential for cost reduction through optimized
resource utilization. Furthermore, the intensity of effortful maintenance activities, such as in-
spections or patrolling, can be reduced [1].
Condition Monitoring as part of Condition-based Maintenance (CBM) is becoming recognised
as the most effective strategy for accomplishing maintenance tasks in various industries [2] in-
cluding the area of rail transport infrastructure systems.
To implement a CBM strategy, it is necessary to have a quasi-continuous and comprehensive
collection of track condition data. Sensor-based technologies are crucial for measuring the track
condition. Within several projects, scientists at the German Aerospace Center (Deutsches Zen-
trum für Luft- und Raumfahrt, DLR) are working on an approach based on the use of embedded
sensor systems on regular rail vehicles instead of dedicated measurement trains. The main
focus of this approach is on utilizing inertial sensors to capture the dynamic response of the
vehicle to track irregularities. Specifically, acceleration sensors located on the axle boxes are
used in combination with a positioning system in the driver’s cabin [3]. The positioning system
comprises an Ineratial Measurement Unit (IMU), a Global Navigation Satellite System (GNSS)
antenna and receiver. By combining these systems with the Axle Box Acceleration (ABA),
georeferenced data can be obtained, which can be used to determine the track condition at a
given position.
A high level of measuring accuracy and a reliable sensor system are necessary to monitor the
current state of the tracks and implement a CBM strategy. Using a sensor system that is prone
to errors to monitor irregularities in the track will result in unreliable anomaly detection. This is
particularly important in autonomous systems that collect data offline most of the time. A robust
sensor that can detect abnormal behavior before sending it to the back-end is desirable. In light
of the aforementioned considerations, the necessity for an advanced sensor validation method is
apparent, as it is of paramount importance to ascertain whether anomalies in the measured data
are attributable to substandard track quality or sensor failure.
One potential methodology for validation is the autonomous, data-driven validation of the
sensor system, utilising the data from the individual sensors within the system and their in-
terrelationships. The key to this approach is that both the acceleration sensors in the axle boxes
and the IMU in the positioning system measure accelerations in the vertical direction, creating
redundancy. As the position of the sensors is different (acceleration sensor at the axle boxes
and IMU in the cabin), the acceleration they measure is also different because the vibration
is damped by the vehicle’s suspension system. The underlying principle of this model-based
method is to forecast the vibration in the body where the IMU is situated, utilising the ABA
data as input information. The comparison between the model prediction and the actual vi-
bration measured in the cabin can then be used to evaluate the actual behaviour of the sensor

Tobias Weiland, # 453 148 1

1 Introduction

system and to detect sensor errors. In order to implement this approach, it is essential to develop
a model with high prediction accuracy.
In the field of railway dynamics, a conventional and established approach for on-board state and
vibration monitoring is Multibody System Dynamics (MSD) modelling. However, these mod-
els require high computational power due to the non-linear behaviour associated with wheel-rail
contact and hysteretic damping characteristics. Especially for real-time systems, it is essential
to reduce the computation time by increasing the efficiency of the models [4]. In addition, phys-
ical models for determining dynamic vehicle responses are generally difficult to parameterise
with sufficient accuracy, as the necessary parameters are often unknown and may change over
time [3].
Recent publications have focused on a purely data-driven modelling approaches, which has be-
come increasingly popular due to recent advances in machine learning, e.g. [5]–[9]. These
approaches are particularly suitable for dynamic system modelling [5]. In addition to classical
machine learning methods such as classification and linear regression, deep learning techniques
are also being developed. Neural networks are particularly advantageous for these tasks due to
their high nonlinear modelling capability [6].
This work presents several neural network models for estimating the body vibrations of a rail-
way vehicle based on the axle box acceleration. The background to this research is the autonom-
ous evaluation of the functionality of multi-sensor systems with redundant signals. The models,
which include a conventional Neural Network (NN), a Convolutional Neural Network (CNN)
and a Recurrent Neural Network (RNN), are compared and evaluated with regard to the specific
task. The data sets needed to train and test the models originate from the HavenZug [10] project
and are provided by the DLR.

2 Tobias Weiland, # 453 148

2 Theoretical Background

This chapter elaborates on the theoretical background for this work. It includes an introduc-
tion to the necessary aspects of railway vehicle vertical dynamics, a description of the machine
learning methods used to derive car body vibration from ABA data, and the necessary tech-
niques applied during the course of data preprocessing.

2.1 Railway Vehicle Vertical Dynamics

Figure 1: Sensor Positioning in Two-Stage Suspension System. Modified from Rao 2021 [11]

The topic of the vertical dynamics of rail vehicles encompasses a number of different aspects,
including mechanical, system-theoretical, and design considerations. As a result, this chapter
has been divided into a number of sub-chapters, each of which deals with a specific aspect in
greater detail. The first subchapter provides an in-depth analysis of the specific characteristics
of rail vehicles, followed by a detailed examination of the modelling of damping systems. Fi-
nally, a mechanical quarter-vehicle model is derived.

Tobias Weiland, # 453 148 3

2 Theoretical Background

It is important to note that the entire vehicle is not considered, and the focus is on the transmis-
sion of vibration between the axle bearing and the cab. Therefore, this section does not discuss
the non-linear properties at the wheel-rail contact point as they are not relevant. Instead, the
focus is on the non-linear properties in the suspension system located between the axlebox and
cabin.
To illustrate the arrangement of the sensors within the measurement set-up used in the under-
lying database, Figure 1 shows a simple quarter-car model representing the rail vehicle. The
positioning of the ABA sensor, the IMU and the two-stage suspension system is shown schem-
atically. The quarter-car model itself is discussed in more detail in section 2.1.3.
The two-stage suspension system, illustrated as a combination of a damper and a spring con-
nected in parallel, isolates the vehicle body from road shocks and unwanted vibrations [12].
Its characteristics determine the comfort and handling qualities of the vehicle [13]. The next
chapter outlines further characteristics of the suspension and elucidates the mechanism of en-
ergy dissipation in such systems.

2.1.1 Suspension Characteristics

Trains are often fitted with a two-stage suspension system to manage vibrations caused by track
irregularities and ensure passenger and cargo safety and comfort. [14]. The primary suspension
is predominantly responsible for reducing the amplitude and frequency content of vibrations
to maintain the vehicles dynamic stability. In contrast, the secondary suspension is primarily
designed to reduce vibrations for increased comfort [15], [16].
In addition to helical coil springs of various designs, rubber springs are frequently used in the
railway sector. The dataset that will be used for model training in subsequent chapters, is recor-
ded on a train equipped with rubber springs as a primary suspension. In comparison to helical
springs, rubber springs offer greater stiffness and damping properties as excitation frequency
increases and amplitude decreases. Frequencies between 0-20 Hz are typically significant in
primary and secondary suspension frequency analysis [16], [17]. Designed to have certain
force-displacement or, in case of dampers, force-velocity characteristics, suspension elements
can have linear or non-linear properties. Given non-linear characteristics, the deflection rate
changes for increasing load. In railway applications deflection rates usually increase with grow-
ing loads [16].
Although nonlinear stiffness can complicate the dynamic response of a system, damping is of-
ten the dominant source of non-linearity in many applications [13]. Damping characteristics
can also include a hysteresis, which means that the force-displacement curve may not follow
the same path for the loading and unloading part of the cycle [16]. The area inside the curve
can be interpreted as the amount of damping in the suspension element. Figure 2 displays three
force-displacement curves from an experimental characterization of a hydraulic damper, show-
ing the damper stroke along the x-axis and the corresponding force along the y-axis. The study
compared a standard damper to a modified one, that was designed to reduce the amount of force
transmitted by the damper at higher frequencies [15].
The damping behaviour is significantly affected by the excitation frequency. At 1 Hz, the stand-
ard damper (blue) exhibits typical purely dissipative suspension behaviour, with a regular and
symmetrical hysteresis cycle. In contrast, the modified damper shows a stronger hysteresis at
the same excitation frequency. Higher frequencies can cause distorted hysteresis cycles, result-
ing in a significant reduction of the total damping amount, especially for the modified damper.
This reduction occurs as the area described inside the curve decreases significantly.

4 Tobias Weiland, # 453 148

2.1 Railway Vehicle Vertical Dynamics

The experiments were conducted to identify spring and damper parameters for a complex mech-
anical secondary suspension model [15]. It is crucial to know the model’s parameters and de-
pendencies for an accurate simulation. However, suspension components are often inaccessible,
and parameters may be unknown, which reduces the model’s quality. The modeling of sus-
pension systems is complicated by parameter uncertainties, non-linear damping, and complex
structures. The following section presents approaches to address these issues.

Figure 2: Hysteresis cycles in the force-displacement diagram of a hydraulic damper measured
at a) 1 Hz, b) 10 Hz, c) 25 Hz [15]

2.1.2 Suspension Modeling

The objective of this study is to develop a machine learning model that accurately forecasts the
transmitted vibrations in the suspension system of a rail vehicle. The model should emulate the
mechanical behaviour of the suspension system, which dissipates energy as the vehicle moves
along a track.

Tobias Weiland, # 453 148 5

2 Theoretical Background

In order to model and simulate the suspension dynamics mathematically, several first-order dif-
ferential equations are employed, which result from the nonlinear behaviour associated with the
various suspension components [17].
Coil springs, leaf springs, rubber springs, air springs, and hydraulic dampers are the most fre-
quently utilized suspension elements. All of these components are categorized as passive, de-
noting that the forces and moments they exert rely on the displacement and velocities at their
interfaces, given their specific properties and potential pre-load. This is in contrast to active sus-
pension components, inclusive of semi-active ones, wherein additional factors also impact the
exerted forces [17]. No active components are used in the vehicle in this study, hence modeling
these elements will not be discussed further. More information on the locomotives suspension
system and the used sensors is indicated in chapter 3.1.
The origin of the mechanical characteristics of suspension components can be traced back to the
disciplines of solid mechanics, fluid mechanics, and tribology. Modeling suspension compon-
ents in detail, regarding the geometry, the material as well as pre-load and friction interfaces,
can be computationally intensive and time-consuming. Instead simplified models of springs,
dashpots, and friction elements are used frequently in vehicle-track simulations [17]. By com-
bining simple sub models, complex suspension structures can be realized.
Detailed mechanical 2D and 3D models for vertical vibration studies in railway applications are
discussed in a number of recent publications. Muñoz et al. [4] presented a comparative study
with a full 3D coupled dynamic multibody model for different vehicles. Multibody railway
models are commonly used for on-board state observation, parameter identification as well as
track geometry measurement.
Another study by Dumitriu et al. [18] discussed various sub models for secondary suspen-
sions, for integrating them into a mechanical half vehicle model. Illustrating the combination of
simple elements as dampers and springs forming a complex suspension system, the half vehicle
model is displayed below in figure 3. By combining multiple sub models, which itself are a
mechanical models representing various suspension elements, the necessary model complexity
can be reached.

However, mechanical models are easily affected by variations in reality such as increasing pre-
loads or worn components and depend heavily on the reliability of the model’s parameters.
Considering a changing environment where parameters are difficult to obtain, this fact is even
more crucial. Furthermore, the numerical iteration method used to solve mechanical model
equations during simulation is time-consuming [9].
An alternative modeling approach is purely data driven modeling and the use of machine learn-
ing methods. Unlike mechanical models, machine learning models are computationally effi-
cient, can handle non-linear mapping relationships, and are applicable to varying speeds and
vehicles. Machine learning models can be categorised into shallow learning (or traditional ma-
chine learning) and deep learning techniques [9]. Both are being applied in the railway vehicle
vertical dynamics.
A study [5] showed regression models can be used for predicting the dynamic response amp-
litude for a railway vehicle, given the input from a number of on-board inertial sensors . Classi-
fication models on the other hand are suitable for classifying the track sections by their condition
based on the dynamic response distribution. However, the use of shallow learning methods (tra-
ditional machine learning) is not the main focus of interest nowadays.
Instead, the focus is on the use of deep learning methods, especially Convolutional Neural Net-
works (CNNs), Recurrent Neural Networks (RNNs) and combinations of those as they hold
great potential in suspension modeling. Developments in recent decades have led to great suc-

6 Tobias Weiland, # 453 148

2.1 Railway Vehicle Vertical Dynamics

Figure 3: Mechanical half vehicle suspension model for vertical vibration analysis. Redrawn
from [18]

.

cess in sequence modeling with these deep learning techniques [9] and a number of studies have
proven their efficiency. Li et al. for instance used an RNN to estimate car body vertical and
lateral acceleration [8]. Ma et al. proposed a combined CNN-RNN model to predict car body
vibrations from track irregularities [7]. Details about these types of networks will be outlined
in chapter 2.3.3 and chapter 2.3.2.
However, prior to the transition to the subject of data processing and machine learning concepts,
an approach to mechanical modelling will be examined. This is done to present a comprehens-
ive and complete examination of the problem. Furthermore, it is intended to illustrate where
the strengths of purely data-driven methods often lie: mechanical models, even when relatively
simple quarter car models, require, unlike machine learning models, sound domain knowledge
and information about model parameters, which can be difficult to obtain.

2.1.3 Quarter-Car Model

The following subchapter will briefly convey the basis for the quarter-vehicle model that correl-
ates with the sensor system. For analyzing the dynamic behaviour of a vehicles suspension, the
quarter-car is a useful and widespread model for passive, active and semi-active configurations
[19]. Numerous publications deal with modeling quarter-car models for dynamics simulation
[12], [19]–[21]. Predominantly quarter-car models for the railway vehicle include the wheel-rail
contact the nonlinear behaviour associated to it. In regard of the application, using ABA data to
estimate the car body vibration, the model must exclude the contact point. Furthermore a two-
stage suspension system needs to be represented. A modified quarter-car model is illustrated in
figure 4.

Tobias Weiland, # 453 148 7

2 Theoretical Background

Figure 4: Modified Quarter-Car Model for ABA Data with excluded Wheel-Rail Contact. Re-
drawn from [20]

The simplified model excludes the wheel-rail connection as u1 is representing the axle box
position. The indices are related to whether the parameter refers to the primary or secondary
suspension. Same applies for the coordinates y1 and y2. The model of the passive suspension
system can be also found in various publications [12], [20]
The mathematical model is represented by two differential motion equations, each describing
one of the masses m1 and m2:

m2ÿ2(t)−d2(ẏ1(t)− ẏ2(t))− k2(y2(t)− y1(t)) = 0 (1)

m1ÿ1(t)+d2(ẏ1(t)− ẏ2(t))+ k2(y2(t)− y1(t))−d1(u̇1(t)− ẏ1(t))− k1(u1(t)− y1(t)) = 0 (2)

The two second-order differential equations of the masses positions y1 and y2 have to be trans-
ferred into a equivalent first order differential equation system ˙⃗x(t) = f (x(t),u(t)), where x(t)
is a vector consisting the masses positions and their derivatives and u(t) is the input on the axle
box. Considering a dynamic application, u(t) and x(t) are variables depending the time t. For
simplifying the equations while transferring them in the course of this section, the time depend-
ency will be ignored in the formula. Following substitutions are made to transfer the system to
a first-order:

x⃗ =

x1
x2
x3
x4

=

y1
y2
ẏ1
ẏ2

 , u⃗ =

[
u1
u̇1

]

8 Tobias Weiland, # 453 148

2.2 Signal Processing

Using the substitutions, 1 and 2 can be summarised and converted to matrix notation:

˙⃗x =

ẋ1
ẋ2
ẋ3
ẋ4

=

0 0 1 0
0 0 0 1

−d1−d2
m1

d2
m1

−c1−c2
m1

c2
m1

d2
m2

−d2
m2

c2
m2

−c2
m2

×

x1
x2
x3
x4

+

0 0
0 0
c1
m1

d1
m1

0 0

×
[

u1
u̇1

]
(3)

˙⃗x = A× x⃗+B× u⃗ (4)

Equation 4 is the state-space representation of the system, with the state vector x⃗, the input
or control vector u⃗, system matrix A and the input matrix B. The representation describes the
suspension system as a system of first-order differential equations, ˙⃗x(t) = f (x(t),u(t)).
The selection of parameters is a crucial aspect of any modelling. Numerous examples of the
parameterisation of quarter car models for railway applications can be found in the literature.
Goodall et. al [22] presented a simplified perturbed railway vehicle model based on a quarter-
car approach. Following physical parameters for the vehicle are used in their research and can
be regarded as a guideline for locomotives for freight transport:

Car body mass m1 9500 [kg]
Bogie mass m2 2500 [kg]
Stiffness primary suspension c1 0.5×106 [N/m]
Stiffness secondary suspension c2 2.5×106 [N/m]
Damping coefficient primary suspension d1 100 [N - s/m]
Damping coefficient secondary suspension d2 1.79×103 [N - s/m]

Table 1: Parameters for passive two-stage railway vehicle suspension system model [22]

Unfortunately, no information was available regarding the locomotive that was utilised in the
HavenZug project. No specific parameters, such as weight, stiffness, or damping coefficients,
were provided. Although the values listed in Table 1 can be used as an approximation, it is
technically possible to estimate parameters. However, uncertain parameters may lead to poor
model quality and complicate the process of analysis and model debugging.
In contrast, machine learning methods are based exclusively on data and their interrelationships.
Consequently, the parameters of the physical model are no longer relevant. One of the most
crucial aspects of utilising machine learning methodologies is the preparation and processing of
the data.

2.2 Signal Processing

Preprocessing is the most time-consuming phase in data analysis and data science projects. It
involves cleaning, reformatting, and integrating raw data to improve its quality and usability.
Data scientists spend a significant amount of time, ranging from 60 to 80%, on data prepro-
cessing [23]. Efficient methods for preprocessing data are required when dealing with sequence

Tobias Weiland, # 453 148 9

2 Theoretical Background

models, as datasets for their training often exceed multiple million data points, causing signific-
ant computational effort to process the data. The used methods in this work will be outlined in
the following subsections.

2.2.1 Data Synchronisation

The model is based on measurement data acquired from the ABA sensor and the IMU. Given
that the sensors are positioned differently and have different sampling rates, temporal discrepan-
cies may arise between measurement signals. This desynchronization may present a significant
challenge, particularly in the context of data-driven modelling, where a model is trained ex-
clusively on data. Consequently, it is of the utmost importance to detect desynchronization and
synchronize the two time series prior to model training. A standard method for estimating the
degree to which two time series are correlated is cross-correlation.[24].
The cross-correlation operation is equivalent to complex conjugate convolution. In the field of
machine learning, cross-correlation is commonly used in convolutional neural networks due to
this identity, but it is referred to as convolution for ease of implementation [25], [26].
For two continuous functions f (t) and g(t), the cross-correlation (f ⋆g)(τ) is defined as:

(f ⋆g)(τ) =
∞∫

−∞

f (t)∗g(t + τ)dt (5)

where τ denotes the displacement and f (t)∗ the complex conjugate of input signal f (t). The
displacement τ refers to the time difference by which the two functions are shifted against each
other.
When working with discrete time series data, it is not possible to integrate as described in the
equation 5. Instead, when given two time series f [k] and g[k], the cross correlation z[k] can be
calculated as indicated below. Here, the displacement k refers to the number of elements by
which the two arrays are shifted against each other.

z[k] = (x∗ y)(k−N +1) =
|| f ||−1

∑
l=0

flg∗l−k+N−1 (6)

for k = 0,1, ..., || f ||+ ||g||−2

where ||x|| is the length of the array x and N = max(|| f ||, ||g||). Cross-correlation can determine
the necessary shift of g[k] along the x-axis to align it with f [k]. The formula shifts g along the
x-axis and calculates the integral of its product at each position. For discrete functions, the sum
of the element-wise multiplication is calculated. The cross-correlation value is maximised when
the functions match, because aligned peaks (positive areas) make a significant contribution to
the correlation value. In the same way, negative areas also make a positive contribution. When
the functions align, the displacement is referred to as kopt .
Because N = max(|| f ||, ||g||), this method for synchronizing works for arrays with different
sizes. It is also necessary for the application which is dealt with in this work, as different
sampling frequencies of the sensors lead to different sized data. However, when sliding g(t)
by kopt to synchronize the sequences, padding is required. Commonly padding is done with
zeros or the last valid value of the array. Figure 5 illustrates an example for a padding after

10 Tobias Weiland, # 453 148

2.2 Signal Processing

synchronization. In this case g[k] is slided by 3 elements, causing the last three elements to be
deleted (hatched). The green marked element refers to the last valid element of the array and
yellow indicates a padded value.

Figure 5: Schematic of the padding process after data synchronisation with an optimum shift of
3 samples

Another method used during signal preprocessing is applying digital filters to emphasize spe-
cific frequency ranges of the signal. The following subsection will elaborate on this topic.

2.2.2 Data Filtering

The purpose of signal filtering is to eliminate unwanted components and emphasise import-
ant signal elements. This is typically achieved by amplifying or attenuating specific frequency
ranges. There are multiple types of filters for instance high-pass, low-pass, and band-pass.
Bandpass filters can attenuate both excessively high and low frequencies simultaneously, unlike
high-pass and low-pass filters which only limit one end of the frequency range. The transfer
function mathematically describes the filter and can be represented by its amplitude and phase
response. As an example, the amplitude response of a low-pass filter is shown in Figure 6.

Figure 6: Schematic example of the amplitude response of a low pass filter with significant
ripple in the passband

Various approaches exist for designing digital filters. Butterworth filters have a maximally flat
amplitude response in the passband, which minimally affects the useful signal in this range.
Additionally, the amplitude response is monotonic, meaning it has no ripple. This filter type is
commonly used due to its desirable characteristics [27].

Tobias Weiland, # 453 148 11

2 Theoretical Background

The Butterworth filter’s transfer function is defined by only two parameters: the cut-off fre-
quency and the filter order. For a butterworth bandpass filter, a high-cut and a low-cut frequency
need to be defined. The filter order determines the steepness of the amplitude response’s de-
crease in the transition range. The higher the filter order, the steeper the amplitude response
decreases, and the smaller the transition range.
The filter’s cut-off frequency is defined as the frequency at which the normalised amplitude
response reaches the value of 1√

2
≈−3dB, according to its transfer function. This applies to all

filter orders. Therefore, when designing the filter, it is important to ensure that spectral com-
ponents of a signal are already attenuated by 3 dB at the cut-off frequency.
Applying digital butterworth filters to a data series may cause time distortion. Polyphase or
zero-phase filtering can prevent time offsets. This is achieved by processing the input data both
forwards and backwards. The filtered sequence is reversed and filtered again after being filtered
in the forward direction. When designing a filter for polyphase filtering, it is important to main-
tain the desired filter order and overall gain, which is determined by the order and gain of the
individual filter passes forwards and backwards.
As previously described in section 2.2.1, it is required for the signals to be synchronous. To
achieve precise synchronization of the data sets, the IMU and the ABA Sensor data must be
sampled at the same frequency. As the sampling rates of the two sensors in the setup used
differ greatly, it is necessary to equalize the signals for further processing. To achieve this,
one method is to use polyphase filtering. The next subsection outlines resampling by applying
digital filters.

2.2.3 Data Resampling

Data resampling refers to the procedure of modifying the sampling rate of a signal. The change
in the sample rate is categorized as interpolation when it increases and as decimation when it
decreases. Interpolation may be defined as a process whereby the duration of existing samples is
reduced and samples with zero values are included to fill in the gaps. This process is referred to
as upsampling. Conversely, decimation entails the elimination of a specific number of samples,
thereby extending the duration of the remaining samples. This is referred to as downsampling.
However, neither of these operations is without its consequences. The process of upsampling
results in the replication of the signal throughout the expanded spectrum. Conversely, down-
sampling causes high frequency elements that cannot be accurately represented at the new
sampling rate to be shifted to the lower part of the spectrum. This phenomenon is commonly
known as aliasing. Figure 7 illustrates the effects of upsampling and downsampling a signal.
In order to eliminate the unwanted effects, it is essential to filter the signal. When performing
interpolation, it is necessary to filter the signal after upsampling to ensure the elimination of
spectral images. During decimation, the filter is applied before downsampling to remove any
components that may pass into the new passband. Consequently, both interpolation and decim-
ation consist of two distinct stages making it computationally intensive .
Polyphase filtering is a method for efficient sample conversion. During the interpolation pro-
cess, the filter is required to perform numerous operations on input samples that have a value
of zero. These operations have the potential to be omitted. To avoid performing operations on
zeros, the filter is divided into sub-filters, also known as phases, hence the name of the filter
[28].
The decimation process encounters a similar problem, where the majority of the filtered samples
are discarded during the downsampling phase. Consequently, the same approach is used for

12 Tobias Weiland, # 453 148

2.2 Signal Processing

the decimation process, but in reverse order. As the downsampling process regularly discards
samples, it becomes feasible to activate the filter only when there is a need to produce output
[28].

Figure 7: Example of spectral images and aliasing caused by sampling rate conversion using
Polyphase Filters [28]

2.2.4 Data Scaling

Data scaling represents an indispensable preprocessing step in machine learning, offering nu-
merous advantages for model training. It enhances the accuracy and performance of the result-
ing model by reducing numerical issues in the calculation. In particular, when gradient methods
are employed, which are utilized in the models developed in course of this work, scaling exped-
ites convergence and facilitates more effective optimization of the model parameters.

Tobias Weiland, # 453 148 13

2 Theoretical Background

In the event of multiple input features, scaling serves to prevent distortion and to ensure that all
features exert the same influence on the training process. This results in an improvement in the
convergence speed and stability of the learning algorithm.
There are a number of different methods for scaling a data set. One common method is stand-
ardisation. In this instance, the features are transformed in such a way that their mean value
is 0 and their standard deviation is 1. This approach is beneficial for algorithms that assume a
normal distribution. Standardisation is achieved through the application of formula 7:

xscaled =
x−µ

σ
(7)

where µ is the mean value of the signal and σ its standard deviation.
An alternative approach is Min-Max-Scaling, which is a data transformation technique that
normalises the data to a fixed range, typically between 0 and 1. This is particularly useful
when the data does not follow a Gaussian distribution. This method also preserves the original
distribution, although it is susceptible to outliers. In contrast, standardisation is more robust
against outliers, but it can alter the original data distribution.
Having presented the selected preprocessing methods, this section will now proceed to explain
the machine learning modelling methods used in the work.

2.3 Machine Learning

The past ten years have seen significant advancements in the field of artificial intelligence. On a
regular basis, novel machine learning models are emerging, surpassing state-of-the-art methods
in computer vision and natural language processing [7].
In addition to image and speech processing, machine learning methods designed to process se-
quential data have been applied to a wide range of areas, including safety surveillance [29],
disease prediction [30], health condition monitoring [31] and vehicle fault diagnosis [32].
Various techniques can be used to model the vertical dynamics of a vehicle, all of which come
from the field of machine learning. An important distinction is made between classical machine
learning methods and deep learning methods. Classical machine learning techniques for pre-
dicting a vehicles dynamic response include support vector machines, decision trees, MLP and
other regression algorithms [9].
Alternatively, common deep learning methods for sequence modelling are CNNs, RNNs and
Long Short-Term Memory (LSTM) networks. Combinations of these are also promising ap-
proaches and the subject of recent research [7], [9]. The foundation of all deep learning se-
quence models are classical neural networks, which are discussed at the beginning of this
chapter. Depending on the depth of the network, Neural Networks (NNs) can be classified
as either classic machine learning or deep learning. The following subsection explains NNs in
more detail. It will provide a knowledge base for the subsequent elaborations on more complex
types of networks.

14 Tobias Weiland, # 453 148

2.3 Machine Learning

2.3.1 Classical Neural Network

Non-linear behaviour can be modelled using NNs. These models are inspired by the way the
brain is thought to process external stimuli. By using activation functions, NNs derive their
ability to infer information from features that have a non-linear relationship to the target. The
present subsection explains the functioning of neural networks and is derived from [33].

Model of a single neuron

Figure 8: Nonlinear model of a single neuron, labeled i. Redrawn from [33]

A single neuron is the fundamental information-processing unit in a neural network. Figure 8
displays a single neuron schematically. It serves as the foundation for the creation of an ex-
tensive range of neural networks discussed in subsequent chapters. Here we identify three basic
components:

• A set of connecting links, which are each characterized by a synaptic weight wi j. The
subscripts of the weight wi j refers to the connection of input x j with neuron i. Synaptic
weights may be positive and negative values.

• A summation block for summing the input signals weighted by the respective synaptic
weight of the neuron. It serves as a linear combiner for the weighted input signals.

• An activation function φ(·) that determines whether the neuron should be activated or
not based on the weighted sum of its inputs. It introduces non-linearity into the network,
allowing it to learn and model complex patterns and relationships in the data. Common
activation function will be outlined in the course of this chapter.

An externally applied bias, denoted by bi, is included in the neural model shown in Figure 8.
This bias has the effect of increasing or decreasing the net input of the activation function. Like
weights, biases can be positive or negative values. Following equations describe the neuron’s
model mathematically:

ui =
n

∑
i=1

winxi (8)

oi = φ(ai) = φ(ui +bi) (9)

where x1,x2, ...,xn and wi1,wi2, ...,win are the neuron’s input signals and the respective weights,
φ(·) is the activation function and bi the bias of neuron i. Neurons essentially combine multiple

Tobias Weiland, # 453 148 15

2 Theoretical Background

inputs to generate one (oi) or multiple (⃗oi) outputs by summing the weighted input and bias and
applying the activation function to the sum.

Network architectures

Figure 9: Fully connected feedforward network with one hidden layer and one output layer [33]

It is possible to realise different network architectures by combining multiple neurons. One
approach to neuron arrangement is a fully connected feed-forward network. This involves each
neuron in one layer being connected with each neuron in the next layer and with all neurons
in the previous layer. Figure 9 illustrates this model structure, which shows that neurons in the
hidden layer are fully connected to all neurons in neighbouring layers.
Feedforward neural networks are composed of an input layer, an indeterminate number of hid-
den layers, and a final output layer. The input layer of the network provides the activation
pattern (input vector) to the computation nodes in the second layer (i.e. the first hidden layer).
The output signals of the second layer are then used as inputs to the third layer and so on for
the rest of the network. Neurons in each layer typically only have the output signals of the pre-
ceding layer as their inputs. The output signals of the neurons in the final layer of the network
make up the network’s overall response to the activation pattern provided by the source nodes
in the input layer. The network that has been elucidated is a fully-connected feedforward neural
network, which means the neurons of neighbouring layers are all connected to each other. Al-
ternatively in partially-connected networks, only some of the neurons of the present layer are
connected to the ones in the next layer.
Two crucial parameters when modelling neural networks are depth and width. While depth
refers to the number of hidden layers, width refers to the number of neurons per layer. The
network depicted in Figure 9, for instance, has a depth of one and a width of four.
A feedforward NN will be used to examine the training algorithm in the course of this section.
It is necessary to recall the general formulation for these networks, as the nomenclature used in
the neuron model is extended to include the various layers:

16 Tobias Weiland, # 453 148

2.3 Machine Learning

Definitions:
wk

i j: weight for node j in layer lk for incoming node i
bk

i : bias for node i in layer lk
ak

i : product sum plus bias for node i in layer lk
ok

i : output for node i in layer lk
rk: number of nodes in layer lk
m: number of layers
n: number of input signals
N: number of data pairs in the data set
φ : activation function for hidden layer nodes
φo: activation function for output layer nodes

Back-propagation
Back-propagation is a method to train a NN, which means optimizing the weights and biases of
the connecting links in order to achieve the desired mapping between input and output. Neural
networks can undergo training through two methods: supervised learning and unsupervised
learning. In supervised learning, the network is trained using correlating input and output pairs,
while in unsupervised learning, the network identifies patterns or structures in the data on its
own, without specified data pairs.
Back-propagation is mainly used for supervised learning, where there are known desired outputs
for each input. Although the method can technically be used in both supervised and unsuper-
vised learning, it is typically considered a supervised learning algorithm. As the thesis focuses
on supervised learning, unsupervised learning methods are not elaborated upon.
There are three prerequisites for supervised learning using back-propagation:

• A dataset containing input-output pairs (x⃗d , y⃗d), where x⃗d is the input, that creates the out-
put y⃗d . The whole set of data pairs of size N is denoted as X = {(x⃗1, y⃗1),(x⃗2, y⃗2), ...,(x⃗N , y⃗N)}.

• A feedforward neural network as defined above with k number of layers. The parameters
of the network (weights wk

i j and biases bk
i) are collectively denoted as θ . Weight wk

i j refers
to the weight between node j in layer lk and node i in layer lk−1. Analogue, is the bias for
node i in layer lk denoted as bk

i .
For simplifying mathematics, the bias bk

i will be integrated into the weights as wk
0i with a

fixed output ok−1
0 = 1 for node 0 in layer lk−1.

bk
i = wk

0i

• a loss function E(X ,θ), that calculates the error between the predicted output of the model
ˆ⃗yi and the desired output y⃗i. A classic loss function used in regression analysis is the mean
squared error:

E(X ,θ) =
1

2N

N

∑
i=1

(ŷi − yi)
2 (10)

Should the aforementioned prerequisites be satisfied, the optimisation of the parameters θ may
be conducted via the back propagation method. The first step of the back propagation algorithm
is calculating the forward pass for each input-output pair (x⃗d , y⃗d) in X and storing the results ŷd ,
ak

i and ok
i for each node i in layer k, starting from layer 0 to layer n, the output layer.

Subsequently the backward pass is calculated for each input-output pair (x⃗d , y⃗d) in X . and the
results for for all weights is stored. This requires to calculate ∂E(X ,θ)

∂wk
i j

and store the gradients of

the loss function E(X ,θ) with respect to each weight wk
i j and bias bk

i . As the error function can

Tobias Weiland, # 453 148 17

2 Theoretical Background

be broken down into a sum of individual error terms for each input-output pair, the derivative
can be calculated for each pair separately and then combined at the end.

∂E(X ,θ)

∂wk
i j

=
1
N

N

∑
d=1

∂

∂wk
i j
(
1
2
(ŷd − yd)

2 =
1
N

N

∑
d=1

∂Ed

∂wk
i j

(11)

By applying the chain rule, the partial derivatives are calculated for each weight wk
i j connecting

node i in layer k− 1 to node j in layer k. The partial derivative of the error function for one
input-output pair Ed with respect to a weight wk

i j is generally defined as:

∂Ed

∂wk
i j
= δ

k
j ok−1

i (12)

with the error δ k
j denoted as:

δ
k
j =

∂Ed

∂ak
l

(13)

By substituting the error, the general form can be adapted to obtain the derivative with respect
to weights in a certain layer. For instance, the derivative of the error function with respect to a
weight wm

i1 in the output layer is denoted:

∂Ed

∂wm
i1
= δ

m
1 om−1

i = (ŷd − yd)φ
′
0(a

m
1)o

m−1
i (14)

The equation for the derivative of the error function with respect to a weight wk
i j a hidden layer

is defined for 1 <= k <= m as:

∂Ed

∂wk
i j
= δ

k
j ok−1

i = φ
′(ak

j)o
k−1
i

rk+1

∑
l=1

wk+1
jl δ

k+1
l (15)

The process starts with calculating the derivatives with respect to the weights in the output layer
working its way to the input layer. For a full formal description of the algorithm, please refer
to [33]. Once all gradients are calculated and combined (equation 11), the model parameters θ

are updated according to the learning rate α and the calculated total gradient ∂E
∂wk

i j
:

∆wk
i j =−α

∂E(X ,θ)

∂wk
i j

(16)

The derivation in the back-propagation process is straightforward and follows the chain rule and
the product rule. However, the application of these rules is dependent on the differentiation of
the activation functions φ(·) and φ0(·) used in various layers of the network.

18 Tobias Weiland, # 453 148

2.3 Machine Learning

Activation functions

Figure 10: Hyperbolic tangent activation function

Activation functions can be linear or non-linear and should be chosen to suit the application.
The linear activation function, known as "no activation" or "identity function" f (x) = x, basic-
ally just passes the input to the output without changing it. Using linear activation functions
creates a linear regression model, that has limited modelling capacities of non-linear behaviour.
Modeling nonlinear systems, like the two-stage suspension, requires nonlinear activation func-
tions.
The sigmoid function σ(z), a special variant of the logistic function, is a commonly used non-
linear activation. The S-shaped function takes any real value as input and outputs values in the
range of 0 to 1. The output is calculated according to formula 17. Since the output is limited
between 0 and 1, it is commonly used for models where we need to predict probability as an
output.

σ(z) =
1

1+ e−z (17)

Another nonlinear commonly used activation function is the hyperbolic tangent function tanh(x).
Its output is constrained to a range of -1 to 1, and like the sigmoid function, it has an S-shaped
curve. Figure 10 displays the tanh(x) function. The function is mathematically represented
as:

tanh(x) =
ex − e−x

ex + e−x =
1− e−2x

1+ e−2x (18)

In addition to the mentioned functions, other commonly used nonlinear activation functions
are the Rectified Linear Unit (RelU), the softmax function, and the Exponential Linear Unit
(ELU).

Tobias Weiland, # 453 148 19

2 Theoretical Background

Model and Training Parameters
When designing and training models based on neural networks, it is essential to select and adjust
a number of parameters in order to achieve optimal performance and generalisation capability of
the models. A selection of parameters is presented, with an explanation of their role in achieving
optimal performance in the models.

• Learning Rate: The learning rate is a crucial parameter in neural network training. It
determines the speed with which the network learns from the training data and adjusts
its weights. If the learning rate is set too high, the network may overshoot the optimal
weights and fail to converge. Conversely, a learning rate that is too low can result in slow
convergence.

• Batch Size: The batch size is the number of training examples that are processed simul-
taneously before the weights are updated. A larger batch size may result in more stable
updates, although this may necessitate a greater allocation of memory. A smaller batch
size can result in faster convergence, although this may be accompanied by less stability.

• Number of Epochs: An epoch is defined as a complete iteration of the entire training
data set. The number of epochs determines how often the neural network is presented
with the entirety of the data set. Insufficient epochs may result in underfitting, whereas
an excess of epochs may lead to overfitting.

• Regularization: Regularization methods serve to prevent overfitting by constraining the
complexity of the model. A common regularization technique is dropout, whereby indi-
vidual neurons per layer are specifically deactivated. Another technique is early stopping,
which interrupts training when a plateau is reached.

• Weight Initialization: The initialisation of the weights at the commencement of training
can have a significant impact on the convergence and performance of the model. Con-
sequently, numerous weight initialization methods exist, for instance, the Xavier Weight
Initialization.

Having established the fundamental principles of neural networks and the methodology of su-
pervised model training, the subsequent sections will examine the various types of neural net-
works.

2.3.2 Convolutional Neural Networks

CNNs are a special type of neural network designed to process data with a structured grid-like
topology, especially image data, which represent a two-dimensional grid of pixels. It is named
after the mathematical linear operation between matrices known as convolution. The operation
involves sliding a filter function (or kernel) over the input data, multiplying the kernels values
with the values in the input at each position, and then summing up these products to produce a
single output. Mathematically, the discrete convolution of two series f (t) and g(t) is similar to
the cross-correlation examined in chapter 2.2.1. The convolution (f ∗g) of the discrete function
f (t) with kernel function g(t) is defined as:

s(t) = (f ∗g)(t) =
∞

∑
a=−∞

f (a)g(t −a) (19)

where a refers the shift of g(t) in the course of the operation. The first argument (here, the
function f (t)) to the convolution is often called the input, and the second argument (here, the

20 Tobias Weiland, # 453 148

2.3 Machine Learning

function g(t)) the kernel. The output of the function may referred to as the feature map [25].
Furthermore, convolution is also possible in multiple dimensions. A multidimensional filter is
employed for the processing of image data, where 2D image I stored as a matrix of pixel values
is convoluted by a two-dimensional kernel function K according to:

S(i, j) = (I ∗K)(i, j) =
∞

∑
m=−∞

∞

∑
n=−∞

I(m,n)K(i−m, j−n) (20)

where i, j represent the pixel coordinates.
Originally developed for computer vision tasks in the 1960s [34], CNNs have become one of
the most widely used deep learning algorithms and are increasingly applied to image classific-
ation, object detection, video processing, natural language processing and speech recognition
[25], [34], [35].
The utilisation of the convolution operation also confers advantages when processing time series
data, as exemplified by the case of ABA and IMU sensor signals. The suitability of CNNs for
time series data lies in their ability to take into account the local structure and dependencies
within the data. When considering a time series X = x1,x2,x3, ...,xn, a fully connected neural
network would ignore the inherent sequential nature of this data. This may result in the loss of
information, for instance, the fact that (x1,x2) and (x2,x3) are both adjacent pairs. Consequently,
a difference in x1 and x2 should be interpreted in a similar manner to an equivalent difference
in x4 and x5. Conversely, a similar difference between x4 and x9 may be interpreted in a com-
pletely different manner. CNNs exploit the fact that neighbouring data points have a stronger
relation than more distant points and the convolution operation enables the extraction of local
features along the time axis. This allows temporal patterns and dependencies to be captured
on different time scales. By applying a convolution to the series of data instead of processing
every timestep independently, CNNs can efficiently extract features of interest and relations in
the data set [34]. Recent publications examine CNN-based models on a wide range of time-
series applications from stock market and gold-price predictions to forecasting time series data
of solar radiance and photovoltaic power [36].
In conjunction with the convolution operation, so-called pooling layers are frequently employed
to reduce the dimensionality of the convolved data. This method is employed with particular
frequency in conjunction with CNNs for the processing of images, although it can also be ap-
plied to one-dimensional time series data. Pooling modifies the data by generally replacing the
output of the network at a given location with a summary statistic of nearby outputs. Com-
monly used statistic features are peak values and averages. Figure 11 illustrates a max-pooling
operation of a time-series with 20 integer data points and a filter size 4x1.

Figure 11: One-dimensional max pooling operation with filter size 4x1. Redrawn from [37]

Further aspects of modelling CNNs for processing time series are presented in Chapter 4.2.

Tobias Weiland, # 453 148 21

2 Theoretical Background

In the following section, a further type of neural network is introduced, which is particularly
suitable for sequential data such as time series.

2.3.3 Recurrent Neural Network

An RNN is a type of neural network that processes sequential data by utilizing feedback loops
that create a bidirection flow of information. The network’s output at one time step is used as
an input at the next time step, along with the current inputs. This allows information learned
from one time step to be passed on to subsequent time steps, effectively capturing temporal
relationships within data sequences. Due to this ability RNNs offer significant advantages in
time series forecasting in comparison to conventional NNs. They excel at modelling complex
sequences and are particularly useful for predicting non-stationary time series data, such as
those found in dynamic responses of vehicles to external influences [8]. Figure 12 illustrates a
RNN schmatically. The individual cells in this example contain a hyperbolic tangent function,
which is applied on the sum of the current input xt and the output ht−1 at the last time step. The
Output ht at timestep t is passed on to the cell at timestep t +1 and so on.

Figure 12: Schematic RNN with tanh activation function. Modified from
https://dagshub.com/blog/rnn-lstm-bidirectional-lstm/

RNNs are available in different architectures such as LSTM and Gated Recurrent Unit (GRU)
networks, each designed to address challenges such as vanishing gradients and effective pro-
cessing of long sequences [38]. Especially the LSTM modeling approach is capable of handling
long-term dependencies and is therefore frequently applied in recent studies [7], [39], [40]. The
structure of a LSTM cell is much more complex than the RNN cells shown above in Figure 12.
Figure 13 in comparison shows the schematic structure of a LSTM network.

22 Tobias Weiland, # 453 148

2.3 Machine Learning

Figure 13: Recurrent Neural Network: Schematic LSTM Network. Modified from
https://dagshub.com/blog/rnn-lstm-bidirectional-lstm/

It can be observed that, in contrast to the RNN network illustrated (Figure 12), the LSTM
cell transmits two signals to the subsequent cell, the cell state ct and the output ht . The cell
state retains information over long sequences, allowing the network to remember important
information for extended periods.
Furthermore, three areas are identified in the structure of the LSTM cell: the forget gate (F), the
input gate (I) and the output gate (O). Each gate fulfils a distinct function:

• Forget-Gate: This gate determines which information from the previous cell state should
be forgotten or retained. It assists the LSTM in determining which parts of the sequence
are relevant and delete information from the context that is no longer needed [38].

• Input-Gate: The more complex input gate controls how much the input xt and the last
ouput ht−1 contributes to the current cell state ct .

• Output-Gate: The output gate regulates the flow of information that is output from the
cell. It determines which components of the cell state ct are employed in the computation
of the final output ht of the cell.

By utilising these three gates to regulate the cell state, the LSTM network employs distinct
pathways for long-term and short-term memory. This enables the model to address the long-
term dependency issues commonly encountered in RNNs by filtering out irrelevant information.
However, due to the more complex structure and the increased number of trainable parameters,
LSTM networks require more memory and are more computationally intensive when fitting the
model. Additionally, the large number of parameters and complex architecture, causes the risk
of overfitting, especially when the available training data is limited.

Tobias Weiland, # 453 148 23

3 Description of the Database

This chapter introduces the underlying database for this work and its origin. Important aspects
of the dataset are outlined to assess the quality of the data regarding the context of modeling
with deep learning methods. It then describes the preprocessing pipeline used before providing
the data for model training.
The datasets originate from the HavenZug project [10], which aims to optimise port operations
through predictive embedded condition monitoring of the track infrastructure. The project was
carried out from September 2018 to November 2021, and was initiated by the German Federal
Ministry of Transport and Digital Affairs.
The measurement system used in the project consists of multi-sensor systems on the rail vehicles
in the port of Braunschweig and a background system for automatic data analysis and inform-
ation processing. The measurement data collected by this system enables the development of
data driven analysis methods for the detection and diagnosis of rail infrastructure irregularities
[10]. To further benefit from the data generated, it is used in this work for developing machine
learning models to predict vibrations in the car body. The following subsection elaborates on
the specific acceleration sensors in the set-up and the IMU.

3.1 Description of the Sensors used

As part of the project, a locomotive was equipped with a multi-sensor system containing two
acceleration sensors and a positioning system. The acceleration sensors in both sides of the axle
boxes are industrial multiple-axis vibration sensors type PCB-629A61 from PCB electronics.
The Positioning System consists of a GNSS module and a 3D IMU that gives 3D acceleration,
3D rate of turn and 3D earth-magnetic field data. The IMU is type MTi-10 IMU and produced by
xSense. Both, the acceleration sensor and the IMU from the measurement set-up are displayed
in the Figure 14.

Figure 14: Illustration of the sensors used (PCB-629A61 Acceleration sensor on the left and
MTi-10 3D Inertial Measurement Unit (IMU) on the right

Tobias Weiland, # 453 148 25

3 Description of the Database

Table 2 presents a comparative analysis of the most significant characteristics of the sensors. It
can be observed that the ABA sensors have a much broader measurement and frequency range.
Furthermore, the anticipated measurement signal noise is lower throughout the entire frequency
range despite the considerably higher sample rate. The noise of ABA sensors is minimised,
especially at high frequencies. Nevertheless, the IMU outperforms the ABA sensors in terms of
non-linearity.

Unit 629A61 Accelerometer MTi-10 IMU Accelerometer
Measurement Range m/s2 ±490 ±200
Frequency Range Hz 0.8 - 8000 0 - 375
Sampling Rate Hz 20625 100

Spectral Noise
µg/

√
Hz

7.0 (10Hz)
2.8 (100Hz)
1.0(1000 Hz)

60

Non-Linearity % ±1 ±0.1

Table 2: Comparison of the sensor characteristics of the PCB-629A61 Acceleration sensor and
the MTi-10 3D Inertial Measurement Unit [41], [42]

The IMU operated with a sample rate of 100 Hz with decreased the effective frequency range
even further to 0 - 50 Hz.
During the execution of the project, measurement data was obtained from both normal opera-
tions and dedicated measurement runs on specific parts of the track network. The data provided
for this work is mainly obtained from these dedicated measurements. The velocity of the loco-
motive during these recordings was limited to 22 km/h. The locomotive in question is of type
MaK G 321 B and equipped with a two-stage suspension system. The primary suspension con-
sists of a combination of rubber springs and dampers. The secondary suspension isolates the
car body from the axes with two suspension elements per side. The total weight of the vehicle
is approximately 40 tonnes. The locomotive used for the project is shown in Figure 15.

Figure 15: Locomotive equipped with Multi-Sensor-System [43]

26 Tobias Weiland, # 453 148

3.2 Data Exploration

3.2 Data Exploration

The initial step in the data analysis process is data exploration, which aims to uncover important
patterns and relationships in the datasets and gain valuable insights. It is beneficial to develop a
deeper understanding of the data before conducting more complex processing steps like model
training.
This section will present the structure of the database and evaluate the quality of the individual
measurements in order to select the quantity of samples used for modelling. In addition to the
conventional evaluation metrics for time series data, such as the mean value, standard deviation,
duration and extreme values, the IMU and ABA data must also be evaluated in terms of their
signal correspondence.

3.2.1 Data Structure

The data was transferred in HDF5 format and is divided into so-called sessions and journeys.
Each session comprises a series of journeys, recorded in sequence and defined from vehicle
stillstand to stillstand. The journeys in each session are of different lengths, with the average
length of journeys per session and the number of journeys also differing. For every journey, the
measurement is grouped into the various signals from the IMU and the two ABA sensors. The
structure of the ABA and IMU data records differs slightly from each other, as the ABA data
records contain not only time stamps and 3-axis acceleration, but also vehicle speed, vehicle
orientation and information on the track section on which the vehicle was located.

Figure 16: Distribution of journey length across all sessions

The additional information to the ABA signal actually origin from the positioning system, but

Tobias Weiland, # 453 148 27

3 Description of the Database

were integrated and upsampled to the ABA record before handing over the data.
A total of five sessions were conducted to develop the model, comprising a total of 136 journeys.
The longest trip contained 60894 valid IMU samples, resulting in a duration of 608.94 seconds
at an IMU sampling rate of 100 Hz. Conversely, the shortest journey consisted of only 3808
samples. The average length of a recording is approximately 93 seconds. The average length of
all recorded trips is 93,1 seconds. A graphical representation of the journeys durations across
all sessions is shown in Figure 16. It can be seen that only a few recordings significantly exceed
the average length.

3.2.2 Data Handling

The disparate journey lengths and strongly differing sampling rates of the ABA sensors and the
IMU present distinct challenges when handling and preprocessing the data for the actual model-
ling. The volume of ABA data is considerable due to the high sampling rate, which necessitates
significant computing time for processing, visualisation and storage. In order to ensure efficient
processing, the data was also sampled down to the IMU’s 100 Hz sampling rate for analysis and
exploration.
Conversely, the storage of data in tabular format is constrained. For example, Session one com-
prises 15 recordings with a total duration of 263.04 seconds. At a recording frequency of 100
Hz, this results in an array of dimensions 15x26304. The shortest recording is 38.89 seconds in
duration. It is therefore necessary to populate the array with values in order to avoid the fail-
ure of subsequent arithmetic operations. The process of padding with values, typically zeros or
boundary values, enables the arithmetic operations to be performed, but also results in the use of
an unnecessarily large amount of memory usage. The impact is particularly evident when con-
sidering the magnitude of the discrepancy in the maximum case. When the shortest recording
is padded to match the length of the longest in the case of session 1, it is observed that not even
15 percent of the memory is utilized for actual values, while the remainder contains padding
values.
The issue can be addressed by employing sparse arrays. This specific form of array is particu-
larly advantageous when the majority of elements within an array possess a default value that
is typically either one or zero. In contrast to conventional arrays, sparse arrays do not require
the storage of all elements. The indices of the elements do not have to start from 0 throughout.
Consequently, only the indices of the elements that deviate from the aforementioned default
value are saved. This property renders sparse arrays highly memory-efficient, as they require
a significantly reduced amount of memory than a complete array with the same dimensions.
Furthermore, the time required for computations on sparse arrays is often reduced, as only the
pertinent elements must be considered.
In the freely available Python libraries, such as NumPy and SciPy, there are functions for pad-
ding and then concatenating padded multiple journeys of multiple lengths into a sparse array.
This format is conducive to efficient processing, as it is straightforward to save and reload. This
method of handling the data was found to be the most efficient during the course of the work.

3.2.3 Sensor Selection

Although two ABA signals are available for each journey, the focus was on working with the
data from a single sensor. The utilisation of a single signal confers a number of advantages. In
addition to the decrease in data volume and therefore less computational effort, the three signals

28 Tobias Weiland, # 453 148

3.2 Data Exploration

must be synchronised to benefit from the effect of the multi-channel usage. Conversely, the
potential for information gain from utilising the second signal is constrained if the two signals
contain largely analogous information. In order to fulfil a more general objective, the work is
limited to the prediction of one output signal based on one input signal.
In order to ascertain which of the two sensors is more suitable for model training, it was neces-
sary to examine a number of exemplary journeys in greater detail. It is of particular importance
to ensure synchronisation with the IMU signal, which can be mathematically expressed by the
signals cross-correlation. High synchronisation results in a high maximum value in the vector,
which arises from the cross-correlation operation between the IMU and an ABA signal. If this
extreme value is also situated at the centre of the vector, this indicates that the signals are op-
timally aligned with each other.
The cross-correlation indicates that one of the two signals exhibits a slight advantage over the
other in terms of synchronicity. Nevertheless, the hypothesis is tested randomly. Approximately
20 percent of all journeys were randomly visualised to test the above hypothesis in order to ulti-
mately select the sensor for model training. Figure 17 presents an example of a recording from
session one. The four plots illustrate the vertical acceleration signal of ABA Sensor 1, situated
below the analogue signal from ABA Sensor 2, followed by the IMU vertical acceleration signal
and the vehicle velocity. The plotted signal is recorded by ABA sensor 1.
Upon examination, a clear correlation is evident between both ABA signals and the IMU sig-
nal. A correlation can also be observed with the speed signal, as the acceleration amplitudes
decrease with a reduction in vehicle speed. Nonetheless, there is a more pronounced correla-
tion between the ABA2 signal and the IMU signal, particularly in the latter part of the signal.
This trend is further substantiated by the visual inspection, which is consistent with the cross-
correlation results.
Furthermore, it is apparent that the IMU signal is considerably less pronounced in amplitude
than that of the ABA signals. Additionally, it is observed that the IMU signal exhibits a relat-
ively higher degree of noise and is slightly displaced in negative vertical direction. The noise is
most noticable during the initial and final stages of the recording, which correspond to periods
of the vehicle stopping.
A comparison of the x-axis of the diagrams reveals that the IMU signal comprises a signific-
antly smaller number of samples than the other signals, which were all recorded by one of the
two ABA sensors. The discrepancy in sample rate is the primary factor contributing to this
observation, although a more detailed examination reveals a notable difference in the recording
length between the IMU and ABA signals. The average difference between the signals is 0.99
seconds across all journeys and sessions. The deviation is relatively constant, with a range of
0.85 to 1.15 seconds across all recordings, with the exception of one instance. In all other cases,
the IMU signals are consistently longer than the ABA signals.

Tobias Weiland, # 453 148 29

3 Description of the Database

Figure 17: Plot of the acceleration signals from ABA1, ABA2, IMU and speed signal from an
exemplary journey

30 Tobias Weiland, # 453 148

3.2 Data Exploration

3.2.4 Data Rating

Viewing the data set and the subsequent evaluation and selection of the training data is done
to gain further insights to the data set. All recordings of the IMU and the selected ABA were
assessed visually based on the synchronisation of the two signals. A rating system was imple-
mented to categorise the recordings into three distinct categories. Ratings A, B and C were
assigned to the journeys, based on the signals correspondance between ABA and IMU.
A clear correlation was observed between the ABA and the IMU signal throughout the entirety
of the signal in journeys with an A rating. Class B journeys exhibit a clear correlation, although
there are a few signal parts that do not appear to correlate strongly. Journeys with a C rating
exhibited a considerable number of signal parts that exhibited a weak correlation with the IMU
signal. This phenomenon is frequently compounded by the presence of substantial noise and
generally low signal strength.
A total of 26 journeys were assigned an A rating. A high correlation was only partially observed
for 59 journeys, which corresponded to a B rating. The remaining 51 journeys lack in consistent
ABA and IMU signal correlation, and thus were assigned a C rating. Figure 18 illustrates the
ABA and IMU signals of a C-rated journey. It is evident that the peaks at 2000 samples and
shortly afterwards in the IMU signal are barely discernible in the ABA signal.

Figure 18: Journey with weak correlation between ABA and IMU signal (C-rating)

In order to facilitate the automation of the evaluation process and to obtain further inform-
ation about the data set and the individual journeys, they were evaluated using a variety of

Tobias Weiland, # 453 148 31

3 Description of the Database

metrics. The objective of this study is to identify a metric that is consistent with the visual eval-
uation. This can be expressed by the correlation of the two metrics. In addition to the classic
stochastic metrics, such as the mean value, standard deviation and maximum values, similarity-
related metrics were also determined for all journeys. The following metrics were employed:
the Dynamic Time Warp Score (DTW), the Cosine Similarity (Cosine), and an autocorrelation-
based correlation metric, which does not appear in literature. The autocorrelation is the cross-
correlation of the signal with itself and provides information about the noise component of the
signal. The correlation metric is defined in formula 21 as PC:

PC =
2∗max |zX ,y|

max |zX ,X |+max |zy,y|
(21)

where zX ,y denotes the cross correlation of the ABA and IMU signal and zX ,X , zy,y the autocor-
relations of the individual signals.
A heat map was then created by computing the correlation matrix for the evaluation metrics and
the rating. The coefficients for the heat map were calculated based on the Pearson correlation
coefficient. Figure 19 visualises the results and provides further information on the signal and
the correlations between the metrics.

Figure 19: Heatmap showing the relationships between the evacuation metrics and the visual
assessment of the data

32 Tobias Weiland, # 453 148

3.3 Data Preprocessing

It should be noted that the Pearson correlation is appropriate for continuous, quantitative data
types. However, this is not the case with the transformed visual rating, which is ordinal data.
The application of this method to this type of data contravenes the underlying assumption of
the Pearson correlation that the data is continuous and normally distributed. This discrepancy
may result in erroneous conclusions, which is why the results relating to the visual rating may
be invalid.
However, the strongest correlation to the visual evaluation is evident with the Dynamic Time
Warp Score, but this is not particularly meaningful as it correlates as strong as the standard
deviation of the ABA signal for instance. The score also appears to correlate with low extreme
values and large standard deviations for both IMU signal and ABA signal.
Low scatter, expressed by a low standard deviation, correlates inversely with the minimum
values of both signals. This can be explained by the fact that the noise component is greater with
a higher average amplitude. Furthermore, the standard deviation of one sensor correlates with
that of the other sensor, indicating plausible sensor behaviour. The strong negative correlation
between the minimum and maximum values of both signals is equally positive and plausible.
The evaluation of the journeys could be used in the further course of this work to select the best
journeys for model training. In addition to selecting the most appropriate journeys, the correct
preprocessing of data is also of crucial importance for the successful implementation of data-
based modelling. The subsequent section presents the data preprocessing pipeline, which was
employed in this work.

3.3 Data Preprocessing

Prior to the creation of a model, the raw data must be subjected to preprocessing. In this con-
text, it is crucial to inspect and analyse the data in relation to the specific task at hand in order
to select and apply the most appropriate preprocessing steps.
In cases where input and output data exhibit marked differences in their characteristics, it is
imperative to pay special attention to the implications of this discrepancy. Especially consid-
ering the information and dimensions contained within the data. The information encoded in a
time series data set is dependent upon the shape of the signal, which can be described by the
frequency range of the signal and the associated amplitudes.
It is crucial to highlight that at the outset of the preprocessing pipeline, the ABA data was
downsampled to the IMU sample rate of 100 Hz. In accordance with the Nyquist theorem, this
implies that information above 50 Hz is irrecoverable. However, as previously stated, this is not
a significant issue for the IMU signal, as it is not susceptible to detection. It is also important
to note that the downsampling process resulted in a significant reduction in the amount of data.
The exceptionally high sampling rate of the ABA data resulted in considerable computing times
during their exploration and processing, particularly in view of the number of journeys.
The applied preprocessing pipeline comprises the filtering of the data in order to equalise the
frequency spectra of the signals. Subsequently, the signals are aligned based on their cross-
correlation, and any necessary adjustments are made to ensure that the dimensions of the input
and output data are identical. Finally, the data is subjected to a scaling process with the ob-
jective of removing any trends that may be present. The individual steps are described in detail
below.

Tobias Weiland, # 453 148 33

3 Description of the Database

3.3.1 Bandpass Filter

In view of the distinctive characteristics of the sensors as set out in table 2, it is imperative to
implement a filtering process, given that the frequency ranges covered by the sensors exhibit
a considerable disparity. The ABA sensors operate at a much higher sample frequency, which
means that they can detect information that is not visible in the measurement of the IMU. This
is because the frequency range cannot be detected by the IMU. Furthermore, the vibration de-
tected by the ABA is transmitted by the two-stage damping system and damped by its low-pass
character, which attenuates the amplitudes in the high frequency ranges.
By applying the same bandpass filter to both the ABA and IMU signals, it is possible to equal-
ise the frequency ranges of the signals. Furthermore, the filter is designed to attenuate noise
components simultaneously and to smooth out abnormal peaks.
In the course of the work, a digital filter was applied to the data forward-backward. The filter
was designed as a second-order Butterworth bandpass filter, which results in a total filter order
of 4. The advantage of forward-backward filtering is that it equalises the phase offset that can
occur through simple filtering.
The bandwidth visible for the IMU is 0 to 50 Hz. However, the vibrations are strongly damped
by the damping system, which results in the emergence of less dominant frequencies above 18
Hz in the IMU data. In order to filter out high-frequency components from the ABA data, the
high cut frequency of the digital filter used was set to 18 Hz.
Upon analysing the IMU signals, low-frequency noise was identified. In order to eliminate these
noise components, a comparatively high low-cut frequency of 6 Hz was selected and applied.

Figure 20: Frequency spectra of the raw and filtered IMU and ABA signals of an exemplary
journey

Figure 20 illustrates the frequency spectra of the IMU and the ABA signal of an exemplary

34 Tobias Weiland, # 453 148

3.3 Data Preprocessing

journey. It also shows the frequency spectra of the filtered signals. It is evident that the filtered
signals exhibit greater similarity in the frequency range than the raw data, which greatly differ
in the frequency range. Furthermore, the filter demonstrates a high degree of efficacy in limiting
the frequency range. In the raw data, it is apparent that the ABA signal comprises a significantly
larger proportion of high frequencies, while the IMU signal is predominantly comprised of low
frequencies. This pronounced tendency persists even after the application of the filter, indicating
its inability to fully cancel out the effect. Although the two spectra are more similar than before
the filter, the spectrum of the IMU signal appears to be shifted slightly towards lower frequencies
in contrast to that of the ABA signal.
Figure 21 illustrates the outcome of data processing utilising the designed filter. The upper plot
depicts the unfiltered and filtered ABA signal, while the two IMU signals are shown below.
It is evident that the filter has considerably reduced the overall amplitude of the ABA data. This
effect is less pronounced in the IMU data. This can be interpreted as indicating that the high-
frequency components of the ABA signals are more strongly involved in the overall amplitude
than is the case with the IMU signal. The peaks were effectively suppressed for both signals.
Furthermore, the IMU signal exhibited a shift of the mean towards zero, and the noise in the
standstill phases was significantly reduced.
The application of a digital filter to the signals in question allows for the smoothing and limiting
of the frequency range, thus facilitating the recognition of the individual vibration events present
in the sensor data. This data can then be synchronised and subjected to further processing.

Figure 21: Result of the bandpass filter with a low cut-off frequency of 6 Hz and a high cut-off
frequency of 18 Hz

Tobias Weiland, # 453 148 35

3 Description of the Database

3.3.2 Data Synchronisation

The process of data synchronisation involves the shifting of signals in relation to each other in
order to optimise the alignment of the IMU and ABA signals. As described in chapter 2.2.1,
the cross-correlation was employed for this purpose. The mathematical operation enabled the
determination of the shift at which the two signals exhibited the closest degree of correlation.
Following the completion of the shift, it is essential to equalise the resulting discrepancy and
pad the vector. To illustrate, if the ABA signal is shifted by 20 samples in a positive direction,
the initial 20 values of the newly formed array must be padded and the final 20 values trimmed
in order to achieve the same dimensionality of the signal following synchronisation.
A function has been developed which aligns the ABA signal with the IMU signal and equalises
the length of the vectors. As chapter 3.2.3 demonstrates, the signals in question do not pos-
sess the same number of samples, necessitating harmonisation. In this instance, the function
shortens the IMU signal by the difference and returns the aligned and equalised two signals.
Furthermore, the output includes the value by which the signal has been shifted. The value
in question was subjected to analysis for all journeys. The objective was to ascertain whether
journeys should be excluded from the model training process due to their extreme shifts.
Table 3 provides an overview of the sessions and the shifts in their journeys due to synchron-
isation. It is important to note that the number of journeys considered for training was reduced
from 135 to 130 due to the identification of poor data quality during the data exploration process.
In this context, the term Delta is used to refer to the shift that occurs as a result of synchronisa-
tion.

Session 1 Session 2 Session 3 Session 4 Session 5
Nr. Journeys 14 17 42 38 19
Mean Delta −1.36 −4.05 −3.78 65.88 −4.50
Max Delta 6 2 49 2826 3
Min Delta −19 −25 −48 −189 −15

Table 3: Overview of the resulting sample shifts by signal synchronisation. Maximal, minimal
and mean value for each session

It can be observed that there are two recordings in session 4 that exhibit highly pronounced
shifts. Both extremes, one in a positive and one in a negative direction, distort the mean value
and reduce the comparability of the value to the other sessions. After adjusting for the outliers
and discarding the faulty recordings, the mean value is calculated as -3.68. The new mean
value lies within the value range of the other sessions and indicates plausible synchronisation.
It may be reasonably assumed that the observed shift, as identified through cross-correlation, is
relatively consistent in nature.
Given the frequently considerable length of the recordings, up to 600 seconds in duration, a
shift of only four samples on average indicates a highly synchronised measuring system. Signal
offsets may be observed due to differences in the signal processing power electronics of the
respective sensors, as well as by cable length and other parameters.
In the final preprocessing step, the synchronised data is scaled.

36 Tobias Weiland, # 453 148

3.3 Data Preprocessing

3.3.3 Data Scaling

Standardisation was employed to scale the data, with the objective of containing mean-free data
with a standard deviation of 1. However, the mean value was already adjusted incidentally
through filtering. As illustrated in Figure 21, the signals were not only constrained in their
frequency ranges by the forward and backward bandpass filtering, but a shift of the signals in
the y direction was also generated. This is particularly evident in the IMU signal. This shift
corresponds to the adjustment of the mean value. Consequently, the scaling of the data is not
essential for adjusting the signals’ means, yet it must be applied due to the unbalanced standard
deviation.
Through standardisation, the standard deviation of all signals was successfully set to 1, meaning
that the data is now fully preprocessed. It is important to note that by standardising the accel-
eration data, specifically by dividing it by the standard deviation, the acceleration is rendered
unitless. Consequently, no unit is indicated on the Y-axis in the subsequent figures that display
measured or predicted accelerations.

3.3.4 Preprocessing Evaluation

The preprocessing of the data attempted to process the data in such a way as to emphasise
the relevant signal components present in both signals, as well as to identify outliers and thus
cleanse the data set. The data pipeline comprises three principal stages: filtering, synchronisa-
tion and scaling.
During the application of the pipeline, the data was saved between the individual operations.
This was done so that the data could be analysed at different points in the processing.
This section presents a comparison between the original, raw signals and those that have under-
gone the three processing steps. The relationship between the signals and the manner in which
signal changes are transmitted is of significant importance for the purposes of model training.
Consequently, the data is always evaluated in terms of its degree of similarity or synchronicity.
The synchronicity of signals is of significant importance not only in the advance stage but also
during the later development process, when evaluating model predictions. It is therefore es-
sential to further familiarise with the metrics employed for the evaluation of time series-like
signals.
Besides classic plots of the data, metrics for analysing the synchronicity were collected at differ-
ent preprocessing steps and compared. Such an analysis enables the evaluation of whether the
desired outcome has been achieved. Moreover, the efficacy of individual preprocessing steps
can be assessed and modified as necessary.
In addition to the applied metrics for time-series like signals mentioned in chapter 3.2.4, there
are alternative approaches for processing signals in this manner and evaluating two signals syn-
chronicity. One such method is the the Pearson correlation coefficient.
This coefficient, as well as the dynamic time warp score, the cosine similarity, and the value
described in formula 21 resulting from correlation and autocorrelation, were calculated and
analysed. For all four metrics, the higher the value, the greater the similarity of the functions or
signals. In the case of the Pearson correlation and the correlation-based metric, the value range
is standardised between -1 and 1 and can also be negative. Although no negative correlations
between the signals are to be expected, errors in averaging can be avoided by using the absolute
value. Therefore, we proceeded with the absolute values of both correlation based metrics. For
the Dynamic Time Wrap score and the cosine similarity, the value range is not standardised but

Tobias Weiland, # 453 148 37

3 Description of the Database

always positive.
Table 4 presents the key figures for all five sessions. The average value across all journeys is
displayed in each case. Each metric is applied four times: once on the raw data (index raw),
after filtering (index filtered), after synchronisation (index synced) and at the end of the pipeline
(index scaled).

Session 1 Session 2 Session 3 Session 4 Session 5
DTW raw 82.462 95.626 113.698 77.992 42.105
DTW filtered 13.989 20.818 16.483 12.915 10.898
DTW synced 13.989 20.818 16.483 12.913 10.898
DTW scaled 66.362 72.747 54.966 60.265 53.134
Pearson raw 0.026 0.028 0.023 0.023 0.049
Pearson filtered 0.145 0.146 0.160 0.125 0.225
Pearson synced 0.236 0.218 0.246 0.210 0.237
Pearson scaled 0.236 0.218 0.246 0.210 0.237
Cosine raw 0.045 0.045 0.061 0.228 0.061
Cosine filtered 0.145 0.146 0.160 0.125 0.225
Cosine synced 0.236 0.218 0.246 0.210 0.237
Cosine scaled 0.236 0.218 0.246 0.210 0.237
PC raw 0.042 0.032 0.038 0.164 0.082
PC filtered 0.171 0.149 0.150 0.135 0.179
PC synced 0.171 0.149 0.150 0.136 0.179
PC scaled 0.248 0.233 0.271 0.224 0.280

Table 4: Dynamic time warp score, pearson correlation coefficient, cosine similarity and cross-
correlation based factor 21 during the course of the prepocessing pipeline (mean value
for each session)

The Dynamic Time Warp Score was unable to detect any adjustment of the signals in 80 per-
cent of journeys on average. Consequently, it is not a meaningful metric and should not be
considered further in this study. Nevertheless, it is evident that standardisation greatly increases
the metric, while filtering greatly reduces it. This correlation is evident in the average amp-
litude, which can be greatly reduced by filtering and amplified by scaling. The rationale behind
this phenomenon when scaling is the adjustment of the standard deviation. In the case of a
narrow value range, this can result in an increase in the aforementioned range, thereby raising
the average amplitude.
All other metrics experience an increase due to the preprocessing pipeline and indicate that the
ABA and IMU signals are more similar due to the processing steps. It should be noted, however,
that the remaining three metrics are situated within a range where the correlation is weak.
It is also notable that the average Pearson correlation factor and the cosine similarity are in
perfect alignment once the data have been filtered. With the exception of a few instances, this
observation can be made to five decimal places.
The scaling of the data does not affect the cosine similarity or the Pearson correlation, whereas
the cross-correlation-based factor is significantly influenced by it. Conversely, this metric is
unable to detect a shift of the signals against each other in the x direction, as the metric appears
to be unaffected by the synchronisation.
In general, it can be stated that the metrics across all sessions exhibit a high degree of consist-

38 Tobias Weiland, # 453 148

3.3 Data Preprocessing

ency in their response to the respective preprocessing methods. Given that each session com-
prises a disparate number of journeys, which in turn vary in length, the narrow range of values
observed in the metrics can be interpreted as indicative of consistent measurement quality.

Figure 22: Plotted raw and processed signals for IMU and ABA as a result of preprocessing

Figure 22 illustrates the signals before and after preprocessing. It is evident that the ABA signal
has been shifted in the positive X direction to align with the IMU signal. Additionally, both sig-
nals exhibit greater centering in the y-direction, which corresponds to the zeroing of the mean
value due to the scaling. It is apparent that the IMU signal has experienced a notable increase in
amplitude, yet certain signal components appear to have been accentuated. This phenomenon
can be attributed to the applied filter.
The preparation of the data for subsequent modelling represents a significant and time-consuming
step that serves to establish the foundation for model quality. Following the extraction and pro-
cessing of the data, 135 journeys are available for model development.

Tobias Weiland, # 453 148 39

4 Model Development and Evaluation

This chapter describes the modelling approaches for the prediction of the IMU signal based on
the ABA signal, which employs different types of neural networks. It presents a detailed ana-
lysis of three distinct network types: classical neural networks (i.e., feedforward MLP), CNNs
and RNNs.
The extent to which classical neural networks, as described in chapter 2.3.1, are capable of
solving a task such as the prediction of acceleration data is analysed in the first section. This
fundamental form of neural network also serves as a foundation upon which subsequent chapters
are built, guiding the reader through the intricacies of modelling using NNs.
The following sections examine the potential of more complex network forms, which are simil-
arly promising at an early stage. Recent studies [7], [9] were able to demonstrate the superiority
of complex networks, such as combinations of RNNs and CNNs, in particular for time series
applications.
A detailed general procedure is presented below, which outlines the necessary measures in a
step-by-step manner and is applicable to all network types.

• Data preparation and pre-processing: The process of preprocessing was previously
described in detail in the preceding chapters and consists of the same procedures for all
employed network types. Subsequently, the quantity of processed data is divided into
three distinct data sets: a training data set, a validation data set and a test data set. The
training and validation data sets are employed for the purpose of evaluating the models
performance in early development stages. The test data set is later utilized exclusively for
the purpose of final testing.

• Architecture selection and initialisation: In this phase, the fundamental framework of
the model is established. It is essential to define the dimensions of both the input and
output layers in a manner that aligns with the specific requirements of the application and
the data. Variable data dimensions, such as those involving journeys of varying lengths,
present a particular challenge.
In addition to the choice of dimension, further parameters must be defined. These in-
clude the choice of optimiser, the activation function of the individual layers or the initial
parameterisation of the networks weights.

• Hyperparameter optimisation: The optimal performance of neural networks is contin-
gent upon the optimization of a multitude of hyperparameters. As part of the optimisation
process, a number of parameters are selected as hyperparameters and a comprehensive
test run is initiated, which trains and evaluates a multitude of models with different con-
figurations. The models are trained on the test data set and validated with the validation
data set. The objective is to identify a parameter configuration that yields promising res-
ults, thereby enabling the subsequent final training process to be conducted with greater
capacity.

• Final training, testing and evaluation: In the final phase, the model is again trained with
the training data but with way more epochs. It is of the utmost importance to monitor the

Tobias Weiland, # 453 148 41

4 Model Development and Evaluation

training process meticulously and to track metrics such as loss, accuracy and validation
performance. Stopping the training process prematurely or adjusting the learning rate can
help to avoid overfitting.
Following the training, the model is subjected to an evaluation on the test data in order to
ascertain its prediction performance on a data set that hasn’t been used for training. The
results of the evaluation allow for the implementation of fine-tuning techniques, which
may include adjustments to hyperparameters, modifications to the architecture, or the
incorporation of additional data.

4.1 Classical Neural Network

The development of an MLP for time series forecasting is described in the following section.
The Keras machine learning API was employed for the project and implemented in the Python
programming language.

4.1.1 Architecture Selection and Initialisation

When modeling in Keras, the first question that arises is the dimensions of the model, which are
directly related to the dimensions of the training and test data. The time series data for training
comprises sequences of varying lengths. This presents a challenge for the standard architec-
tures of neural networks, which typically assume fixed input dimensions. In contrast, RNNs
and CNNs are able to handle variable sizes due to their inherent properties. Nevertheless, a
number of solutions have been devised to address this issue for classical neural networks. A
common approach is to extend the shorter inputs with special padding tokens to a maximum
length. Concurrently, masking is employed to differentiate the authentic input data from the
padding tokens. This method enables the processing of variable-length inputs by bringing them
to a fixed size. Nevertheless, this approach may result in inefficiencies and an increased compu-
tational effort, due to the number of padding values. Similarly, as previously outlined in Chapter
3.2.2, sparse arrays were employed for data storage during preprocessing with the objective of
enhancing computational efficiency.
An alternative approach is to restructure the data in such a way that the signals retain the same
form, despite their differing lengths. This approach employs window functions, which divide
the signal into sub-signals of uniform length and summarize them in a matrix. The window size
is of critical importance in this context. If the window is excessively large, it is possible that
crucial data may be overlooked. To illustrate, consider a relatively brief recording comprising
5895 samples, processed with a window size of 1000. This yields a 5x1000 matrix, with 895
data points being discarded. One potential solution is the implementation of a padding mechan-
ism. Conversely, if the window is too small, the system response of the system to be modelled
may be too lengthy for it to be represented in a partial signal. Consequently, the model would
attempt to make predictions based on input signals that do not correspond to the actual output
of the system.
The window function method was employed in the development of the model. This decision
was made on the grounds of computational efficiency. Furthermore, the window size can be
optimised as a hyperparameter, thereby affording further possibilities and insights. The sub-
sequent decision to be made when selecting the network architecture is that of the output di-
mension. Consequently, the training data, in this case the IMU signals, must also be structured

42 Tobias Weiland, # 453 148

4.1 Classical Neural Network

in accordance with the aforementioned principles. Once more, there are a number of potential
approaches to be taken when utilising the window function. While it is theoretically possible to
select the output dimension at will, not all dimensions are logically coherent. A window size
of 100 permits the prediction of a single value as well as to predict the next 100. However, it
appears that maintaining the dimensions of the input and output variables in a consistent manner
is the most logical approach. For this reason, the IMU signals were structured in such a way
that they corresponded to the input, the ABA signals. The result is a network that processes
a subsignal of the ABA sensor as a variable-size window and outputs the corresponding IMU
subsignal.

Figure 23: Schematic MLP with two hidden layers and a width of units 12 per layer

For the concrete implementation in Python, the dimensions of the input layer depend on the size
of the window. The input layer is followed by one or more hidden layers. The final hidden layer
is succeeded by the output layer, which serves to output the values in the form of an interface.
The dimensions of the output layer are identical to those of the input layer. Consequently, the
window size determines the input and output size of the network and represents a significant
hyperparameter. Models with different window sizes can be tested and evaluated using an auto-
mated data processing pipeline.
The number of neurons in the hidden layers is interpreted as the width of the network, while
the number of layers is generally referred to as its depth. The width and depth of the network
represent important hyperparameters of the model, which are examined in more detail during
optimisation.
Figure 23 provides an illustrative example of an MLP, which is used to visualise the dimensions
and the relationship between the input and output data. The illustration depicts an MLP with
two Hidden layers, each comprising 12 neurons. The window size employed is 10, which is
evident in the dimensions of the input and output layers.
Another crucial decision is the selection of the activation function to be applied to the respective
neurons. A number of common activation functions were subjected to testing. However, due to

Tobias Weiland, # 453 148 43

4 Model Development and Evaluation

the value range of the acceleration signals, it is necessary, at least in the output layer, to select an
activation function that can also cover a negative value range. It was found that the hyperbolic
tangent function was well suited to this purpose.
The selection of a loss function is of significant consequence for the calculations that occur in
the background during the process of model fitting. In the context of time series predictions,
there are a number of potential options. However, the Root Mean Squared Error (RMSE) is
considered to be the most reliable. This is particularly the case when the target variables have
a value range that includes both positive and negative numbers, as the Absolute Mean Error
(AME) can lead to erroneous results. The RMSE was employed as a loss function for the mod-
els constructed as part of the study. The Keras API provides the requisite functions, which are
then transferred to the corresponding interfaces when the model is compiled.
In addition to the aforementioned parameters, more must be taken into account when initial-
ising the network. These include the learning rate, the batch size and the choice of optimisation
algorithm. The majority of the parameters employed in this study were derived from standard
literature sources or other online information sources.
Once the model has been initialised and no calculation problems have occurred, the first models
can be trained and evaluated. The objective here is not to achieve the greatest accuracy; rather,
it is to ascertain whether the design of the network and its dimensions are correct. If this is the
case, the most crucial parameters will be identified in the subsequent step and then tested in
conjunction with one another as part of the hyperparameter optimisation process.

4.1.2 Hyperparameter Optimisation

The optimisation of hyperparameters is of paramount importance when utilising multilayer per-
ceptrons (MLPs) for time series prediction, as it the decisive factor in achieving optimal per-
formance. Two critical hyperparameters are model depth and model width. The depth of the
model, defined as the number of hidden layers, enables the network to capture more complex
patterns and relationships in the data. Nevertheless, an excessive depth can give rise to issues
such as overfitting or difficulties in training. Consequently, the optimal depth must be meticu-
lously selected in order to guarantee balanced performance.
The model width, defined as the number of neurons in the hidden layers, enhances the net-
work’s capacity to approximate complex functions. However, an excessive width can also result
in overfitting and longer training times. Consequently, an appropriate width must be identified
that enables satisfactory performance with an acceptable computation time.
Another crucial hyperparameter in time series prediction with multilayer perceptrons (MLPs) is
the window size. As outlined in previous subsection, a window size that is too small may result
in the loss of information, while a window size that is too large may unnecessarily increase
complexity and make training more difficult.
The hyperparameter optimisation for the work is implemented through the use of a training loop
in Python. In this approach, the selected hyperparameters are systematically varied over mul-
tiple iterations within a previously defined range. This enables the comprehensive testing of the
full configuration space. The number of epochs is kept to a minimum in order to achieve a man-
ageable computing time despite the large number of variants. The outcomes of this optimisation
process are then evaluated and analysed in order to identify the most promising configuration
and to conduct further training on it. Furthermore, the results can be employed to elucidate the
interrelationships between hyperparameters and their influence on the model behaviour.
It is prudent to define the ranges within which the hyperparameters are varied in advance, as this

44 Tobias Weiland, # 453 148

4.1 Classical Neural Network

will reduce the amount of unnecessary computing and programming effort required. The limits
were initially determined through empirical experimentation for the aforementioned purpose.
While the optimal parameters for the optimisation were being sought, it was discovered that a
classical neural network in the form of an MLP does not yield promising results for the task of
time series prediction. It appears that the network is unable to recognise the connection between
the signals. As a result, the parameterisation selected by the model training is such that the out-
put is mapped directly to the input, rather than the desired IMU signal corresponding to the
input.

Figure 24: Plotted prediction of classical neural network in comparison to the scaled input and
output signals

Figure 24 illustrates this effect and depicts the input and output signals, as well as the predicted
signal by the model. This is a journey from the test data set, which was not used in the model
training. The prediction was generated by a model comprising two hidden layers with 100 neur-
ons each. The data is processed with a fixed window size of 100.
The prediction is shown in both plots, but is scaled up by a factor of 8 in the lower plot for better
visualisation. The value range of the network output appears to be limited and does not exceed
that of the input data. Furthermore, as described above, the prediction appears to be a damped
version of the input and is not transformed by the model to follow the IMU signal.
Varying the hyperparameters did not change this behaviour. However, with more complex struc-
tures, deeper and wider meshes, there was a better fit to the input in terms of amplitude. An
enhancement in this regard could also be attained by increasing the initial weights of the dense

Tobias Weiland, # 453 148 45

4 Model Development and Evaluation

layers. However, no discernible improvement could be achieved with regard to the prediction
quality.

4.1.3 Training and Evaluation

Given the lack of predictive power exhibited by the model, no further attempts were made to
optimise the MLP. Instead of a computationally intensive test run and analysis, more complex
network types were employed directly.
MLPs treat each input as an independent instance, and do not take into account any sequence in-
formation or dependencies on previous points in time. Consequently, they are unable to identify
and represent the inherent patterns and trends in temporal sequences of data. The prediction
in MLPs is based solely on the current input values, without consideration of the sequence and
correlations between successive points in time.
This assumption of independence is at odds with the nature of time series, where values often
depend on previous values and have a sequential structure. Consequently, multilayer perceptron
(MLP) networks are unable to adequately capture the temporal dynamics and dependencies in
time series data, which significantly limits their predictive power for this application.
The absence of literature on the use of MLPs for time series forecasting supports the assumption
that this type of model is not suitable for this purpose.

4.2 Convolutional Neural Network

This section outlines the methodology employed in the development of a CNN for time series
prediction. The implementation is carried out using special one dimensional convolutional lay-
ers in the Keras machine learning API.

4.2.1 Architecture Selection and Initialisation

CNNs are capable of handling variable input sizes due to the fact that the convolutional opera-
tion with filters can be applied to inputs of any size by moving the filter over the entire input.
It is therefore unnecessary to restructure the data with a window function. However, the data
cannot be processed directly on the sparse array. Instead, the data is transformed into a NumPy
array, whereby shorter time series are padded with zeros so that all signals have the same num-
ber of values. In the interface to the model, only those time steps that were not padded can then
be filtered using a masking layer.
The input layer with masking is followed by a specific number of convolutional layers. The
number of layers corresponds to the model depth and is a hyperparameter that is optimised in
the subsequent section. The model depth exerts a profound influence on the number of para-
meters to be trained, which in turn affects the computational intensity of the model training.
Consequently, networks that are excessively deep are excluded due to a lack of computing ca-
pacity. In a convolutional layer, several kernels can be applied to the signal simultaneously, in
a manner analogous to the number of neurons in a dense layer. The number of kernel units is
another hyperparameter, corresponding to the model width. As with the depth, this hyperpara-
meter is set in a variety of parameter configurations. Given that the width of the model has a
relatively minor impact on the computational intensity of the training process, the parameter in
question can be varied over a wider range than the model depth. The final hyperparameter to

46 Tobias Weiland, # 453 148

4.2 Convolutional Neural Network

be analysed in detail is the length of the one-dimensional convolution kernel. A larger kernel is
capable of capturing a greater degree of context, but this can also result in an increased number
of parameters and the potential for overfitting.
In addition to the hyperparameters, further parameters are defined during design of the convo-
lutional layers. These parameters are then not varied during optimisation, ensuring that they
are the same in all configurations. One parameter to be considered here is the padding method.
The padding method employed in the Conv1D layer of Keras determines the manner in which
the input data is padded prior to the convolution operation. A number of options are available
within the API, with the ’same’ option being selected. The input is padded in such a way that
the spatial output size is equal to the input size.
As with the development of the MLP, the predictions of the initial model tests were found to
be considerably smaller than required in terms of amplitude. The same behavioural pattern was
observed in the initial drafts of the CNN model. To address this issue, the initial weights of the
convolution kernel were selected to have a standard deviation of 1. This resulted in relatively
large initial weights and corresponding outputs.
The selection of an activation function applied on the convolutional layer has a significant im-
pact on the model’s predictive capabilities. A number of different activation functions were
trialled during the design of the convolutional layers. Figure 25 illustrates the model prediction
of the same network with distinct activation functions in the convolutional layers. The network
in question is a convolutional neural network (CNN) with a width of 10 units. The kernel size
was set to 100 for the purposes of this comparison. A rectified linear unit (ReLU) is applied at
the top, while a hyperbolic tangent activation function is applied at the bottom. It is evident that
the output amplitude of the prediction is considerably higher than the actual IMU signal when
the ReLU is applied. In contrast, the lower graph depicts a considerably smaller prediction than
the target value. Nevertheless, the hyperbolic tangent function was identified as a more prom-
ising approach for further modelling.
The output of a convolution operation can be one dimension larger than the input depending
on the layers units, with the dimensions of the output varying according to the width of the
model. Following convolution with, for instance, 10 kernels, 10 distinct signals are generated,
each calculated from the respective kernel weights and the signal. The kernel size plays no role
in this effect. In order to obtain an output of the network that corresponds to the dimensions
of the generated output, the signals must be recombined into one signal. This can be achieved
by adding another convolutional layer if the kernel size is set to 1 and the unity number to 1.
This special parameterisation generates a linear combiner. This calculates a signal from the 10
resulting signals by weighting the individual data points and calculating a sum for each point in
time. Consequently, the output dimension is equivalent to the input dimension.

Tobias Weiland, # 453 148 47

4 Model Development and Evaluation

Figure 25: Plotted predictions of two convolutional neural networks in comparison to the scaled
IMU Signal. Prediction 1: Convolutional Layer with RelU activation in hidden layer,
Prediction 2: Convolutional Layer with hyperbolic tangent activation in hidden layer

As in the case of the MLP, the loss function employed is the RMSE. The learning rate repres-
ents a distinguishing factor between the MLP and this approach. This was selected as a variable
parameter, which stabilises the training process and prevents over-adaptation in the event of
learning stagnation. The learning rate may be adjusted during the training process via a call-
back mechanism, which is a specific method that is called at fixed times during training. The
ReduceLROnPlateau callback in Keras is designed to automatically reduce the learning rate
during training if a certain metric is no longer improved over a number of epochs. This callback
was employed in the development of the CNN. The metric that is monitored is the RMSE of
the validation dataset. The initial learning rate is set to 0.001 and is reduced by a factor of 0.1
when the loss function stagnates until a minimum learning rate of 1∗10−9 is reached.
Once the fundamental model structure has been established and initialisation has been com-
pleted, the hyperparameters can be optimised in the subsequent step.

4.2.2 Hyperparameter Optimisation

In order to identify a promising parameter configuration efficiently, a comprehensive test run
was initiated, during which the parameters kernel size, model depth (number of layers) and
model width (number of units) were systematically varied. A total of 18 distinct models were

48 Tobias Weiland, # 453 148

4.2 Convolutional Neural Network

subjected to training and subsequent comparison. The ranges in which the parameters were
varied are as follows:

• Kernelsize: 10, 100, 250

• Number of units: 1, 5, 10

• Number of layers: 1, 2

In comparison to the other two parameters, the number of layers was only tested on a smaller
scale. This decision was made because the networks depth has a significant impact on the num-
ber of trainable parameters of the respective model. In particular, very deep networks result
in a very high number of parameters, which in turn leads to lengthy training times. Should
it be demonstrated that models with two layers outperform shallower networks, regardless of
their kernelsize and number of units, further combinations can be tested in the course of the
work, with a particular focus on deeper networks. The use of fewer units allows for the train-
ing of deeper nets to be completed in a relatively short period of time. Figure 26 depicts the
RMSE over the entire training period for all 9 models with just one hidden layer. The RMSE is
calculated for the training data only. Each model was trained for a total of 750 epochs.

Figure 26: Root Mean Squared Error of model prediction and scaled training data labels for
single hidden layer CNNs

It is evident that the RSME reaches a relatively stable value for all models with minimal training
required. The threshold value appears to be 0.300 in the case of single layers of CNNs. It
appears that the training process reaches a local minimum, which cannot be overcome even by
adjusting the learning rate. It is also noteworthy that this phenomenon occurs in all models.

Tobias Weiland, # 453 148 49

4 Model Development and Evaluation

Nevertheless, it is evident that the rate at which the models reach the plateau differs. In the case
of a kernel size of 100 and a single unit, the model reaches the minimum within a few individual
epochs. In contrast, the model with a kernel size of 250 and five units only reaches the steady-
state value after approximately 400 epochs. The models with a single unit and a large kernel
(250 and 100) reach the value the fastest. It can be observed that more complex networks tend
to take a longer period of time to reach a steady state.
For purposes of comparison, Figure 27 depicts the same diagram for the CNN models with two
hidden layers. It is clearly visible that the same behaviour occurs as for models with only a
single layer in Figure 26. Once again, all curves approach a limit value, which is approximately
0.3. It is notable that the model with a model size of 10 and only one unit exhibits a markedly
different behaviour as it approaches the limit value. A local minimum is reached with the
greatest speed when the kernel size is set to 10 and the number of units is 5. Nevertheless,
there does not appear to be a correlation between speed of reaching the threshold and model
complexity.

Figure 27: Root Mean Squared Error of model prediction and scaled training data labels for
double hidden layer CNNs

A common feature of all models is that the limit value can be observed with sufficient clarity
well before the maximum number of training epochs have been reached, and the model para-
meters are no longer adjusted after a maximum of 400 epochs. In order to minimise the number
of unnecessary calculation steps in the final epochs, a specific Keras callback is employed in
the subsequent process. This enables the training to be terminated at an early stage when an
insurmountable plateau is reached.
Figures 26 and 27 only refer to the application of the model to the training data. Validation using

50 Tobias Weiland, # 453 148

4.2 Convolutional Neural Network

the validation data set is important for every model training. Through the relationship between
the prediction accuracy on the training data and that on the validation data, conclusions can be
drawn about the generalisation of the model. It is therefore immensely important to also evalu-
ate the predictions for the validation data set. Figure 28 estimates the RMSE for the validation
data set. CNN models with a single hidden layer are shown.

Figure 28: Root Mean Squared Error of model prediction and scaled validation data labels for
single hidden layer CNNs

The behaviour of the models on the validation data is identical to that observed on the test data.
The sole distinction between the two sets of data is the threshold, which has undergone a slight
increase from 0.3 to 0.318. In all other respects, the curves exhibit identical behaviour. The
model with a kernel size of 100 and a single unit again demonstrates the most rapid adaptation
to the new threshold.
The application of double hidden layer models to the validation data yielded the same results,
which is why the RMSE of these models is not illustrated again. As with the single-layer
models, the RMSE has also changed, with a value of 0.318.
It can be observed that all models appear to converge towards a similar local minimum, as they
all approach a similar threshold. Having demonstrated that the model with a single hidden
layer, a kernel size of 100 and a single convolutional unit is the fastest to reach the threshold,
the specific model’s prediction is analysed in greater detail below. The models prediction to the
validation data set is compared to a prediction generated by a model with the same kernel size
and number of layers, but with five units in order to discover any differences.

Tobias Weiland, # 453 148 51

4 Model Development and Evaluation

Figure 29: Plotted predictions of two convolutional neural networks in comparison to the scaled
input and output signals

52 Tobias Weiland, # 453 148

4.2 Convolutional Neural Network

Figure 29 displays the predictions and corresponding IMU and ABA Signals. The prediction
of the model with a single hidden layer, a kernel size of 100 and one convolutional unit exhib-
its undesirable behaviour. The model prediction is notably small and exhibits high-frequency
fluctuations around the zero point, suggesting that the model may be attempting to adjust the
output to the value zero independently of the input. This appears to be a local minimum that
was identified during the training of the model. The model with multiple units appears to offer a
more promising prediction in comparison. Consequently, it appears that the initially promising
parameter combination converges rapidly, yet ultimately results in an inconsequential paramet-
erisation.
In comparison to the predictions of the classic NN as shown in Figure 24 the displayed figure re-
veals that the CNN model with five units attempts to approximate the IMU signal. A clear illus-
tration of this phenomenon can be observed in the accompanying figure. Subsequently, a phase
with a relatively weak ABA input signal is observed at approximately 32,000 samples. Nev-
ertheless, the model generates an output that attempts to emulate the IMU signal.Nevertheless,
it is important to note that there is no clear correlation between the input signal and the pre-
diction. The larger peaks in the ABA data, such as those observed at approximately 18,000
samples, which are clearly visible in the IMU signal, are lost in a prediction that appears to be a
noise-like signal and are therefore not recognisable. Furthermore, the average amplitude of the
prediction appears to exceed that of the ground truth.
The subsequent section will analyse the training of model with 5 units in depth and apply it to
the training data.

4.2.3 Training and Evaluation

In order to better understand the model training process, a model was partially trained with
the previously defined parameter configuration and repeatedly applied to the test data for the
prediction. The result of this process is shown in Figure 30. It can be seen that as the training
progresses (number of epochs), the prediction becomes smaller in terms of amplitude. After
1000 epochs of parameterisation with the training data, the result is a very weak signal in terms
of amplitude, which bears little or no relation to the IMU signal. This behaviour corresponds to
the prediction when using a CNN with only one unit as shown in Figure 29.
This finding corresponds to the picture that has already emerged during the testing of the differ-
ent parameter configurations. The model training leads to a stagnation of the prediction quality
for all tested parameter combinations. However, the speed at which this plateau is achieved is
different.
In comparison to the outcomes achieved with conventional neural networks, the forecasts of
convolutional neural networks exhibit a significant disparity. As training progresses, the pre-
dictions of the conventional neural networks converge to the input signals. However, the model
parameters of the CNNs converge in such a way that a time series is predicted which approaches
a local minimum, which is unable to reflect the characteristics of the IMU signal. The resulting
prediction is of insufficient amplitude and fails to respond adequately to impulses in the input
data.

Tobias Weiland, # 453 148 53

4 Model Development and Evaluation

Figure 30: Plotted predictions of a convolutional neural network at different steps of the training
process in comparison to the scaled IMU Signal

54 Tobias Weiland, # 453 148

4.3 Recurrent Neural Network

There are a number of potential explanations for the model’s inability to converge against this
parameterisation, as well as the poor quality of the predictions on the test data. One might be
inclined to associate such model behaviour with overfitting. However, the fact that predictions
based on training data also exhibit a lack of quality speaks against this hypothesis. In this
instance, it is more probable that underfitting is present, as the model has not been adequately
adapted to both the test and training data.
The development of neural networks based on the convolutional operation will be terminated
at this point. The focus will then shift to RNNs, with the aim of determining whether similar
issues arise or whether the sequential processing of signals in the case of RNNs can lead to an
improvement in this application. In the subsequent discussion to the model development section,
the potential for further improvement is identified through the use of CNNs. Additionally, the
capabilities of CNNs in pattern identification are considered.

4.3 Recurrent Neural Network

The following chapter presents a detailed account of the modelling techniques employed in
RNNs. In particular, the LSTM layers of the Keras machine learning API are used. The pro-
cess commences with a description of the underlying model structure, in accordance with the
methodology described in Chapter 4. This is followed by a process of optimising selected hy-
perparameters. Finally, the selected model is trained and applied to the test data set in the
concluding section of the chapter.

4.3.1 Architecture Selection and Initialisation

Prior to commencing the modelling process, it is essential to define the input and output dimen-
sions of the model. The sequential processing and output of information in an LSTM allows
the realization of a multitude of model architectures with this element. The length of the input
vector is variable, as is the length of the resulting output. It is also possible to predict only one
value, resulting in a scalar output. In practice, this would mean that the model processes the first
1000 samples of the ABA data set to predict the 1001 sample of the IMU data set. Nevertheless,
the initial 1000 samples of the IMU data set can also be predicted. This is contingent upon the
selection of the model structure and the corresponding adaptation of the data sets for training,
testing, and validation.
In the event that the input signal is only partially supplied as input to the network, the data re-
cords must be restructured once more using a window function, as is the case in Chapter 4.1.1
when utilising conventional neural networks. In contrast, as with the CNN, the entire time series
can be fed into the network simultaneously. This obviates the necessity for the processing step
with the window function. Furthermore, the model is designed to receive the entirety of the
input signal for prediction, rather than a subset, which appears to be advantageous and sensible.
Consequently, the model architecture was chosen to accommodate the processing of entire ABA
signals in order to output the full IMU Signal. This type of RNN is referred to as a many-to-
many model.
As with the CNN, the data records must first be transferred from the sparse array format to a
padded array in order to compensate for the different journey lengths. In the input layer of the
RNN, the padded zeros must be ignored using a masking layer.
The input layer is succeeded by the LSTM layers. The number of subsequent layers is inter-

Tobias Weiland, # 453 148 55

4 Model Development and Evaluation

preted here as the model depth, while the unit number of individual layers represents the model
width. The subsequent chapter will provide a detailed analysis of both parameters. The hyper-
bolic tangent function was selected as the activation function for the LSTM layers. The initial
weights are generated from a normal distribution with a standard deviation of 1, ensuring an
optimal starting position for learning.
The ’return-sequences’ argument is of paramount importance for the selected model architec-
ture when defining the LSTM layer. This setting determines whether the LSTM layer outputs
the full sequence or only the output after the last time step. In order to implement the many-
to-many approach, the LSTM layers were defined in such a way that each layer outputs the full
sequence. In the event that a network comprising a multitude of units is employed, for instance
five, this will result in the generation of five sequences. The length of each sequence will cor-
respond to that of the input.
A further layer is incorporated into the model in order to integrate the sequences and generate
an output with the same dimensionality as the input. This dense layer is embedded in a wrap-
per, which allows each element of the sequences to be processed individually. In the case of
an LSTM layer with five units, the initial values of the five sequences are inserted into a dense
layer, which generates a single final value for the initial time step. A linear activation function
was selected for this layer. This implies that the output value is a linear combination of the
values of the individual sequences. This is carried out independently for each time step. The
’TimeDistributed’ wrapper is particularly well-suited to the processing of sequential informa-
tion and can be employed in conjunction with other layers. Furthermore, the loss function and
learning rate were selected for the modelling of the RNN in the same manner as for the CNN.
Once the fundamental structure of the model had been established, the objective was to identify
a suitable parameter combination as part of the hyperparameter optimisation process. Prior to
commencing the test run, which involved varying the two hyperparameters, namely model depth
and model width, a comparatively simple model was trained and its prediction analysed. This
was done to ascertain whether a local minimum occurs during model training, as was observed
with the other two model approaches previously, which severely limits the prediction capability.
A model comprising a single layer of LSTM cells with a depth of one and a width of 10 units
was trained for a total of 10 epochs. Figure 31 illustrates the model’s prediction on the valida-
tion dataset for a representative journey.
It can be observed that the amplitude of the prediction is once again relatively insignificant in
comparison to the IMU and ABA signal. Despite the limited number of epochs, the parameters
are adjusted by the model training to achieve a very small output value with great rapidity. Fur-
thermore, the prediction appears to align with the signal of the ABA sensor, exhibiting a similar
response to larger deflections of the IMU, despite low activation, as evidenced by the lack of
prediction at approximately 32,000 samples.
These observations indicate the presence of a local minimum, which is reminiscent of the res-
ults presented in previous chapters. However, they may also be indicative of a lack of model
complexity. Consequently, more complex models are trained and evaluated in the following
section.

56 Tobias Weiland, # 453 148

4.3 Recurrent Neural Network

Figure 31: Plotted predictions of a recurrent neural network in comparison to the scaled input
and output signals

4.3.2 Hyperparameter Optimisation

In comparison to the CNNs, fewer models were trained and subjected to comparative analysis.
The depth of the model was varied between one and two LSTM layers, while the width of the
model was tested in the range of one to 10. The number of layers in the dense layer following
the LSTM was not varied. The models were each trained for 300 epochs. Figure 32 illustrates
the root mean square error over the course of training. The losses in comparison to the training
data are presented in each case.
It can be observed that all models, with the exception of one, achieve a plateau within a relat-
ively short period, typically less than 50 epochs. At this point, the model parameters cease to
be adjusted. The model with one layer and ten units is an outlier, requiring almost 100 epochs
to reach a stable value. Nevertheless, no correlation can be drawn with a pronounced model
width, as the model with two layers and the same width stabilises very quickly. Given that all
models exhibit a similar value, it is reasonable to conclude that they also exhibit a similar para-
meterisation.
Upon examination of the RMSE of the models in comparison to the validation data (not shown),
a similar pattern emerges. Following less than 50 epochs, all models exhibited a loss of approx-
imately 0.318, which was slightly above the level of the test data. In this case, the model with
one layer and 10 units is also an outlier. The model that attains the stationary value in the

Tobias Weiland, # 453 148 57

4 Model Development and Evaluation

shortest time is the one with two layers and one unit. It is noteworthy that the most complex
model, comprising two layers and 10 units, attains the final steady-state value with remarkable
swiftness in comparison to the model with the same width, while also exhibiting the lowest root
mean square error.

Figure 32: Root Mean Squared Error of model prediction and scaled training data labels from
RNN models

4.3.3 Training and Evaluation

Based on the results from the parameter optimisation, extensive model training beyond 300
epochs was not carried out. When applied to the test data, the picture was similar to that of the
validation data and the desired level of prediction accuracy could not be achieved. Subsequently,
the model comprising two layers with one unit per layer which reached the stationary value first
was subjected to examination, with a particular focus on the manner in which the prediction
undergoes modification during the training process. This was undertaken with the objective of
attaining a more comprehensive understanding of the parameterisation process.
Figure 33 shows the prediction of the RNN model on the test data set during different phases of
training. It can be seen that the prediction becomes smaller in amplitude as training progresses.
However, from epoch 100 onwards there are hardly any parameter adjustments. This can be
concluded from the fact that the two predictions are identical after 100 and 300 epochs. Finally,
the prediction of the RNN is also more correlated with the input signal of the ABA sensor than
with the signal of the IMU, and a satisfactory prediction accuracy could not be achieved.

58 Tobias Weiland, # 453 148

4.3 Recurrent Neural Network

Figure 33: Plotted predictions of a recurrent neural network at different steps of the training
process in comparison to the scaled IMU Signal

Tobias Weiland, # 453 148 59

4 Model Development and Evaluation

Investigations of the predictions of the models with varying parameter configurations demon-
strated comparable behaviour to that of the model used for the prediction in Figure 31. As the
number of training epochs increases, the output of the model tends towards a time series that
approaches zero and does not reflect the behaviour of the IMU signal. Instead, the prediction
correlates more strongly with the input signal, but is significantly smaller in the amplitude range
than the original ABA Signal.
Further adjustments were made to the model in order to prevent this behaviour, including vari-
ations of the batch size, the learning rate and the initialisation method of the weights for the
LSTM layers. None of the selected measures were found to result in a significant improvement.
Following the modelling, a discussion is initiated in the subsequent chapter, which presents a
summary and comparison of the results of this chapter. Subsequently, an attempt is made to dis-
cuss the reasons for the lack of model quality and to identify any potential for improvement.

60 Tobias Weiland, # 453 148

5 Further Results and Discussion

The preceding chapter outlined three modelling approaches and their concrete implementation
via the machine learning API Keras. Conventional neural networks (multilayer perceptrons),
convolutional neural networks and recurrent neural networks of various configurations were
created and trained on the pre-processed data to find a model that could predict the IMU signal
to a corresponding ABA signal. Regrettably, none of the methodologies employed yielded a
predictive model with an acceptable degree of accuracy. Despite a comprehensive analysis of the
model parameters and an effort to adapt them, no parameter configurations could be identified
that effectively addressed this issue. The subsequent section presents a further comparison of
the results of the modelling.

5.1 Comparison of the Modelling Results

NN CNN RNN
RMSE Train Data [-] 1.0207 0.2988 0.2894
RMSE Validation Data [-] 1.0167 0.3165 0.3163
RMSE Test Data [-] 1.0178 0.46928 0.4700
Nr. of Epochs to stop [-] 14 10 10

Table 5: Overview of the resulting RMSE of predictions and scaled IMU Signals from different
models

Subsequently, an effort is made to comprehend the underlying reasons for the models’ lack of
predictive accuracy and to identify any additional measures that may be necessary.
Table 5 presents the root mean square error of three models when applied to test, validation, and
training data. The models are one model per treated model type. The following parameterisa-
tions were used for the predictions in Table 5:

• NN: Number of Layers: 2, Number of Units: 100, Window size: 100

• CNN: Number of Layers: 1, Number of Units: 1, Kernel size: 100

• RNN: Number of Layers: 2, Number of Units: 1

All models were trained using a regularisation technique that monitors a certain metric during
training and, in the event of stagnation, terminates training prematurely before the set epochs
have elapsed. The aforementioned callback is employed to circumvent overfitting, whereby
the loss observed with respect to the validation data is typically considered rather than that
pertaining to the training data. For all three model types, a parameterisation was reached at
which the training process reached a plateau, indicating that no further progress could be made
in terms of prediction accuracy. In addition to the RMSE for the different data sets, Table 5

Tobias Weiland, # 453 148 61

5 Further Results and Discussion

also shows the number of epochs after which the training processes were terminated by the
aforementioned callback.
It can be observed that the RNN has the lowest RMSE for the training and validation data set.
In relation to the test data set, the RMSE of the CNN model is minimally lower. Nevertheless,
it is evident that the results of the CNN and the RNN are highly comparable across all data
sets. Furthermore, the models exhibit a similar pattern of increasing RMSE from the test data
set to the validation data set and then to the test data set, indicating a deterioration in prediction
accuracy. The conventional NN exhibits RMSEs that are approximately three times as large
as those of the other two models. Additionally, the loss for the NN differs only insignificantly
between the data sets. It is uncommon for the accuracy on the test data set to be higher than on
the training data set. This eliminates the possibility of overfitting.
Upon examination of the number of epochs passed through, it becomes evident that both the
CNN and the RNN have the same number of epochs. This is due to the threshold value stored in
the callback, which has the effect of causing the system to wait a few epochs before cancelling
the training.
By analysing the progression of the RMSE over the epochs, as illustrated in Figure 34, it can be
observed that the loss is stabilising prematurely. The figure depicts the RMSE in relation to the
training and validation data for all network types.

Figure 34: Root Mean Squared Error of model prediction and scaled validation data labels for
single hidden layer CNNs

It can be observed that the CNN exhibits a loss of performance after just one epoch, with min-
imal adaptation during the remainder of the training period. In contrast, the RNN demonstrates
a plateau after one epoch. These findings apply to both the training and validation data sets.
The conventional neural network stabilises after four epochs. Notably, the neural network is the
only model in which the initial value of the loss is lower for the validation data set than for the
training data set.
At this early stage of training, achieving optimal parameterisation is unusual. This indicates
that the models have reached a local minimum during parameterisation, which cannot be over-

62 Tobias Weiland, # 453 148

5.1 Comparison of the Modelling Results

come. It can be theorised that reducing the learning rate may prove beneficial in this instance.
Nevertheless, this approach was implemented, yet the observed outcome did not demonstrate a
discernible impact on the model behaviour.
Given that the RMSE of the CNN and RNN models is comparable across all data sets, it can
be inferred that the predictions generated by the two models will also exhibit a similar correla-
tion. To gain a more profound understanding of the limitations of the models, a prediction for
an exemplary journey from the validation data set was created for each model and displayed
graphically. Figure 35 illustrates the prediction of each model in a stacked plot, with the actual
IMU signal to be predicted superimposed. In the case of the CNN and the RNN, the predictions
are so small in terms of amplitude that no deflections can be discerned with the naked eye.
In order to facilitate visualisation, the signals were increased by a factor. The signal of the CNN
was close to zero, therefore the factor, which is 10 for the RNN, must be 100 for the CNN in
order to recognise shapes in the signal. For purposes of comparison, the bottom plot depicts
the input signal, which served as the correlating ABA signal and was employed as input for all
three models.
The commonality between the CNN and RNN models becomes apparent when examining the
tendency of the models to end in a parameterisation that generates predictions close to zero in
order to minimise the loss related to the IMU signal. However, when zooming in, a different
shape between the CNN prediction and the RNN prediction can be observed. While the output
of the CNN is almost identical to the input signal, with only a slight reduction in magnitude, the
RNN produces a prediction that is strongly positive in the y-direction. It appears that the RNN
model is unable to predict negative accelerations.
In terms of optical comparison, the prediction of the conventional NN appears to be the most
closely aligned with the desired prediction, despite exhibiting a relatively larger RMSE. Nev-
ertheless, it cannot be stated with certainty that specific deflections are identified in the actual
IMU signal. Furthermore, the output appears to be constrained to a range of values between
-4.4 and 4.4. Nevertheless, the prediction of the NN is the only one that is able to almost predict
the deflection of the IMU in the range of approximately 26,000 samples.
It is regrettable that none of the employed methodologies were able to generate models that
could accurately predict the IMU signals. The parameterisation of the models appears to res-
ult in the occurrence of wrong local minima after a few training epochs, which precludes any
improvement in the prediction. The parameterisation of the CNN and RNN produces predic-
tions that are close to zero and strongly influenced by the input signal. The parameters of the
neural network generate a prediction that approaches an upper and lower limit value, signific-
antly inflate the input signal with a low-pass character. The occurrence of false local minima
during the training of neural networks, as observed in the training of the suspension model, is a
phenomenon that has been well documented in the literature.

Tobias Weiland, # 453 148 63

5 Further Results and Discussion

Figure 35: Plotted predictions of different neural networks in comparison to the scaled input
and output signals

64 Tobias Weiland, # 453 148

5.2 Spurious Local Minima

5.2 Spurious Local Minima

During the training of neural networks, suboptimal minima may arise, which indicates that the
algorithm utilised in backpropagation is no longer capable of adapting the parameters. Con-
sequently, the adaptation of the model is said to have reached a plateau. This is in contrast
to the fact that neural networks serve as universal function approximators, capable of learning
complex patterns in data and approximating any continuous function. The universal approx-
imation theorem asserts that a neural network comprising a sufficient number of neurons and
hidden layers is capable of approximating arbitrary continuous functions with arbitrary accur-
acy. Nevertheless, the occurrence of such spurious local minima can be demonstrated to follow
directly from the theorem and the underlying mechanisms. This is particularly evident when
non-affine activation functions are employed, such as in the case of the ReLU or tangent hyper-
bolic function, as was the case in this study [44].
Modelling based on neural networks is predicated on the assumption that non-convex functions
can be optimised using local gradient descent methods during the model training phase, which is
known as the back propagation. However, there is no guarantee that the optimisation algorithm
will converge to a meaningful minimum, or indeed that it will converge at all [45]. In the case of
the models analysed, the models converged to two different local minima, which did not result
in a meaningful prediction of the model. The quality of the minimum achieved is often much
worse than the global maximum and depends, among other things, on the initialisation of the
model parameters and the utilized data set[46].
The data employed for the training were acceleration signals recorded by real sensors. In ad-
dition to the informative signal components, the raw signals also exhibited noise components.
This was particularly evident in the IMU signals, such that the noise component was not en-
tirely removed even by the filtering operation applied during the preprocessing stage. This
phenomenon can be observed in Figure 35. Upon examination of the IMU signals, it becomes
evident that residual noise persists in the signal at the conclusion of the ABA excitation period.
The input of an accelerometer, particularly the noise component, can be expressed by a Gaus-
sian distribution. This factus may have affected the model training. A study published in 2019
examines the occurrence of special local minima when Gaussian inputs are employed. These
inputs adhere to the principle of least loss of symmetry with respect to the target weights, and
thus may be far away from the global minimum [47].
The conclusion of training in a spurious local minimum results in an inadequate level of predic-
tion quality and a lack of adaptation to the task. This phenomenon is commonly referred to as
underfitting. The term is closely related to a fundamental problem in machine learning, namely
the bias-variance trade-off.

5.3 Bias Variance Trade-Off

The bias-variance problem represents a significant challenge when training machine learning
models. The issue can be described as a conflict between two opposing sources of error. Bias
and Variance.
Bias may be defined as the inability of a model to capture important patterns in the data, due to
its simplicity. A model exhibiting high bias demonstrates suboptimal performance on both the
training data and new data. This phenomenon is referred to as underfitting. Conversely, the vari-
ance represents the error caused by overfitting to the training data. A model with high variance

Tobias Weiland, # 453 148 65

5 Further Results and Discussion

exhibits a high degree of learning of the training data, including noise and outliers. Although the
model performs well on the training data, it generalises poorly to new data. This phenomenon is
known as overfitting. This can be attributed to an excess of functions or parameters in relation
to the quantity of data, an extended training period, or a deficiency in regularisation.
The objective is to identify a model that strikes a balance between simplicity and complexity.
A model that is overly simplistic or overly complex is to be avoided. Such a model is able to
identify the fundamental patterns in the data without being overly influenced by random fluctu-
ations.
The fact that the RMSE in relation to the test and validation data is similar for all models
strongly suggests that the models were underfitting. The potential causes of this phenomenon
include an insufficient number of parameters in the model, inadequate training time, or excess-
ive regularisation. In this work, a regularisation technique was employed to interrupt training
when model adaptation was no longer occurring. However, other regularisation techniques,
such as dropout layers, were not utilised.
Upon examination of the number of parameters that can be trained, it becomes evident that this
is a negligible fraction in comparison to the number of training data points, which comprises
all the data points of the individual journey and exceeds 2 million.The models that were sub-
jected to comparison in chapter 5.1 were found to possess the following number of trainable
parameters an results from the model architecture:

• Conventional NN: 10401

• CNN: 103

• RNN: 26

It is evident that both models, whose predictions exhibit minimal amplitude, possess a limited
number of trainable parameters. Chapters 4.2.2 and 4.3.2, in which the hyperparameters were
optimised for the respective model architecture, demonstrated that simple models are more ef-
fective than complex models in terms of achieving a stable deviation quickly. Furthermore,
more complex networks did not demonstrate any improvement in terms of prediction quality,
even with extensive training runs. It can be observed that the number of trainable parameters
is not directly proportional to the complexity of the network. In fact, more complex networks,
such as those with wider and deeper layers, can only achieve a greater number of trainable para-
meters. This is in contrast to the assumption that a greater number of parameters would easily
prevent underfitting.
Nevertheless, it is important to note that even the most complex models tested in the optimisa-
tion runs were not in the same order of magnitude as the number of data points in the training
data set. The largest trained models reached a number of approximately 100,000 parameters,
representing only approximately 5 % of the training data.
A pervasive conviction within the machine learning community is that smaller networks exhibit
superior generalisation capabilities compared to complex ones. Additionally, it is widely be-
lieved that the number of parameters in a model should be smaller than the number of training
data points [48]. Nevertheless, it appears that the lack of prediction quality is not directly attrib-
utable to the number of parameters, as more complex networks did not yield better results.
Since more complex models did not perform better, i.e. the models were not too simple, no
extreme regularisation was applied and the training time was not too short, the cause of the
underfitting could also be the poor quality of the database. The quality of the data set used to
train the model is of equal importance to the number of parameters in determining the quality
of the model. The following chapter will examine the extent to which modifications to the data

66 Tobias Weiland, # 453 148

5.4 Modification of the Database

set could be beneficial for model quality.

5.4 Modification of the Database

All modelling approaches failed to accurately predict the IMU signals based on the ABA sig-
nals. The fact that the models have the same problem despite their different structure, in the
case of the CNN and RNN models, could indicate that there is a common cause. And since
all models were trained, validated and tested on the same datasets, it stands to reason that the
modelling difficulty is related to the relationship between the ABA and IMU signals in the un-
derlying datasets.
Chapter 3.2.4 discussed the quality of the data. Particular attention was paid to the synchron-
isation of the signals and the degree of correlation between the IMU and ABA signals on each
trip. The individual runs were analysed in detail and compared using various metrics. They
were also subjected to an visual analysis.
This showed that about 50 % of the trips had a correlation between the signals that was not
continuous across the signal. Portions of the IMU signals do not appear to originate from the
ABA signal that correlates with it in the data set. Figure 36 illustrates this with an example. It
shows a trip where there is very little or no correlation between the IMU and ABA signals in
comparison to a journey with strong correlation.

Figure 36: Scaled ABA and IMU signals of exemplary journeys with high correlation (upper
plot) and low correlation (lower plot)

Tobias Weiland, # 453 148 67

5 Further Results and Discussion

The training process from such a journey presents a number of challenges for neural networks,
with back-propagation parameterisation being particularly affected. Such models are capable
of recognising and learning complex behaviours and patterns in the data. However, this is prob-
lematic when there is no clear or discontinuous behaviour in the training data, in this case, no
clear correlation between the IMU and ABA signal.
Figure 37 depicts two scatter plots that illustrate the correlation between ABA and IMU sig-
nals for two exemplary journeys. As previously mentioned, the correlations between IMU and
ABA signals are not constant across the data set. The regression lines and the additionally
depicted Pearson correlation factor r demonstrate that there is a positive correlation in the left
journey and a negative correlation in the right journey. The discrepancy within the training data
has a severely detrimental impact on the model training process, preventing the model from
generalising and mapping the relationship between input and output data. Consequently, the
backpropagation algorithm converges to a parameterisation that produces predictions that are
close to zero.

Figure 37: Scatter plot of the ABA and IMU Signal from two exemplary journeys of the training
data

It is possible that modifying the training data set by deleting the data that does not demonstrate
a strong correlation between the signals could enhance the prediction quality. However, if the
model is only trained on data exhibiting this characteristic, the total amount of training data
is significantly reduced. This would result in the utilisation of only approximately 25 % of
the available recordings, thereby further reducing the already limited quantity of training data.
Nevertheless, the approach is promising and has been subjected to further analysis.
The models presented at the outset of this chapter, one for each modelling approach, were sub-
jected to further training, this time utilising only the data presented. A subset of the highly
correlated data was employed to validate the model training. Nevertheless, the application and
ultimate utilisation of the newly trained models is conducted once more on the same dataset, in
order to guarantee comparability with the resulting RMSEs from the preceding work.
Table 6 presents the RMSEs resulting from the predictions of the three retrained models in rela-

68 Tobias Weiland, # 453 148

5.4 Modification of the Database

tion to four distinct data sets: the modified training data set and the three known test, validation
and training data sets.

NN CNN RNN
RMSE Modified Train Data [-] 0.9917 0.5053 0.5051
RMSE Train Data [-] 1.0074 0.2979 0.3020
RMSE Validation Data [-] 1.0085 0.3161 0.3218
RMSE Test Data [-] 1.0198 0.4703 0.4859
Nr. of Epochs to stop [-] 18 89 15

Table 6: Overview of the resulting RMSE of predictions and scaled IMU Signals from different
models when trained with modified train data set

The data indicates that training with the modified data set did not result in any significant im-
provements. The RMSE related to the individual data sets has not demonstrably improved in
comparison to the previous state, when the models were trained with all journeys. The RMSEs
remains comparable between the RNN model and the CNN model, while the conventional NN
exhibits values in a higher value range across all data sets.

Figure 38: Prediction of conventional NN in comparison to scaled input and output signals.
Model trained with only highly correlating IMU and ABA Signals

Tobias Weiland, # 453 148 69

5 Further Results and Discussion

Two of the three models also demonstrate a relatively rapid stabilisation of the RMSE after less
than 20 epochs. Although the CNN model requires a greater number of training epochs, 89
epochs are still a relatively small number of training runs.
It was hypothesised that the modified data set would facilitate the learning of the model’s be-
haviour, resulting in improved prediction and a reduced RMSE. This hypothesis was tested on
a NN and found to be true, as the RMSE is lower when applied to the modified training data
than to the regular training data. Nevertheless, the enhancement for the NN is relatively modest,
and the other two networks did not exhibit any improvement whatsoever, as they demonstrated
a higher loss in the modified data set.
To gain further insight into the results of the model training with only highly correlated IMU
and ABA signals, the prediction of the conventional neural network is presented graphically in
Figure 38. This is an example journey from the validation data set for better comparability. The
figure also shows the corresponding IMU and ABA signals.
It can be observed that the amplitude of the predicted signal is considerably smaller than that of
the two real signals. This behaviour is reminiscent of the CNN and RNN models. Furthermore,
the prediction appears to align with the input signal, and the characteristics of the IMU signal
are not discernible.
In general, it can be stated that the measure was not a success. The observation that the value
ranges in which the RMSEs occur remained unchanged by the data set modification indicates
that the action taken did not produce the desired result.
Other potential modifications to the database that could enhance the modelling process include
the utilisation of a single journey for model training. This offence could eliminate a potential
source of error that could result from a variable transmission of the signal between the IMU
and ABA over several sessions. It is important to note that the size of the training data would
be significantly reduced, which could have a negative impact on the model due to its tendency
towards poor generalisation.
An alternative approach would be to utilise both ABA sensors in the left and right axle bearings
for prediction. This adaptation of the models would theoretically be straightforward to imple-
ment and would also result in a natural increase in the parameters. However, as the models are
already highly simplified, this is not a significant issue. Nevertheless, it would be necessary
to conduct a detailed analysis to ascertain whether the amount of information is significantly
increased by using the second sensor and the model in order to better predict the transmission.
The two proposed approaches are not addressed in this paper, but offer a potential avenue for
further investigation.
In addition to further modifications to the data set, alternative modelling approaches can also
be discussed as part of further investigations. This topic is further explored in the subsequent
chapter.

5.5 Alternative Model Approach

Besides the employed sequence modeling methods, another technique, which combines data
driven and physical modeling, archived great results when modeling nonlinear dynamical sys-
tems. A Physics Informed Neural Network (PINN) represent a novel approach to integrating
neural networks with physical laws. The utilisation of partial knowledge of the dynamic system
to be modelled serves to enhance the predictive precision of the model [49].
The fundamental concept underlying PINNs is the incorporation of the governing Partial Dif-
ferential Equations (PDEs) of the physical system into the loss function during the training of

70 Tobias Weiland, # 453 148

5.5 Alternative Model Approach

the neural network. This approach enables the network to not only fit the available data, but
also to respect the underlying physical constraints described by the PDEs. The computation of
the PDE residuals is typically performed using the automatic differentiation capabilities of deep
learning frameworks such as Keras.
In order to implement a PINN for a specific problem, it is first necessary to define the desired
network architecture. Subsequently, the PDE must be derived. The corresponding PDE to the
system in question can be derived directly from a mechanical model. A commonly used and
simple approach is the quarter-car model [19]. Section 2.1.3 presented this conventional ap-
proach and derived the representing quarter-car model equations for the specific use case of this
work.
The PDEs governing the system dynamics are then coded into a custom loss function along
with traditional data-fitting terms. During training, the network weights are optimised in order
to minimise violations of the PDEs in addition to minimising errors on the available data.
By leveraging knowledge of the governing physics, PINNs can achieve high prediction accuracy
even with limited data, while avoiding unphysical predictions that purely data-driven models
may produce when extrapolating [50]. This innovative combination of machine learning and
physical modelling has the potential to revolutionise the way complex nonlinear systems are
modelled across a wide range of scientific and engineering domains.
Nevertheless, the construction of complex physical systems with PINNs is challenging when
the governing partial differential equations or their parameterisation are unknown or inaccur-
ate. This is a significant issue that can severely impact the performance and reliability of the
PINN model. The key idea behind PINNs is to incorporate the known PDEs that describe the
physical system into the neural network training process. However, if these partial differential
equations (PDEs) are not fully understood or incorrectly parameterised, the PINN will essen-
tially be trained on flawed physical constraints. By enforcing incorrect physical laws during
training, the PINN may produce predictions that violate fundamental principles or conservation
laws, rendering the model outputs unphysical or unrealistic.
In the case of the investigated dynamic system for the thesis, a two-stage damping system of
a locomotive, the model parameters required for the full initialisation of the quarter vehicle
model, such as vehicle mass and spring and damper data, were unknown. Consequently, no
mechanical model could serve as the basis for a PINN that models the relationship between the
measured accelerations in the IMU and the ABA with sufficient accuracy. The necessity for
a profound comprehension of the physical system and the availability of known parameters in
order to successfully implement a PINN represents a disadvantage of this type of modelling in
comparison to the other approaches presented.

Tobias Weiland, # 453 148 71

6 Summary

The objective of this study was to develop a machine learning model that predicts the trans-
mission of vertical accelerations between the axle box of a train and its body. The theoretical
framework underlying the modelling approach is to use the redundancy of the measurement data
of individual sensors in a multi-sensor system to validate the measurement autonomously. For
this purpose, a data set from a research project in the field of predictive maintenance of modern
railway infrastructure systems was used.
The data set was divided into sessions and journeys and subjected to analysis and pre-processing
for modelling purposes. A series of process steps were carried out, including resampling, filter-
ing, scaling, synchronisation and the splitting of the data into training, validation and test data.
The individual preprocessing steps and their results were presented and critically discussed in
the thesis. Subsequently, three different modelling approaches were investigated: conventional
NNs, CNNs and RNNs. A model architecture was proposed for each model type and imple-
mented in Python using methods from the machine learning API Keras. This was followed by
a parameter optimisation to enable the comparison of different parameter configurations. Sub-
sequently, the accuracy of the models was evaluated using the test data.
It was not possible to develop a model that could generate reliable predictions based on this
dataset. Regardless of the chosen model type, signs of severe underfitting occurred during
the training of the neural networks. Suboptimal minima, due to which the back-propagation
method was no longer able to further adapt the parameterisation, impaired the model train-
ing and led, among other things, to predictions that were constantly close to zero. This effect
occurred with any parameter configuration and all three modell approaches, with the only dif-
ferences being marginal differences in the RMSE of the prediction and the number of training
epochs required to reach the suboptimal plateau. More complex models took longer than sim-
pler ones. Moreover, the RMSEs between the convolutional neural network models and the
recurrent neural network models were interestingly very similar, while the neural network mod-
els exhibited deviations of three orders of magnitude.
The reasons for the insufficient model quality may be attributed to the use of noisy and not con-
tinuously strongly correlated ABA and IMU signals, which were employed for model training.
The incorporation of additional data for model training or the integration of multiple sensors in
a multi-channel solution could prove advantageous. The models tested were also of moderate
size, which raises the question of whether a superior result could be achieved with higher com-
puting power and a larger amount of data. The investigation of a modelling approach involving
partial differential equations also appears promising and could provide a foundation for further
work.

Tobias Weiland, # 453 148 73

Bibliography

[1] M. Binder, V. Mezhuyev and M. Tschandl, ‘Predictive maintenance for railway domain:
A systematic literature review,’ IEEE Engineering Management Review, vol. 51, no. 2,
pp. 120–140, 2023. DOI: 10.1109/EMR.2023.3262282.

[2] R. B. Randall, ‘Introduction and background,’ in Vibration-based Condition Monitor-
ing. John Wiley Sons, Ltd, 2011, ch. 1, pp. 1–23, ISBN: 9780470977668. DOI: https:
//doi.org/10.1002/9780470977668.ch1. eprint: https://onlinelibrary.
wiley.com/doi/pdf/10.1002/9780470977668.ch1. [Online]. Available: https:
//onlinelibrary.wiley.com/doi/abs/10.1002/9780470977668.ch1.

[3] B. Baasch, J. C. Groos and M. H. Roth, ‘Sensorgestützte anomaliedetektion zur zustands-
bewertung der schiene mit regelzügen,’ ETR - Eisenbahntechnische Rundschau, no. 12,
Dezember 2018. [Online]. Available: https://elib.dlr.de/121905/.

[4] S. Muñoz, J. F. Aceituno, P. Urda and J. L. Escalona, ‘Multibody model of railway
vehicles with weakly coupled vertical and lateral dynamics,’ Mechanical Systems and
Signal Processing, vol. 115, pp. 570–592, 2019, ISSN: 0888-3270. DOI: https : / /
doi.org/10.1016/j.ymssp.2018.06.019. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S0888327018303534.

[5] N. Nadarajah, A. Shamdani, G. Hardie, W. K. Chiu and H. Widyastuti, ‘Prediction of rail-
way vehicles’ dynamic behavior with machine learning algorithms,’ Electronic Journal
of Structural Engineering, vol. 18, no. 1, pp. 38–46, 2018, ISSN: 1443-9255. DOI: 10.
56748/ejse.182271.

[6] X. Hao, J. Yang, F. Yang, X. Sun, Y. Hou and J. Wang, ‘Track geometry estimation
from vehicle–body acceleration for high-speed railway using deep learning technique,’
Vehicle System Dynamics, vol. 61, no. 1, pp. 239–259, 2023, ISSN: 0042-3114. DOI:
10.1080/00423114.2022.2037669.

[7] S. Ma, L. Gao, X. Liu and J. Lin, ‘Deep learning for track quality evaluation of high-speed
railway based on vehicle-body vibration prediction,’ IEEE Access, vol. 7, pp. 185 099–
185 107, 2019. DOI: 10.1109/ACCESS.2019.2960537.

[8] H. Li, T. Wang and G. Wu, ‘Dynamic response prediction of vehicle-bridge interaction
system using feedforward neural network and deep long short-term memory network,’
Structures, vol. 34, pp. 2415–2431, 2021, ISSN: 23520124. DOI: 10.1016/j.istruc.
2021.09.008.

[9] F. Yang, X. Hao, H. Zhang, J. Jiang, Z. Fan and Z. Wei, ‘Estimation of vehicle dynamic
response from track irregularity using deep learning techniques,’ Shock and Vibration,
vol. 2022, pp. 1–9, 2022, ISSN: 1070-9622. DOI: 10.1155/2022/2136464.

[10] DLR. ‘Havenzug – schäden am gleis effizient vorbeugen.’ (), [Online]. Available: https:
//verkehrsforschung.dlr.de/de/projekte/havenzug-schaeden-am-gleis-
effizient-vorbeugen (visited on 14/03/2024).

Tobias Weiland, # 453 148 75

https://doi.org/10.1109/EMR.2023.3262282
https://doi.org/https://doi.org/10.1002/9780470977668.ch1
https://doi.org/https://doi.org/10.1002/9780470977668.ch1
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470977668.ch1
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470977668.ch1
https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470977668.ch1
https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470977668.ch1
https://elib.dlr.de/121905/
https://doi.org/https://doi.org/10.1016/j.ymssp.2018.06.019
https://doi.org/https://doi.org/10.1016/j.ymssp.2018.06.019
https://www.sciencedirect.com/science/article/pii/S0888327018303534
https://www.sciencedirect.com/science/article/pii/S0888327018303534
https://doi.org/10.56748/ejse.182271
https://doi.org/10.56748/ejse.182271
https://doi.org/10.1080/00423114.2022.2037669
https://doi.org/10.1109/ACCESS.2019.2960537
https://doi.org/10.1016/j.istruc.2021.09.008
https://doi.org/10.1016/j.istruc.2021.09.008
https://doi.org/10.1155/2022/2136464
https://verkehrsforschung.dlr.de/de/projekte/havenzug-schaeden-am-gleis-effizient-vorbeugen
https://verkehrsforschung.dlr.de/de/projekte/havenzug-schaeden-am-gleis-effizient-vorbeugen
https://verkehrsforschung.dlr.de/de/projekte/havenzug-schaeden-am-gleis-effizient-vorbeugen

Bibliography

[11] P. S. Rao, A. K. Desai and C. H. Solanki, ‘Application of quarter car model for assess-
ment of attenuation characteristics of soil at low strain,’ Transportation Infrastructure
Geotechnology, vol. 8, no. 3, pp. 329–348, 2021, ISSN: 2196-7202. DOI: 10 . 1007 /
s40515-020-00139-2.

[12] I. M. Ahmed, M. Y. Hazlina and M. M. Rashid, ‘Modeling a small-scale test rig of quarter
car railway vehicle suspension system,’ Journal of robotics and mechatronics, vol. 2,
no. 4, pp. 149–153, 2015. DOI: 10.21535/IJRM.V2I4.888.

[13] S. J. Elliott, M. Ghandchi Tehrani and R. S. Langley, ‘Nonlinear damping and quasi-
linear modelling,’ Philosophical transactions. Series A, Mathematical, physical, and en-
gineering sciences, vol. 373, no. 2051, 2015. DOI: 10.1098/rsta.2014.0402.

[14] I. Paglia, L. Rapino, F. Ripamonti and R. Corradi, ‘A methodology for including suspen-
sion dynamics in a simple context of rail vehicle simulations,’ in 15th World Congress
on Computational Mechanics (WCCM-XV) and 8th Asian Pacific Congress on Computa-
tional Mechanics (APCOM-VIII), CIMNE, July 31 to August 5, 2022. DOI: 10.23967/
wccm-apcom.2022.005.

[15] I. La Paglia, L. Rapino, F. Ripamonti and R. Corradi, ‘Modelling and experimental char-
acterization of secondary suspension elements for rail vehicle ride comfort simulation,’
Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and
Rapid Transit, vol. 238, no. 1, pp. 38–47, 2024, ISSN: 0954-4097. DOI: 10 . 1177 /
09544097231178858.

[16] S. Iwnicki, M. Spiryagin, C. Cole and T. McSweeney, Handbook of Railway Vehicle Dy-
namics, Second Edition. Milton, UNITED KINGDOM: Taylor & Francis Group, 2019,
ISBN: 9780429890635. [Online]. Available: http://ebookcentral.proquest.com/
lib/dlr-ebooks/detail.action?docID=5981899.

[17] S. Bruni, J. Vinolas, M. Berg, O. Polach and S. Stichel, ‘Modelling of suspension com-
ponents in a rail vehicle dynamics context,’ Vehicle System Dynamics, vol. 49, no. 7,
pp. 1021–1072, 2011, ISSN: 0042-3114. DOI: 10.1080/00423114.2011.586430.

[18] M. Dumitriu, I. I. Apostol and D. I. Stănică, ‘Influence of the suspension model in the
simulation of the vertical vibration behavior of the railway vehicle car body,’ Vibration,
vol. 6, no. 3, pp. 512–535, 2023. DOI: 10.3390/vibration6030032.

[19] L. Rónai, ‘Investigation of the vibrational behavior of a quarter-car model,’ in Vehicle and
Automotive Engineering 4, ser. Lecture Notes in Mechanical Engineering, K. Jármai and
Á. Cservenák, Eds., Cham: Springer International Publishing, 2023, pp. 824–834, ISBN:
978-3-031-15210-8. DOI: 10.1007/978-3-031-15211-5{\textunderscore}68.

[20] M. Boldis and K. Zakova, ‘Web presentation of quarter car model,’ in 2019 5th Experi-
ment International Conference (exp.at’19), IEEE, 2019, pp. 167–171, ISBN: 978-1-7281-
3637-0. DOI: 10.1109/EXPAT.2019.8876578.

[21] J. Yang, J. Wang and Y. Zhao, ‘Simulation of nonlinear characteristics of vertical vibra-
tion of railway freight wagon varying with train speed,’ Electronic Research Archive,
vol. 30, no. 12, pp. 4382–4400, 2022, ISSN: 2688-1594. DOI: 10.3934/era.2022222.

[22] R. M. Goodall, H. Sira-Ramírez and A. Matamoros-Sánchez, ‘Flatness based control
of a suspension system: A gpi observer approach,’ IFAC Proceedings Volumes, vol. 44,
no. 1, pp. 11 103–11 108, 2011, ISSN: 14746670. DOI: 10.3182/20110828- 6- IT-
1002.03102.

76 Tobias Weiland, # 453 148

https://doi.org/10.1007/s40515-020-00139-2
https://doi.org/10.1007/s40515-020-00139-2
https://doi.org/10.21535/IJRM.V2I4.888
https://doi.org/10.1098/rsta.2014.0402
https://doi.org/10.23967/wccm-apcom.2022.005
https://doi.org/10.23967/wccm-apcom.2022.005
https://doi.org/10.1177/09544097231178858
https://doi.org/10.1177/09544097231178858
http://ebookcentral.proquest.com/lib/dlr-ebooks/detail.action?docID=5981899
http://ebookcentral.proquest.com/lib/dlr-ebooks/detail.action?docID=5981899
https://doi.org/10.1080/00423114.2011.586430
https://doi.org/10.3390/vibration6030032
https://doi.org/10.1007/978-3-031-15211-5{\textunderscore }68
https://doi.org/10.1109/EXPAT.2019.8876578
https://doi.org/10.3934/era.2022222
https://doi.org/10.3182/20110828-6-IT-1002.03102
https://doi.org/10.3182/20110828-6-IT-1002.03102

Bibliography

[23] C. El Morr, M. Jammal, H. Ali-Hassan and W. El-Hallak, ‘Data preprocessing,’ in Ma-
chine Learning for Practical Decision Making: A Multidisciplinary Perspective with Ap-
plications from Healthcare, Engineering and Business Analytics, Cham: Springer Inter-
national Publishing, 2022, pp. 117–163, ISBN: 978-3-031-16990-8. DOI: 10.1007/978-
3-031-16990-8{\textunderscore}4.

[24] P. Bourke, ‘Cross correlation,’ Cross Correlation”, Auto Correlation—2D Pattern Iden-
tification, vol. 596, 1996.

[25] I. Goodfellow, Y. Bengio and A. Courville, Deep Learning. MIT Press, 2016, http:
//www.deeplearningbook.org.

[26] L. Stanković and D. Mandic, ‘Convolutional neural networks demystified: A matched fil-
tering perspective-based tutorial,’ IEEE Transactions on Systems, Man, and Cybernetics:
Systems, vol. 53, no. 6, pp. 3614–3628, 2023, ISSN: 2168-2216. DOI: 10.1109/tsmc.
2022.3228597.

[27] H. Zumbahlen, ‘Analog filters,’ in Linear Circuit Design Handbook, Elsevier, 2008,
pp. 581–679, ISBN: 9780750687034. DOI: 10.1016/B978-0-7506-8703-4.00008-0.

[28] D. Marinov. ‘Part 5: Polyphase fir filters.’ (2023), [Online]. Available: https://vhdlwhiz.
com/part-5-polyphase-fir-filters/ (visited on 14/03/2024).

[29] K. Muhammad, J. Ahmad, I. Mehmood, S. Rho and S. W. Baik, ‘Convolutional neural
networks based fire detection in surveillance videos,’ IEEE Access, vol. 6, pp. 18 174–
18 183, 2018. DOI: 10.1109/ACCESS.2018.2812835.

[30] M. Chen, Y. Hao, K. Hwang, L. Wang and L. Wang, ‘Disease prediction by machine
learning over big data from healthcare communities,’ IEEE Access, vol. 5, pp. 8869–
8879, 2017. DOI: 10.1109/ACCESS.2017.2694446.

[31] S. Zhang, Z. Sun, J. Long, C. Li and Y. Bai, ‘Dynamic condition monitoring for 3d
printers by using error fusion of multiple sparse auto-encoders,’ Computers in Industry,
vol. 105, pp. 164–176, Feb. 2019. DOI: 10.1016/j.compind.2018.12.004.

[32] H. Shao, J. Hongkai, L. Xingqiu and W. Shuaipeng, ‘Intelligent fault diagnosis of rolling
bearing using deep wavelet auto-encoder with extreme learning machine,’ Knowledge-
Based Systems, vol. 140, Oct. 2017. DOI: 10.1016/j.knosys.2017.10.024.

[33] S. S. Haykin, Neural networks and learning machines, 3. ed. New York: Pearson, 2009,
ISBN: 0-13-147139-2.

[34] P. Purwono, A. Ma’arif, W. Rahmaniar, H. I. K. Fathurrahman, A. Z. K. Frisky and
Q. M. u. Haq, ‘Understanding of convolutional neural network (cnn): A review,’ Inter-
national Journal of Robotics and Control Systems, vol. 2, no. 4, pp. 739–748, 2022. DOI:
10.31763/ijrcs.v2i4.888.

[35] S. P and R. R, ‘A review of convolutional neural networks, its variants and applications,’
in 2023 International Conference on Intelligent Systems for Communication, IoT and
Security (ICISCoIS), IEEE, 2023, pp. 31–36, ISBN: 979-8-3503-3583-5. DOI: 10.1109/
ICISCoIS56541.2023.10100412.

[36] A. P. Wibawa, A. B. P. Utama, H. Elmunsyah, U. Pujianto, F. A. Dwiyanto and L. Hernan-
dez, ‘Time-series analysis with smoothed convolutional neural network,’ Journal of big
data, vol. 9, no. 1, p. 44, 2022, ISSN: 2196-1115. DOI: 10.1186/s40537-022-00599-
y.

Tobias Weiland, # 453 148 77

https://doi.org/10.1007/978-3-031-16990-8{\textunderscore }4
https://doi.org/10.1007/978-3-031-16990-8{\textunderscore }4
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.1109/tsmc.2022.3228597
https://doi.org/10.1109/tsmc.2022.3228597
https://doi.org/10.1016/B978-0-7506-8703-4.00008-0
https://vhdlwhiz.com/part-5-polyphase-fir-filters/
https://vhdlwhiz.com/part-5-polyphase-fir-filters/
https://doi.org/10.1109/ACCESS.2018.2812835
https://doi.org/10.1109/ACCESS.2017.2694446
https://doi.org/10.1016/j.compind.2018.12.004
https://doi.org/10.1016/j.knosys.2017.10.024
https://doi.org/10.31763/ijrcs.v2i4.888
https://doi.org/10.1109/ICISCoIS56541.2023.10100412
https://doi.org/10.1109/ICISCoIS56541.2023.10100412
https://doi.org/10.1186/s40537-022-00599-y
https://doi.org/10.1186/s40537-022-00599-y

Bibliography

[37] K. Aurangzeb, M. Alhussein, K. Javaid and S. I. Haider, ‘A pyramid-cnn based deep
learning model for power load forecasting of similar-profile energy customers based on
clustering,’ IEEE Access, vol. 9, pp. 14 992–15 003, 2021. DOI: 10.1109/ACCESS.
2021.3053069.

[38] D. Jurafsky and J. H. Martin, Speech and language processing : an introduction to nat-
ural language processing, computational linguistics, and speech recognition. Chapter 9:
Sequence Processing with Recurrent Networks. Upper Saddle River, N.J.: Pearson Pren-
tice Hall, 2009, ch. 9, ISBN: 9780131873216 0131873210. [Online]. Available: http://
www.amazon.com/Speech-Language-Processing-2nd-Edition/dp/0131873210/
ref=pd_bxgy_b_img_y.

[39] Q. El Maazouzi, A. Retbi and S. Bennani, ‘Automatisation hyperparameters tuning pro-
cess for times series forecasting: Application to passenger’s flow prediction on a railway
network,’ The International Archives of the Photogrammetry, Remote Sensing and Spa-
tial Information Sciences, vol. XLVIII-4/W3-2022, pp. 53–60, 2022. DOI: 10.5194/
isprs-archives-XLVIII-4-W3-2022-53-2022.

[40] Huile Li, Tianyu Wang and Gang Wu, ‘Dynamic response prediction of vehicle-bridge
interaction system using feedforward neural network and deep long short-term memory
network,’ Structures, vol. 34, pp. 2415–2431, 2021, ISSN: 23520124. DOI: 10.1016/j.
istruc.2021.09.008. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S2352012421008559.

[41] Precision triaxial industrial icp ® accelerometer, 629A61, Rev. B, PCB electronics, Mar.
1999.

[42] Mti user manual, MT0605P, Rev. 2020A, Xsens Technologies, Feb. 2020.

[43] J. Oprel, ‘Railway track monitoring from vehicles in daily operations,’ Projektarbeit,
2023. [Online]. Available: https://elib.dlr.de/201910/.

[44] C. Christof and J. Kowalczyk, On the omnipresence of spurious local minima in certain
neural network training problems. DOI: 10.1007/s00365-023-09658-w. [Online].
Available: http://arxiv.org/pdf/2202.12262v2.

[45] G. Swirszcz, W. M. Czarnecki and R. Pascanu, Local minima in training of neural net-
works. [Online]. Available: http://arxiv.org/pdf/1611.06310v2.

[46] G. Elidan, M. Ninio, N. Friedman and D. Schuurmans, ‘Data perturbation for escaping
local maxima in learning,’ Proceedings of the Eighteenth National Conference on Artifi-
cial Intelligence, 2003.

[47] Y. Arjevani and M. Field, On the principle of least symmetry breaking in shallow relu
models. [Online]. Available: http://arxiv.org/pdf/1912.11939v3.

[48] S. Lawrence, A. C. Tsoi and C. L. Giles, ‘Local minima and generalization,’ in Proceed-
ings of International Conference on Neural Networks (ICNN’96), IEEE, 1996, pp. 371–
376, ISBN: 0-7803-3210-5. DOI: 10.1109/ICNN.1996.548920.

[49] H. Robinson, S. Pawar, A. Rasheed and O. San, Physics guided neural networks for
modelling of non-linear dynamics, 2022. DOI: 10.48550/arXiv.2205.06858.

[50] S. Cuomo, V. S. Di Cola, F. Giampaolo, G. Rozza, M. Raissi and F. Piccialli, ‘Scientific
machine learning through physics–informed neural networks: Where we are and what’s
next,’ Journal of Scientific Computing, vol. 92, no. 3, p. 88, 2022, ISSN: 1573-7691. DOI:
10.1007/s10915-022-01939-z.

78 Tobias Weiland, # 453 148

https://doi.org/10.1109/ACCESS.2021.3053069
https://doi.org/10.1109/ACCESS.2021.3053069
http://www.amazon.com/Speech-Language-Processing-2nd-Edition/dp/0131873210/ref=pd_bxgy_b_img_y
http://www.amazon.com/Speech-Language-Processing-2nd-Edition/dp/0131873210/ref=pd_bxgy_b_img_y
http://www.amazon.com/Speech-Language-Processing-2nd-Edition/dp/0131873210/ref=pd_bxgy_b_img_y
https://doi.org/10.5194/isprs-archives-XLVIII-4-W3-2022-53-2022
https://doi.org/10.5194/isprs-archives-XLVIII-4-W3-2022-53-2022
https://doi.org/10.1016/j.istruc.2021.09.008
https://doi.org/10.1016/j.istruc.2021.09.008
https://www.sciencedirect.com/science/article/pii/S2352012421008559
https://www.sciencedirect.com/science/article/pii/S2352012421008559
https://elib.dlr.de/201910/
https://doi.org/10.1007/s00365-023-09658-w
http://arxiv.org/pdf/2202.12262v2
http://arxiv.org/pdf/1611.06310v2
http://arxiv.org/pdf/1912.11939v3
https://doi.org/10.1109/ICNN.1996.548920
https://doi.org/10.48550/arXiv.2205.06858
https://doi.org/10.1007/s10915-022-01939-z

	Titelseite
	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Theoretical Background
	Railway Vehicle Vertical Dynamics
	Suspension Characteristics
	Suspension Modeling
	Quarter-Car Model

	Signal Processing
	Data Synchronisation
	Data Filtering
	Data Resampling
	Data Scaling

	Machine Learning
	Classical Neural Network
	Convolutional Neural Networks
	Recurrent Neural Network

	Description of the Database
	Description of the Sensors used
	Data Exploration
	Data Structure
	Data Handling
	Sensor Selection
	Data Rating

	Data Preprocessing
	Bandpass Filter
	Data Synchronisation
	Data Scaling
	Preprocessing Evaluation

	Model Development and Evaluation
	Classical Neural Network
	Architecture Selection and Initialisation
	Hyperparameter Optimisation
	Training and Evaluation

	Convolutional Neural Network
	Architecture Selection and Initialisation
	Hyperparameter Optimisation
	Training and Evaluation

	Recurrent Neural Network
	Architecture Selection and Initialisation
	Hyperparameter Optimisation
	Training and Evaluation

	Further Results and Discussion
	Comparison of the Modelling Results
	Spurious Local Minima
	Bias Variance Trade-Off
	Modification of the Database
	Alternative Model Approach

	Summary
	Bibliography

