elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Multi-branch convolutional neural network in building polygonization using remote sensing images

Xu, Yajin und Schuegraf, Philipp und Bittner, Ksenia (2024) Multi-branch convolutional neural network in building polygonization using remote sensing images. PFG - Journal of Photogrammetry, Remote Sensing and Geoinformation Science. Springer. doi: 10.1007/s41064-024-00319-6. ISSN 2512-2789.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
3MB

Kurzfassung

Building extraction and polygonization is important for urban studies, such as urbanization monitoring, urban planning. Remote sensing images, especially in RGB bands, provide sufficient semantic information which is useful for the task of building extraction and polygonization. Deep learning using Convolutional Neural Networks (CNNs) is proven to be successful in many fields, including building extraction from remote sensing images. In this paper, we propose a two-stage method to solve the task of building polygonization from remote sensing images based on deep learning. Firstly, we decompose a 2‑D building footprint model into three basic geometry primitives. Leveraging stacked Multi-Branch Modules (MBMs), we separate the task of building extraction into tasks of predicting the three geometry primitives using our proposed CNN. At the second stage, we propose an efficient enhanced building polygonization and adjustment algorithm to generate the final building polygons. This algorithm is able to handle both building blocks and individual buildings. We evaluate our model on three open datasets. For building blocks, our model achieved average precision of 62.7% and average recall of 73.6% on the CrowdAI mapping challenge dataset, and 13.9% and 24.4% respectively on the Urban Building Classification (UBC) dataset which contains mainly individual buildings. On the Inria aerial image dataset, the proposed method achieved Intersection over Union (IoU) over 71%.

elib-URL des Eintrags:https://elib.dlr.de/206892/
Dokumentart:Zeitschriftenbeitrag
Titel:Multi-branch convolutional neural network in building polygonization using remote sensing images
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Xu, Yajinyajin.xu (at) dlr.dehttps://orcid.org/0000-0003-2469-7749173852781
Schuegraf, PhilippPhilipp.Schuegraf (at) dlr.dehttps://orcid.org/0000-0003-0836-9040173852784
Bittner, KseniaKsenia.Bittner (at) dlr.dehttps://orcid.org/0000-0002-4048-3583NICHT SPEZIFIZIERT
Datum:2024
Erschienen in:PFG - Journal of Photogrammetry, Remote Sensing and Geoinformation Science
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
DOI:10.1007/s41064-024-00319-6
Verlag:Springer
Name der Reihe:Springer Nature Link
ISSN:2512-2789
Status:veröffentlicht
Stichwörter:Building extraction, Deep learning, Computer vision, Remote sensing, Geoscience, AI4BuildingModeling
HGF - Forschungsbereich:keine Zuordnung
HGF - Programm:keine Zuordnung
HGF - Programmthema:keine Zuordnung
DLR - Schwerpunkt:Digitalisierung
DLR - Forschungsgebiet:D DAT - Daten
DLR - Teilgebiet (Projekt, Vorhaben):D - Digitaler Atlas 2.0, V - V&V4NGC - Methoden, Prozesse und Werkzeugketten für die Validierung & Verifikation von NGC, R - Optische Fernerkundung
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse
Hinterlegt von: Bittner, Ksenia
Hinterlegt am:16 Dez 2024 12:05
Letzte Änderung:16 Dez 2024 12:05

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.