Xu, Yajin und Schuegraf, Philipp und Bittner, Ksenia (2024) Multi-branch convolutional neural network in building polygonization using remote sensing images. PFG - Journal of Photogrammetry, Remote Sensing and Geoinformation Science. Springer. doi: 10.1007/s41064-024-00319-6. ISSN 2512-2789.
PDF
- Verlagsversion (veröffentlichte Fassung)
3MB |
Kurzfassung
Building extraction and polygonization is important for urban studies, such as urbanization monitoring, urban planning. Remote sensing images, especially in RGB bands, provide sufficient semantic information which is useful for the task of building extraction and polygonization. Deep learning using Convolutional Neural Networks (CNNs) is proven to be successful in many fields, including building extraction from remote sensing images. In this paper, we propose a two-stage method to solve the task of building polygonization from remote sensing images based on deep learning. Firstly, we decompose a 2‑D building footprint model into three basic geometry primitives. Leveraging stacked Multi-Branch Modules (MBMs), we separate the task of building extraction into tasks of predicting the three geometry primitives using our proposed CNN. At the second stage, we propose an efficient enhanced building polygonization and adjustment algorithm to generate the final building polygons. This algorithm is able to handle both building blocks and individual buildings. We evaluate our model on three open datasets. For building blocks, our model achieved average precision of 62.7% and average recall of 73.6% on the CrowdAI mapping challenge dataset, and 13.9% and 24.4% respectively on the Urban Building Classification (UBC) dataset which contains mainly individual buildings. On the Inria aerial image dataset, the proposed method achieved Intersection over Union (IoU) over 71%.
elib-URL des Eintrags: | https://elib.dlr.de/206892/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||
Titel: | Multi-branch convolutional neural network in building polygonization using remote sensing images | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 2024 | ||||||||||||||||
Erschienen in: | PFG - Journal of Photogrammetry, Remote Sensing and Geoinformation Science | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||
DOI: | 10.1007/s41064-024-00319-6 | ||||||||||||||||
Verlag: | Springer | ||||||||||||||||
Name der Reihe: | Springer Nature Link | ||||||||||||||||
ISSN: | 2512-2789 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | Building extraction, Deep learning, Computer vision, Remote sensing, Geoscience, AI4BuildingModeling | ||||||||||||||||
HGF - Forschungsbereich: | keine Zuordnung | ||||||||||||||||
HGF - Programm: | keine Zuordnung | ||||||||||||||||
HGF - Programmthema: | keine Zuordnung | ||||||||||||||||
DLR - Schwerpunkt: | Digitalisierung | ||||||||||||||||
DLR - Forschungsgebiet: | D DAT - Daten | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | D - Digitaler Atlas 2.0, V - V&V4NGC - Methoden, Prozesse und Werkzeugketten für die Validierung & Verifikation von NGC, R - Optische Fernerkundung | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse | ||||||||||||||||
Hinterlegt von: | Bittner, Ksenia | ||||||||||||||||
Hinterlegt am: | 16 Dez 2024 12:05 | ||||||||||||||||
Letzte Änderung: | 16 Dez 2024 12:05 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags