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Abstract
Building extraction and polygonization is important for urban studies, such as urbanization monitoring, urban planning.
Remote sensing images, especially in RGB bands, provide sufficient semantic information which is useful for the task
of building extraction and polygonization. Deep learning using Convolutional Neural Networks (CNNs) is proven to be
successful in many fields, including building extraction from remote sensing images. In this paper, we propose a two-stage
method to solve the task of building polygonization from remote sensing images based on deep learning. Firstly, we
decompose a 2-D building footprint model into three basic geometry primitives. Leveraging stacked Multi-Branch Modules
(MBMs), we separate the task of building extraction into tasks of predicting the three geometry primitives using our
proposed CNN. At the second stage, we propose an efficient enhanced building polygonization and adjustment algorithm
to generate the final building polygons. This algorithm is able to handle both building blocks and individual buildings.
We evaluate our model on three open datasets. For building blocks, our model achieved average precision of 62.7% and
average recall of 73.6% on the CrowdAI mapping challenge dataset, and 13.9% and 24.4% respectively on the Urban
Building Classification (UBC) dataset which contains mainly individual buildings. On the Inria aerial image dataset, the
proposed method achieved Intersection over Union (IoU) over 71%.

Keywords Building extraction · Deep learning · Computer vision · Remote sensing · Geoscience

1 Introduction

Buildings are one of the most important aspects in ur-
ban studies, such as studies of urbanization progress, urban
changes. With remote sensing images, surveys of buildings
have become more efficient, since remote sensing images
are capable of covering much larger areas. Building ex-
traction using deep learning is proven to be powerful and
successful, by introducing computer vision knowledge into
remote sensing domain.

With the development of deep learning and Convolu-
tional Neural Networks (CNNs), the general workflow of
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building extraction can be described as first to extract high-
level deep image features using a backbone network, and
then to delineate building footprints. The spatial dimension
of the extracted features can be the same of the original in-
put image, e.g. U-Net (Ronneberger et al. 2015), or smaller
than the input image, e.g. Hourglass network (Newell et al.
2016). Usually, the delineation is done by semantic segmen-
tation with post-processing refinement (Zhao et al. 2018;
Mahmud et al. 2020) or by edge/corner extraction with ad-
ditional Graph Neural Network (GNN) models (Zhao et al.
2022; Alidoost et al. 2020; Zorzi et al. 2022). Addition-
ally, when the spatial dimension of the extracted features
is smaller than input, up-sampling of prediction images is
necessary to generate final building footprints.

In contrast to building footprints (in raster format), build-
ing polygons in vector format are more efficient to use in
practice, for only vertex coordinates are involved for such
representation. Geometrically speaking, a building polygon
consists of three primitives: vertices, edges, footprint. This
inspired us to extract building polygons by first extracting
these three geometry primitives from the image. This is
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Fig. 1 The overall workflow of our proposed method. Each RGB im-
age is fed to a CNN with MBMs to obtain the three predicted basic ge-
ometry primitives. The enhanced polygonization module outputs build-
ing polygons based on the three predictions

similar to the methods which extract building edges and/or
corners.

The three aforementioned geometry primitives are highly
coupled with each other in nature. Therefore, we seek to de-
velop a model which enables information fusion of the three
geometry primitives in the task of building extraction and
polygonization. Multi-Branch Module (MBM) (Batra et al.
2019) is proven to be successful in enhancing road extrac-
tion from satellite imagery, by providing an explicit infor-
mation exchange of predicted road network and predicted
orientation of roads. Inspired by this, we extend and fur-
ther develop the MBM with modifications in this paper and
propose our own model for building extraction. MBMs pro-
vide learned interactions in training between each branch
responsible for one basic geometry primitive type. These
geometry primitives are then used for later building poly-
gonization.

In literature, there are two possible types of building
segments: building blocks and individual buildings. The
difference is whether a building is considered two indi-
vidual buildings when Common Borders (CBs) exist, i.e.
shared common edges. For the extraction of building block
segments, it is usually a semantic segmentation task, while
the extraction of individual buildings with CBs is seen as
an instance segmentation task. We intend to include both
building segment types and develop a method that works in
both scenarios.

Following building extraction, we propose an efficient
building polygonization procedure aiming to generate
building polygons with quality close to manual delin-
eation, which allows our model to handle both building
blocks and individual buildings. This distinction of build-
ing segment types is studied explicitly in our work by
presenting our evaluation results on two different datasets,

i.e. the CrowdAI dataset (Mohanty et al. 2020) which
focuses on building blocks and the Urban Building Classi-
fication (UBC) dataset (Huang et al. 2022) which focuses
on individual buildings. We also include the Inria aerial
image dataset (Maggiori et al. 2017) to test our proposed
method with higher building variations in sense of building
density, building shapes, etc.

Our method consists of two stages (Fig. 1). The first
stage involves basic geometry primitives prediction with
same spatial resolution as input images using CNN with
MBMs, and the second stage is an enhanced building poly-
gonization process based on predicted geometry primitives.
Our method has the advantage in favour of simplicity and
straightforward interpretation, and is capable of generat-
ing polygons directly based on remote sensing images. The
main contributions of our work are as follows:

� we extend the MBM to three branches with modifica-
tions, and demonstrate that learned interaction is help-
ful in learning of the three basic geometry primitives for
building polygonization;

� we propose an efficient enhanced building polygoniza-
tion algorithm which produces polygons with sharp cor-
ners and straight edges;

� we develop a method which is capable of handling both
building blocks and individual buildings;

� we tested our method on three public datasets, i.e. Crow-
dAI (Mohanty et al. 2020), UBC (Huang et al. 2022) and
Inria dataset (Maggiori et al. 2017) and provide our eval-
uation results as baselines for comparison.

The rest of this paper is organized as follows: Sect. 2
presents existing models and methods related to our work,
Sect. 3 describes in detail our proposed method, Sect. 4
describes our experimental settings and implementation de-
tails, Sect. 5 presents experiment results, Sect. 6 presents
our general discussions, and Sect. 7 concludes our work
with final remarks regarding limitations.

2 Relatedwork

In this section, related neural network models and methods
for extraction of building polygons using remote sensing
images are summarized and categorized into building rep-
resentation based and geometry primitives based methods.
Different neural networks and network designs related to
the task of building polygonization are first presented, fol-
lowed by the introduction and discussion of the two types
of methods.
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2.1 Building polygonization

In general, the task of building polygonization using re-
mote sensing images is tackled by first extracting image
features using backbone networks, followed by method-
specified predictions. In most works, three kinds of repre-
sentations are set as learning targets, i.e. as maps of building
vertices, edges and footprints. These three basic geometry
primitives are essential parts of a building. Some research
(Girard and Tarabalka 2018; Zhao et al. 2020) regress co-
ordinates of building vertices and output polygons directly
without intermediate outputs of any of the three geome-
try primitives. However, the regressed coordinates are not
trustworthy, since they are predicted completely by neu-
ral networks without any controls. Therefore, we prefer the
methods based on geometry primitives, which are more ro-
bust in generating correct building polygons. In this work,
we focus only on the methods based on geometry primi-
tives.

We categorize the existing methods into two classes. The
first class of methods aims to generate building polygons
using different representations of buildings, e.g. building
footprints, followed by regularization for straight building
edges, sharp corners, etc. The second class uses geometry
primitives and construct building polygons based on pre-
dictions. Depending on definition of building instances, two
types of building segments are studied: building blocks and
individual buildings. The main difference is that for individ-
ual buildings, two buildings with CBs are seen as individual
instances, while for building blocks, they are treated as one
building instance. We do not distinguish the types of build-
ing segments explicitly that are studied in each work unless
specified.

2.2 Backbone networks

Most research requires a backbone network to extract deep
image features. Different designs of networks and modules
are usually adopted simultaneously. The encoder-decoder
structure proposed in U-Net (Ronneberger et al. 2015) is
capable of capturing both local and global features, and is
adapted for building footprint extraction (Liu et al. 2019;
Li et al. 2021). The residual connection (residual block)
in ResNet (He et al. 2016) provides direct identity map-
ping, i.e. adding the module input to the module output,
which improves deeper network performance, and is inte-
grated in many networks (Mahmud et al. 2020; Alidoost
et al. 2020). To obtain predictions with same size of the
input images, a path of down-sample-up-sample is usually
designed. In order to better retain information of object
structures and shapes in down-sample and up-sample pro-
cedures, intermediate supervision is studied by Xie and Tu
(2015). With intermediate supervision, not only the final

outputs of networks but also the intermediate layer out-
puts are supervised. In this way, the spatial structures and
shapes of objects are more consistent at different feature
levels. Based on the reported performance of these designs
in literature, we will adapt the aforementioned architectures
and modules in our own design.

Other than CNNs, GNNs are also studied, especially for
polygonizing the extracted building segments (Zhao et al.
2022; Zorzi et al. 2022). These methods usually start with
a CNN with appended GNNs for down-stream tasks. Graph
Convolutional Network (GCN) (Kipf and Welling 2016)
adapts the idea of image convolution in graph domain. In
GCNs, information exchange between nodes is done by
“convolving” among connected nodes. GCN is already used
to learn to separate foreground and background for ex-
tracted potential roof lines (Zhao et al. 2022). Similar to
the idea of GCN, Graph Attention Network (GAN) enables
information exchange between nodes through a so-called
“self-attention” mechanism, and is also proven to be useful
in building polygonization (Zorzi et al. 2022).

In all, the GNNs based methods consist of combined net-
works, i.e. leading CNNs to extract image features followed
by GNNs for polygonization, which leads to higher compu-
tational requirements. Therefore, we focus more on CNNs
based methods for a more efficient building polyonization
procedure.

2.3 Representation learning basedmethods

With the extracted image features from backbone networks,
representation learning based methods seek to predict build-
ing-related representation maps. The most straightforward
building representation is its footprint, transforming the
building polygonization problem into a semantic or in-
stance segmentation problem. For semantic or instance seg-
mentation based methods, prediction heads are attached to
the backbone network and output building segments. The
output is then refined to generate the final building poly-
gons. This refinement is treated as a problem of regulariza-
tion, and carried out through polygon regularization (Zhao
et al. 2018), automatic regularization by introducing another
CNN (Zorzi et al. 2021; Liu et al. 2019), or by height filter-
ing based on Digital Surface Model (DSM) (Sun and Wang
2018). However, the polygon refinement process in these
research either requires extra external inputs or additional
computation.

Another approach is to generate a different representa-
tion of building footprints, instead of a segmentation mask,
as training target. This representation also serves as input
to the following polygonization part, avoiding extra exter-
nal inputs. For example, frame field is the representation, in
which two orthogonal directions to connected pixels are cal-
culated at each location, and it is adapted for building poly-
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gonization (Girard et al. 2021). Wang and Frahm (2017)
converted each pixel into vectors describing 3D cuboids
and extracted the cuboid with the highest score as pre-
dicted building footprint. Similarly, Qian et al. (2021) en-
coded each roof as 4D vectors with facade facings and this
representation is learned by a CNN. The idea of transform-
ing building footprints into other representative models is
adapted in our design, in which we use building footprint,
building edges and building vertices as a complete building
model.

2.4 Geometry primitives basedmethods

In contrast to the representation learning based approaches,
the strategies which extract directly geometry primi-
tives from images for building polygonization seem more
straightforward, and are able to output polygons directly.
Instead of generating segmentation maps, Alidoost et al.
(2020) extracted classified rooflines and used these lines
to reconstruct roof planes. Interestingly, Wu et al. (2023)
used rotated bounding boxes to represent building edges
for building footprint reconstruction. Another approach is
to solve the polygonization problem by connecting corner
points in a series manner by first predicting building vertices
(Castrejón et al. 2017; Li et al. 2019; Hu et al. 2023), but
with more intensive computation for its iterative procedure.
Extracting both edges and vertices has also been studied by
Wang et al. (2021). These methods are applied to building
blocks only, and do not study individual buildings in detail.

Specially for individual building extraction, Schuegraf
et al. (2022) investigated existing models to extract CBs
together with building segments, and obtained individual
buildings using watershed transform. With the help of frame
field representation, Girard et al. (2021) proposed active
skeleton model for building polygonization based on pre-
dicted building edges to handle individual buildings.

GNNs are useful for polygonization problems, since vec-
tor data and graphs have very similar structures. For GNNs
based approaches, a backbone network (mostly a CNN) is
applied to extract useful image features as well as location
of vertices. These vertices are then converted into a graph
and fed to a GNN. For example, Zorzi et al. (2022) first
extracted building vertex candidates, and the connections
between vertices are learned by a GNN. Zhao et al. (2022)
demonstrated that edges can also be converted into graphs
and passed to a GNN for reconstructing roof structures.
However, it is reported in the aforementioned methods that
when the connection is wrongly predicted, polygons will
collapse, resulting in completely wrong building polygons.
Therefore, a more robust method with less computational
complexity is still desired.

2.5 Joint learning

To obtain building polygons, multiple components are usu-
ally needed. Therefore, joint learning, or multi-task learn-
ing, is adapted (Li et al. 2021; Zhao et al. 2022). These
components are mainly building vertices, edges and foot-
prints. The motivation of adapting joint learning is to en-
able better interaction and information fusion of different
branches for different learning targets.

Coupled losses are studied to encourage consistency be-
tween different outputs (Girard et al. 2021), which also pro-
vides a certain degree of information exchange. Recently,
Xu et al. (2023) used signed distance map as prior, which
contains implicitly information of building segments and
corners. Another approach (Batra et al. 2019) is to provide
an earlier fusion of different network outputs, adapting in-
termediate supervision and network stacking (Newell et al.
2016) simultaneously. This architecture consists of multi-
ple stacked MBMs, and each MBM contains one encoder
and several decoders. The outputs of MBMs are supervised,
as well as the final outputs of the whole network. MBMs
enable automatically learned interaction across different
branches, i.e. different learning targets, and are proven to be
successful in closing gaps in road network prediction (Batra
et al. 2019). These techniques and architectures inspired us
in designing our proposed network.

3 Methodology

In this section, the adapted MBM is first explained in de-
tail, followed by our overall network design. The proposed
enhanced building polygonization method is elaborated as
the second stage of our proposed method.

Overall, our method takes as input RGB remote sensing
images, and first outputs predictions of building vertex den-
sity maps, building edge maps and building footprint maps.
The training of network is supervised, with learning targets
being normalized vertex density maps of reference building
vertices, binary maps of building edges and binary maps
of building footprint, respectively. The second stage takes
the three predictions as inputs, and outputs refined enclosed
polygons for each building, i.e. an ordered list of building
vertex coordinates.

3.1 Multi-branchmodule and reasoning

We adapt the idea of MBM (Batra et al. 2019) with our
own modifications and design a network suitable for our
task. The whole network architecture is shown in Fig. 2.
Without loss of generality, we discuss here how our network
processes the input image in a universal manner without
restrictions of number of stacks or branches.
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Fig. 2 Architecture of our designed network. The whole network consists of three parts: stem encoder, stacked MBMs and branch decoders. The
stem encoder first maps the input image into feature space with certain dimension, and down-samples to one fourth of the original spatial dimension
of the input image. The stacked MBMs refine the latent features by allowing information flow across different branches. In the end, the branch
decoders up-sample the features and make predictions with spatial dimension of the original input. Each up-sample path contains skip connections
from the corresponding down-sample path across the whole network, and intermediate supervision is used in the feature enhancement block

For a given image I of shape .C; H; W / (for simplicity,
we omit the batch number in notations), where C is the
number of channels, H and W are the spatial dimensions of
height and width respectively, the stem encoder first down-
samples the input image twice, with several residual blocks
(He et al. 2016) between the first 2-D convolutional layer
with stride 2 and the next max pooling layer, as “Conv2d–
BatchNorm2d–ReLU–residual blocks–MaxPool–residual
blocks”. Rectified Linear Unit (ReLU) activation function
is used unless specified explicitly. The output after down-
sampling is denoted as F1 of shape

�
D; H

4
; W

4

�
, where

D is the feature dimension. F1 is then fed to multiple
sequentially stacked MBMs.

Inside each MBM, the input is denoted as Fs , where
s = 1; 2; : : : ; S is the index of the MBM, and S is the to-
tal number of stacked MBMs. Each MBM contains one
MBM encoder and multiple MBM decoders. The number
of decoders is equal to the number of branches. MBM en-
coder first further down-samples the input Fs three times
with residual blocks between two consecutive max-pooling
layers, and MBM decoders up-sample the output from the
MBM encoder to the same spatial dimension ofFs . For each
branch, there is one corresponding MBM decoder. We use
skip connection (Ronneberger et al. 2015) between MBM
encoder and each MBM decoder.

Next, we need to fuse and enhance the extracted features
from different branches. We adopt intermediate supervision
for each branch to support and encourage structure consis-
tency in high-level feature space. In the end of each MBM
decoder, we attach a prediction head which predicts corre-
sponding intermediate prediction Oys;b of shape

�
1; H

4
; W

4

�

using the features F 0
s;b extracted by the bth decoder, where

b = 1; 2; : : : ; B is the index of each branch, and B is the
total number of branches. The intermediate predictions are
supervised by reference images y00

b .
In previous work (Batra et al. 2019), the features F 0

s;b

are fed to a layer consisting of 1×1 convolution to reduce
the channel dimension to 1 (denoted as Nys;b) and passed to
the corresponding activation functions for intermediate pre-
dictions Oys;b . The mapped features Nys;b are mapped back to
the same dimensions as F 0

s;b and added up with F 0
s;b before

passing to the next MBM. However, we believe that the en-
hanced features F 0

s only, which contain coupled information
from different branches, should be used, instead of reusing
features from different branches. Discarding the separated
features from different branches, features extracted from
the joint intermediate predictions only are more representa-
tive for all branches, which is expected to improve feature
fusion and information exchange among branches. There-
fore, we modify the MBM in the previous work and obtain
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the enhanced and coupled features from the concatenated
intermediate predictions as

F 0
s = f . Nys;1 ˚ Nys;1 ˚ : : : ˚ Nys;1/ ; (1)

where f .�/ consists of a 1×1 convolutional layer, batch
normalization layer and a ReLU non-linearity layer, and ˚
is concatenation.

In this way, the information from different branches are
coupled into the enhanced features without reusing sepa-
rated branch features F 0

s;b . The enhanced features F 0
s are

then fed to the next MBM, i.e. Fs+1 = F 0
s . The effectiveness

of our design is also proved through experiments.
The extracted features from the final MBM F 0

S;B are
of shape

�
D; H

4
; W

4

�
. These features are then fed to dif-

ferent branch decoders. Each branch decoder is responsi-
ble for one branch. The branch decoders up-sample the
input to original spatial dimension .H; W /, with interme-
diate prediction Oy0

b of shape
�
1; H

2
; W

2

�
supervised by the

corresponding reference images y0
b . Prediction heads are

attached in the end of each branch decoder, and output cor-
responding predictions for each branch. The detailed im-
plementation will be elaborated in Sect. 3.3.

The most obvious advantage of using MBM is that it
allows information to flow between different branches. The
three basic geometry primitives of a polygon are highly cou-
pled with each other. Therefore, the information for these
three basic geometry primitives should interact with each
other not only in geo-spatial dimensions but also in latent
feature space. MBM enables such interaction by fusing the
deep features from three branches representing the three
basic geometry primitives. Additionally, our modification
realizes feature enhancement without reusing separate fea-
tures from different branches, which is expected to improve
interaction and information fusion among branches.

For the task of building polygonization, we use three
branches in total to handle the three basic geometry prim-
itives, namely building vertices branch, building edges
branch and building footprint branch. In the rest of the
paper, we use v, e and m as branch indices as b 2 fv; e; mg
to refer to the three branches respectively.

3.2 Building vertex density regression

The design of the building vertices branch is slightly dif-
ferent than the other two branches. For building edges
and building footprints, learning directly binary maps is
less problematic than learning a binary building vertices
heatmap, due to its extremely high imbalance of positive
and negative samples, i.e. there are much more background
pixels than building vertex pixels. Therefore, instead of us-
ing binary masks of building vertices as training targets, we
apply a Gaussian function to the binary masks and set the

training targets for the building vertices branch as building
vertex density maps, inspired by Bahmanyar et al. (2019),
to help mitigate the problem from highly imbalanced sam-
ples.

Building vertex density maps are calculated based on
a 2D Gaussian function as

g .p;p0; �/ =
1

2��2
exp

 

−
.i − i0/

2 + .j − j0/
2

2�2

!

; (2)

where p = .i; j / is any location in an image, p0 = .i0; j0/ is
the coordinate of peak value, i.e. the coordinate of reference
building vertex, and � controls the shape of the Gaussian
function.

Based on Eq. 2, building vertex density map is then cal-
culated with given reference vertices as

Qyd .i; j / = max
n=1;2;:::;Np

.g .p;pn; �// ; (3)

where pn is the coordinate of each reference vertex, with
Np being the total number of reference vertices.

Using Eq. 3 for each reference building vertex at all
locations in the image, the building vertex density maps
as reference are obtained. By taking the maximal response
value instead of summing up, each peak is retained, avoid-
ing high density values at non-peak locations accumulated
by very dense vertices.

Note that the center of each pixel, where each refer-
ence vertex falls into, is not necessarily the location of
each peak. The peaks always coincide with locations of ref-
erence building vertices. Theoretically, this setting allows
sub-pixel accuracy by estimating 2D Gaussian distributions
from the predicted vertex density maps. This is not studied
in detail in this work, since the provided image coordinates
of building vertices are integer numbers without sub-pixel
precision.

The learning targets for the building vertices branch are
chosen to be the normalized building vertex density maps,
such that each peak has value 1, to be consistent with the
learning targets for the other branches, as

yd =
max . Qyd / − Qyd

max . Qyd /
: (4)

3.3 Network implementation

In this work, the three basic geometry primitives are rep-
resented in image domain as binary masks. More specifi-
cally, binary maps of building vertices, building edges and
building footprints are used as reference data y00

b , y0
b , where

b 2 fv; e; mg. An exception is for the final output from
the building vertices branch decoder, where the normalized
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building vertex density maps yd are used as supervision,
while for the building edges branch and the building foot-
print branch, binary maps ye and ym are used respectively.

Prediction heads are added for intermediate and final
supervisions. Each prediction head consists of a 2D con-
volutional layer with kernel size 1, batch normalization
layer, and an activation function. For the intermediate pre-
dictions Oys;b and Oy0

b , sigmoid activation function is used for
all branches. For the final predictions Oyb , sigmoid activa-
tion function is used for the building edges branch and the
building footprint branch, while ReLU is used for the build-
ing vertices branch, for the learning targets being density
maps.

For network training, we used different losses for dif-
ferent branches and for different stages. For the interme-
diate predictions Oys;b inside MBMs and Oy0

b inside branch
decoders, the reference images are correspondingly down-
sampled (using max pooling) binary maps of building ver-
tices, edges and footprints. Dice loss Ld (Drozdzal et al.
2016) and focal loss Lf (Lin et al. 2017) are chosen for all
three branches for supervision for their better performance
than the Binary Cross-Entropy (BCE) loss when faced with
class imbalance.

Focal loss (Lin et al. 2017) is developed upon BCE loss,
calculated as

Lf . Oy; y/ = ˛ .1 − exp .BCE . Oy; y///
� BCE . Oy; y/ ;

where Oy is prediction, y is reference, ˛ and � are hyper-
parameters and were set to 0.25 and 2 respectively (which
are suggested by Lin et al. (2017), to which we refer the
readers for more details), and BCE.�/ is BCE loss given as

BCE . Oy; y/ = −
1

hw

XX
.y � log . Oy/

+ .1 − y/ � log .1 − Oy//;

where h and w are the height and the width of prediction/
reference images respectively, and · is element-wise multi-
plication.

Additionally, to further tackle the problem of imbalanced
training samples, we also weight each predicted sample in
the BCE calculation by the inverse of the total number of
reference positive/negative samples in the focal loss as

weighted BCE . Oy; y/ =
XX

.
1

Npos

y � log . Oy/

+
1

Nneg

.1 − y/ � log .1 − Oy//;

where Npos and Nneg are the numbers of positive and nega-
tive reference samples respectively. Note that Npos +Nneg =
hw.

Dice loss (Drozdzal et al. 2016) aims to deal with highly
imbalanced datasets and is calculated as

Ld . Oy; y/ =
1

hw

XX�
1 −

2 � Oy � y + 1

Oy + y + 1

�
:

To summarize, the intermediate loss for Oys;b and Oy0
b is

given as

Linter;b =
1

S

SX

s=1

Lfd

� Oys;b ; y00
b

�
+ Lfd

� Oy0
b; y0

b

�
; (5)

where Lfd .�/ = Lf .�/ + Ld .�/ is the linear combination of
focal loss and dice loss.

For the final predictions Oyb , the same focal loss and dice
loss are used for the building edges branch and the building
footprint branch, but for the building vertices branch, we use
smooth L1 loss LL1

, since the reference image is a vertex
density map. It is defined mathematically as

LL1
. Oy; y/ =

1

hw

XX
sL1

� Oyi;j ; yi;j

�
;

sL1

� Oyi;j ; yi;j

�
=

(
1
2
.yi;j − Oyi;j /2 if jyi;j − Oyi;j j < 1;

jyi;j − Oyi;j j − 1
2

otherwise:

The total loss is then written as

L =
fv;e;mgX

b

Linter;b + LL1
. Oyd ; yd / +

fe;mgX

b

Lfd . Oyb; yb/ : (6)

3.4 Enhanced building polygonization and
adjustment

The predicted segmentation map is still not ideal for direct
polygonization, mainly due to irregular building shapes. Es-
pecially, the predicted segmentation map does not have any
information on individual buildings with CBs. Thus, in this
paper, we propose a novel algorithm to generate individual
building polygons automatically, based on the predicted ge-
ometry primitives, i.e. the predicted footprint maps Oym, the
predicted vertex density maps Oyd and the predicted edge
maps Oye .

Theoretically, individual building instances are extracted
by thresholding the difference map Oy� = Oym − Oye . However,
the extracted line segments in Oye are not always connected
with each other in practice, leading to polygons of building
blocks instead of individual buildings, as is shown on the
left in Fig. 3. In order to tackle this problem, we propose an
algorithm to split building blocks into individual buildings,
described in Pseudo-code 1.
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Fig. 3 Example of building blocks and individual buildings. After our
enhanced building polygonization, building blocks (a) are split into
individual buildings (b)

Pseudo-code 1 Split building blocks

ŷΔ = ŷΔ > θΔ

ŷΔ,o = ŷΔ ◦
ŷΔ,c = ŷΔ •
CBs = ŷΔ,c − ŷΔ,o

for (i, j) ⊆ CBs do
a, b = LSE (i, j)
(i′, j′) = (mean (i) ,mean (j))
(i′, j′) = ({i′}, {j′})
for direction in {0, 1} do

while (i′, j′) is not background or is not in CBs do
i′ = i′ − 1 if direction is 0 else i′ = i′ + 1
j′ = a · i′ + b
(i′, j′) = (i′ ∪ {i′}, j′ ∪ {j′})

end while
end for
if max ŷd,(i′,j′) > θd then

ŷΔ,(i′,j′) = 0
end if

end for

We will explain the algorithm with a simulated example
in Fig. 4, where individual buildings cannot be extracted
directly from binarized Oy� due to broken predicted CBs.
Figure 4a is a simulated difference image Oy� after thresh-
olding, where foreground pixels are building block pixels
but not building edge pixels. CBs are extracted using mor-
phological binary opening (denoted as ı) and binary closing
(denoted as �), with matrix of ones 1 as structuring element.

We apply opening to binarized Oy� to remove small arti-
facts due to misalignment of the predicted footprint maps
and the predicted edge maps, also to possibly connect iso-
lated predicted edge pixels to background and with each
other for broken lines, i.e. to enlarge the predicted edges.
After binary opening, Fig. 4b shows some cases where dis-
connected broken edge pixels are connected (the red rect-
angle on the right) and where isolated edge pixels inside
the building block are connected with background (the two
red rectangles on the left). Binary closing is used to remove
CBs by filling CB pixels with 1, connecting adjacent build-
ings, as is shown in Fig. 4c, where the complete building
block is obtained. Then, we subtract the opening results

from the closing results to get CBs, resulting in extracted
CBs being in foreground, as is shown in Fig. 4d.

Individual CB is extracted by applying Connected Com-
ponent Analysis (CCA) to the difference image of binary
closing and opening results. For each extracted CB, we esti-
mate a straight line with slope a and intercept b using Least
Squares Estimation (LSE), based on the image coordinates
of the pixels of each CB. We use bold .i; j/ to refer to col-
lection of pixel coordinates and normal .i; j / for a single
pixel.

Starting from the center of each CB (starting .i 0; j 0/ in
Pseudo-code 1, illustrated using red dots in Fig. 4e), the
pixels associated with each CB along the corresponding
estimated straight lines are visited iteratively in both di-
rections (illustrated using red arrows in Fig. 4d), indexed
as 0 and 1. For each direction, the iteration stops when
either background pixel (non-building-block pixels in the
image after binary closing) is reached, or when a CB pixel
is reached (as is shown in the enlarged rectangle in Fig. 4e).
It stops also when the pixel reaches beyond the input image
extent. A special case is for horizontal and near horizontal
lines where the maximal difference within i is or is close to
0. We then only iterate in horizontal directions and change
j 0 while keeping i 0 unchanged.

When iterations in both directions are stopped, all the
visited pixels are denoted as .i0; j0/, presented in Fig. 4e
as red straight lines. If the highest predicted vertex density
(simulated using white dots in Fig. 4e) of pixels .i0; j0/ is
larger than a threshold �d , we then split the correspond-
ing connected component in the binarized Oy� using the
prolonged straight line into two parts, i.e. two individual
buildings. If all pixels .i0; j0/ do not surpass the threshold
�d , the extended line is discarded and the original building
block is unchanged, as is highlighted in the red rectangle
in Fig. 4f. In practice, binary opening should be used in the
end to deal with close CBs with small gaps, as is the case
shown in the enlarged rectangle in Fig. 4e.

Finally, after processing each CB, we trace each con-
nected component by applying CCA to get the initial poly-
gons Pinit for individual buildings.

In order to obtain polygons of quality close to manual de-
lineation, e.g. with sharp corners, straight edges, redundant
vertices that are not building corners should be removed
from the initial polygons Pini t . Theoretically, this can be
done by evaluating each vertex with corresponding pre-
dicted building vertex density and discarding the vertices
with predicted vertex density lower than threshold. Conse-
quently, only the vertices that are most probably building
vertices are kept and form a building polygon with straight
edges and sharp corners.

However, due to false negative predictions regarding
building vertices, real building vertex locations could have
low predicted building vertex density, resulting in discarded
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Fig. 4 Illustration of splitting building blocks. White pixels represent foreground (with value 1) and black pixels represent background (with value
0) in each image. Red rectangles in b show where isolated predicted edge pixels are connected with background after binary opening. In d, white
curves represent extracted CBs after subtracting the binary opening result from the binary closing result, and red arrows show both directions of
estimated straight lines for each CB. In e, we overlay the result after binary closing for reference in gray for better visualization; red dots show
starting points for each CB (mean location of CB pixels) for iteration, red lines represent visited pixels for each CB, and white dots simulate high
predicted vertex density locations. f shows the split buildings after subtracting the visited along line pixels, where the red rectangle shows the case
where the predicted vertex density values are all smaller than threshold and thus the building is not split for this extracted CB. Note that these
figures are manually drawn to illustrate the algorithm to split building blocks and do not represent real predictions. We refer to the main text for
more details. a Difference image Oy� after thresholding, b Image after binary opening Oy�;o , c Image after binary closing Oy�;c , d Extracted CBs and
estimated straight lines, e Extended lines consisting of visited pixels, f Individual buildings after splitting

real building vertices and corrupted polygons. Therefore, in
practice, we use the combined predicted vertex density and
predicted edge response to include more candidate vertices
in thresholding.

Pseudo-code 2 elaborates the polygon adjustment algo-
rithm. For each vertex p in each initial polygon P, we in-
spect a surrounding circular area p0 with a certain radius,
and replace each vertex with the location of the highest
combined vertex density and edge response pmax . If this
response is smaller than a threshold, we then discard the
corresponding initial polygon vertex. Since it is likely that
more than one vertices are adjusted to the same high re-
sponse location, the duplicated extra vertices are removed
to obtain the final predicted building polygon. This proce-
dure is also able to remove possible shifts in the previous
splitting process by adjusting the location of each vertex.

Pseudo-code 2 Polygon adjustment

Pinit = CCA(ŷΔ)
ŷresp = ŷd + ŷe

for P in Pinit do
for p in P do

p′ = p± search radius
pmax = arg max (ŷresp,p′)
if ŷresp,pmax

> θd + θΔ then
p = pmax

else
delete p

end if
end for

end for

We choose to add the predicted edge response to include
possibly low predicted vertex density at real building ver-
tex locations, i.e. to reduce the impacts of false negative
predictions from building vertices extraction. However, this
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Table 1 Datasets studied. In this work, we used in total three datasets with varying image sizes. The CrowdAI and the UBC datasets are based on
satellite images, while the Inria dataset is based on aerial images

Dataset Image size (pixels) Used image size (pixels) # of training samples # of test samples

CrowdAI (Mohanty et al. 2020) 300×300 320×320 280,741 60,317

UBC (Huang et al. 2022) 600×600 512×512 560 160

Inria (Maggiori et al. 2017) 5000×5000 512×512 14,400 14,400

has a negative impact on the final quality of the building
polygons in sense of complexity, since it is more likely to
include false building vertices. This is a trade-off problem
and will be discussed further in the ablation study.

When deciding whether to drop or to keep the initial
polygon vertices, the threshold depends on the used pre-
dicted response image Oyresp . If only predicted vertex den-
sity is considered, �d only, same as that in Pseudo-code 1,
is used. When the predicted vertex density and the pre-
dicted building edge response are combined as Oyresp , �� is
additionally added to drop edge pixels in adjustment. All
hyperparameters in these two algorithms will be discussed
in the following section.

4 Experiments

In this section, we first present the datasets we used in our
experiments, followed by the implementation details of the
proposed method and the experimental settings.

4.1 Dataset and pre-processing

An overview of the datasets that we used in this work is
shown in Table 1. We conducted our experiments based on
three datasets. The first dataset is the CrowdAI mapping
challenge dataset (Mohanty et al. 2020), the second dataset
is the UBC dataset (Huang et al. 2022), and the third dataset
is the Inria aerial image dataset (Maggiori et al. 2017).

The CrowdAI dataset contains satellite images of size
300×300 pixels as RGB images, as well as annotations of
building blocks. In this paper, we used the CrowdAI train-
ing dataset which contains in total 280,741 image tiles, and
testing dataset1 with 60,317 image tiles. The Ground Sam-
pling Distance (GSD) of the CrowdAI dataset is unknown.
The UBC dataset contains satellite images of size 600×600
pixels as RGB images and annotations of individual build-
ings with varying GSD from 0.5 m to 0.8 m. We used
the UBC training dataset with 560 image tiles and testing
dataset with 160 image tiles. The Inria training set con-
tains 180 aerial images of size 5000×5000 pixels as well
as building footprint masks, and the test set contains 180

1 Although we use the term “testing dataset”, it refers to the validation
dataset in the CrowdAI dataset. Same applies to the UBC dataset.

RGB images, both with GSD 0.3 m. We re-tiled each large
image in the Inria dataset into tiles of size 512×512 pixels,
resulting in total 14,400 training samples and 14,400 test
samples.

To generate the reference data as learning targets, the
polygon annotations (ordered lists of building vertex coor-
dinates for each polygon) were rasterized into binary im-
ages as building footprints, and the polygon edges were
rasterized into binary building edge heatmaps, where each
edge was of width 1 pixel. The polygon vertices were raster-
ized into binary building vertex heatmaps (for intermediate
supervision) and used as input to Eq. 4 for building vertex
density maps.

Since there are no reference polygon annotations pro-
vided in the Inria dataset but only binary building footprint
images, we generated the binary building edge heatmaps
using CCA and rasterized the contours of each connected
component. Each contour was then simplified using Dou-
glas-Peucker algorithm (Ramer 1972) with maximal dis-
tance set to 5 pixels, and the vertices after simplification
were used to generate the building vertex density maps us-
ing Eq. 4. Consequently, the generated reference building
vertex density map is only able to serve as pseudo-refer-
ence. Therefore, for the Inria dataset, we only consider the
predicted building footprints for result analysis.

In order to make the input data better fit our network
structure, e.g. avoiding padding in down-sample and up-
sample paths, we resized the CrowdAI images to size
320×320 pixels and the UBC dataset to size 512×512 pix-
els, using bilinear interpolation. The reference annotations
were also recalculated accordingly during training. We
used max pooling to generate references for intermediate
supervision. At inference stage, we resized the predictions
to corresponding original size for evaluation.

4.2 Network implementation and training

In this work, the number of branches was set to 3, one for
each geometry primitive type. As for the number of stacks
of MBMs, we experimented with different stacks of 1, 2
and 3. The results are reported in the following section as
ablation study.

For the whole network, we used ReLU as activation func-
tion, and did not apply dropout. In the stem encoder, we
used 2D convolutional layer with stride 2 followed by max
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pooling layer to reduce the spatial dimension to fourth of
inputs. Inside MBM encoders, down-sampling was realized
by a 2D convolutional layer with stride 2 and kernel size
3, while up-sampling in MBM decoders was implemented
using bilinear interpolation. The output feature of the deep-
est layer was of spatial dimension 32 times smaller than
the input image. Skip connection was implemented using
concatenation, i.e. corresponding features from MBM en-
coder and MBM decoders were concatenated in feature di-
mension and fed to the following residual blocks. We used
three residual blocks between each two layers that change
spatial dimension. The number of features was set to 64
after stem encoder, and each time when spatial dimension
reduced, the number of features was doubled, while it re-
duced to half when spatial dimension increased. PyTorch
(Paszke et al. 2017) was used for network implementation.

When generating the reference vertex density image for
building vertices, we chose � in Eq. 3 as 1 to obtain a full
width at half maximum window size of around 5×5 pixels,
and normalized each density image such that the peak val-
ues equal to 1 using Eq. 4. In this way, the density value at
location 2 pixels away from a peak center is approximately
0.5. This smoothing helps compensate possible shifts be-
tween given reference vertices and real vertices present in
images, while mitigating the problem of highly imbalanced
positive and negative samples.

Our model was first trained from scratch using the Crow-
dAI dataset, since there are abundant training samples as
well as for test. Each model was trained for 165 epochs.
The trained model was then fine-tuned on the UBC dataset
(for 50 epochs) to study the transferability of our model
from building blocks to individual buildings, considering
the much smaller number of training samples available in
the UBC dataset. The model variant used was with 1 stack
of MBM to keep the number of parameters similar with the
comparative model based on FFL (Girard et al. 2021). As
for the Inria dataset, we trained our model from scratch for
fair comparison with other methods.

During training, the learning rate was kept constant as
10–4. We used AdamW optimizer (Loshchilov and Hutter
2018) with weight decay of 10–4. For the Inria dataset, the
validation set was a randomly selected hold-out subset of
the training data, which was used to select the best model.

Furthermore, we trained another model based on an ex-
isting method (Girard et al. 2021) and report the corre-
sponding evaluation results, as a comparison for the UBC
dataset. The model was trained on the UBC training dataset
using a pre-trained model on the CrowdAI dataset, available
online2.

2 https://drive.google.com/drive/folders/1poTQbpCz12ra22CsucF_
hd_8dSQ1T3eT.

4.3 Hyperparameters in enhanced building
polygonization

There are several hyperparameters in the proposed en-
hanced building polygonization and adjustment method. In
Pseudo-code 1, the threshold �� of the difference image
Oy� controls the amount of foreground pixels in the image
representing building blocks without CBs (Fig. 4a). It is
safe to set this value to 0.5, interpreted as “pixels with
probability larger than 50% of being building blocks but
not edges are selected”.

The size of the structuring element used in binary clos-
ing and binary opening depends on many aspects, e.g. the
GSD of input images, the actual predictions, especially on
the predicted edge maps. The size of the structuring el-
ement should be large enough to remove CBs after the
binary closing operation, but not too large to remove build-
ings after the opening operation. We chose 5×5 empirically
to achieve a balance, considering wide range of GSDs of
studied datasets and the actual prediction results.

The threshold �d for building vertex density depends on
the actual predictions in practice. A higher threshold leads
to more correct splitting of building blocks, while resulting
in more false negative individual buildings due to low pre-
dicted vertex density at real building vertex locations. We
set this threshold to 0.2 empirically to include more split
buildings.

When adjusting the initial polygon vertices in Pseudo-
code 2, the search radius depends on how further away
each polygon vertex is allowed to move. We found that the
same window size of the structuring element in Pseudo-
code 1 can be used, since the choice of this search radius
is related to the possible changes of boundary pixels after
binary opening and closing. With the same window size,
these shifts are able to be compensated in this adjustment
procedure.

The threshold for deciding whether to keep or drop the
vertex in Pseudo-code 2 is kept in line with the threshold for
building vertex density used in Pseudo-code 1, since they
both select “high enough responses”. An additional �� is
added when using both predicted building vertex density
and predicted building edge probability as response image,
to compensate the added response from the predicted build-
ing edges.

Overall, there are in total three sets of hyperparameters:
(a) threshold �� to binarize difference image Oy�, (b) size of
the structuring element used in binary closing and opening
in Pseudo-code 1, which is kept the same as the search
radius in Pseudo-code 2, (c) threshold �d for choosing high
predicted vertex density values in both algorithms.
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5 Results

In this section, the evaluation metrics we used are first intro-
duced. Next, the quantitative evaluation results of the three
datasets are presented.

5.1 Evaluation protocols

We report the evaluation of our predictions based on two
sets of protocols. The first set is based on raster calculation.
Under this protocol, we calculate Average Precision (AP)
and Average Recall (AR) according to MS COCO (Lin et al.
2014) using final building polygons. We also calculate the
Intersection over Union (IoU) using rasterized final building
polygons with reference building footprint maps, which is
the ratio of the overlap area and the union area of prediction
w.r.t. the corresponding reference, as

IoU =
Apredict\reference

Apredict[reference
; (7)

where A is the area, and predict \ reference and predict [
reference are the intersection and the union of prediction
and reference respectively.

When applied to polygons, IoU is calculated using ras-
terized polygons in this work. Overall, AP and AR related
evaluation is based on building polygons (instances) while
IoU is based on binary masks.

In addition to raster-based evaluation, we evaluate our
predictions also polygon-wise, since our final product is in
polygonal form. For this evaluation, we calculate Ratio of
vertex Numbers (RN) of the predicted polygons and the
reference polygons as

RN =
NX

i=1

n OP;i

nP;i

; (8)

where P and OP are the reference and the predicted polygon,
n represents the number of vertices, and N is the total num-
ber of pairs of predicted polygons and reference polygons.

RN reflects reconstructed complexity of the predicted
polygons. A perfectly reconstructed polygon should have
RN equal to 1 w.r.t. the reference polygon.

We also include C-IoU (Zorzi et al. 2022), which is IoU
with a penalty term of relative RN given as

C-IoU .P1;P2/ = IoU .P1;P2/

�
1 −

jnP1
− nP2

j
nP1

+ nP2

�
; (9)

where P1 and P2 are the input polygons for evaluation.

Additionally, to measure distances/differences between
two polygons, we define a directional Polygon Difference
(PD) as

PD .P1;P2/ =
1

nP1

X

p2P1

min kp;P2k; (10)

where p is the coordinate of each vertex in polygon P1, and
kp;P2k is the Euclidean distance of vertex p to each vertex
in polygon P2.

PD reflects overall polygon difference of two polygons
based on vertex location. In this work, we report bidirec-
tional PDs, which are

PDt;p =
NX

i=1

PD
�
P; OP

�

i
; (11)

and

PDp;t =
NX

i=1

PD
� OP;P

�

i
: (12)

PDt;p measures vertex location difference of each refer-
ence vertex w.r.t. the predicted vertices, and PDp;t is the
opposite. By inspecting PDs in both directions, we are able
to evaluate prediction quality in sense of polygon difference
based on vertex shifts.

In practice, for each reference polygon, we calculate IoU
for each predicted polygon in the same image scene, and
choose the predicted polygon with the highest IoU as the
matched prediction. Each predicted polygon is only allowed
to match with at most one reference polygon. RN and PD
are then calculated for each reference and prediction pair.
The final result is averaged over the total number of such
pairs.

5.2 Quantitative evaluation on the CrowdAI dataset

We provide two sets of evaluation protocols for the Crow-
dAI dataset in Table 2. As discussed above, the first set is
raster-based, for which we report AP, AR and IoU, and the
second set is polygon-based, for which we report C-IoU
(Zorzi et al. 2022), RN and bidirectional PDs. For raster-
based evaluation protocols, our method achieved AP of
62:7% and AR 73:6%.

5.3 Quantitative evaluation on the UBC dataset

Table 3 reports evaluation results on the UBC dataset to
address the ability of handling individual buildings of our
method. The evaluation results on the UBC dataset were
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Table 2 Evaluation results on the CrowdAI dataset. We present the results with the highest AP of all possible variants for each method, including
our Multi-branch Model for Building Polygonization (MBM-BP). Bidirectional PDs are reported separately in ablation study. We compare our
method MBM-BP to other published methods in the table, namely Mask R-CNN (He et al. 2017), PANet (Liu et al. 2018), PolyMapper (Li et al.
2019), Frame Field Learning (FFL) model (Girard et al. 2021) and PolyWorld (Zorzi et al. 2022). All units other than RN are percentage. The best
and the second best values are highlighted with bold and underlined texts respectively

Method AP " AP50 " AP75 " AR " IoU " C-IoU " RN � 1

Mask R-CNN (He et al. 2017) 41.9 67.5 48.8 47.6 - - -

PANet (Liu et al. 2018) 50.7 73.9 62.6 54.4 - - -

PolyMapper (Li et al. 2019) 55.7 86.0 65.1 62.1 - - -

FFL (Girard et al. 2021) 61.3 87.6 70.6 64.9 84.1 73.3 1.13

PolyWorld (Zorzi et al. 2022) 63.3 88.6 70.5 75.4 91.3 88.2 0.93

MBM-BP (ours) 62.7 82.4 69.7 73.6 89.4 58.3 1.71

Table 3 Evaluation results on the UBC dataset. The results of our
method are calculated using the adjustment based on vertex density
plus edge response. All units are percentage

Method AP " AP50 " AP75 " AR "
FFL 12.1 23.9 11.0 21.5

MBM-BP 13.9 28.1 12.5 24.4

calculated based on the adjustment including edge response,
since edge information plays an important role in separat-
ing individual buildings. Overall, our method achieved AP
around 13.9%, with AR over 24%.

5.4 Evaluation on the Inria dataset

We report IoU for the Inria dataset which is calculated by
the dataset owner3.

The Inria dataset is more challenging than the CrowdAI
dataset for its large variation of buildings and high scene
complexity. For example, there are many densely built ar-
eas, which makes the prediction a difficult and challeng-
ing task, as is shown in Fig. 5. Nevertheless, our method
achieved satisfying results with IoU over 71%. The com-
plete leader-board is online available4.

6 Discussion

In the following, we present our discussions based on the
interpretations of our results and the comparisons with the
comparative methods. Ablation studies regarding the num-
ber of stacks of MBMs and the enhanced building polygo-
nization are analyzed, as well as computational complexity
of the proposed method.

3 https://project.inria.fr/aerialimagelabeling/.
4 https://project.inria.fr/aerialimagelabeling/leaderboard/.

Fig. 5 Example of a prediction on the Inria test dataset, where densely
built buildings are present

6.1 Quantitative evaluations

AP measures the overall prediction quality by considering
precision and recall, which is the area under the precision-
recall curve5. Higher AP indicates larger fraction of correct
building polygons among all predictions, and that more true
building polygons are retrieved from the reference poly-
gons.

Our proposed method achieved good AP of 62.7%,
with 0.6% smaller than previously reported state-of-the-
art method PolyWorld (Zorzi et al. 2022), as is reported

5 It is worth mentioning that, for original mean AP and mean AR de-
veloped for multi-class object detection (Lin et al. 2014), two criteria
are considered: prediction scores of each prediction and the IoU val-
ues of each prediction and reference pair. Therefore, if we fix an IoU
threshold (e.g. at 50%), we still get a precision-recall curve against dif-
ferent prediction score thresholds. We adapt the same metrics but set all
prediction scores to 1, indicating that each building polygon is consid-
ered a positive sample regarding prediction scores. Consequently, AP
and AR are evaluated based on IoU thresholds only. Same procedure
was used in the cited comparative methods.
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in Table 2. However, AP50 is much lower than PolyWorld
(Zorzi et al. 2022) and FFL (Girard et al. 2021), while
for predictions with higher quality, considering AP75, the
performance matches the two methods, with the proposed
method 0.8% and 0.9% lower respectively. It could suggest
that the proposed method tends to output more poor quality
polygons than the comparative methods, i.e. with lower
IoU w.r.t. references: when more predicted polygons of
poorer quality are present, a lower AP50 will be observed
when comparing with other methods, while AP75 remains
similar, indicating that the performance regarding better
quality predictions is alike.

AR, on the other hand, reflects the performance regard-
ing retrieval of true building polygons from references, and
is also averaged over different IoU thresholds (from 50%
to 95% with 5% intervals in this work). Overall, our pro-
posed method is 1.8% lower in AR than PolyWorld (Zorzi
et al. 2022) while it outperforms the other cited compara-
tive methods in Table 2. It is the same for overall IoU,
with 0.9% lower than PolyWorld (Zorzi et al. 2022) and
5.3% higher than FFL (Girard et al. 2021). The AR and
IoU results suggest that the proposed method is able to re-
trieve most reference building polygons correctly with high
quality regarding IoU criterion.

While PolyWorld (Zorzi et al. 2022) seems to be the
best model among all mentioned methods in Table 2, it is
reported to be less robust. The polygonization procedure
in PolyWorld (Zorzi et al. 2022) is done through a learned
adjacency matrix and a second stage based on an iterative
assignment optimization algorithm. It is pointed out in the
original paper that false connections between extracted ver-
tices can be generated, which leads to collapsed incorrect
polygons, and this is not controlled in any way. We suspect
that this is why the AP75 is slightly lower than that of FFL
(Girard et al. 2021): when a building polygon collapses
from a rectangle into, for example, a triangle, it might be
considered as a true positive sample at IoU threshold of
50%, but as a false negative sample at 75%. From a practi-
cal point of view, these incorrect polygons are not desired.
In this sense, our proposed method achieved matching re-
sults in a more controlled manner which produces building
polygons that do not differ as drastically from reality.

When comparing with the FFL based method (Girard
et al. 2021), we get better results except for AP50 and AP75.
We believe that this is partly because of smaller objects. It is
more difficult to extract smaller objects than larger ones, es-
pecially for segmentation based methods. In the FFL based
method, this issue is addressed by the active skeleton model,
where the whole image scene is divided into polygonized
parcels, including background, followed by polygon filter-
ing. Theoretically, no true building polygons are filtered out
in this way. In contrast, our proposed method generates ini-
tial polygons based on the predicted footprint maps solely.

If the predicted building footprint response is too low, it is
highly possible that this building would be missing in our
final predicted polygons.

For polygon-based evaluation protocols, our method has
worse performance when comparing with the two compet-
itive methods. This is due to the reconstructed number of
vertices in the predicted polygons. We will address this is-
sue in the following with ablation study.

The UBC dataset is more complicated than the Crow-
dAI dataset for being individual building oriented and its
complicated scenes with high-rising buildings. This is the
main reason why the evaluation results are worse for the
UBC dataset comparing with the CrowdAI dataset for both
methods shown in Table 3. It suggests that the CBs were
not satisfyingly extracted, especially when the buildings are
densely distributed. Another reason could be the limited
amount of data, which leads to fast over-fitting in training.

Specifically, our proposed method relies highly on the
building vertices, especially in the building polygonization
procedure. It means that our network requires correct ref-
erence vertex maps as supervision to extract real building
vertices. However, the annotations in the UBC dataset do
not guarantee such correctness on building vertices (e.g.
Fig. 6). This could lead to wrongly extracted building ver-
tices, as well as wrongly split buildings.

The individual building polygons depend on the network
predictions and on the proposed enhanced building poly-
gonization and adjustment algorithm. Poorer performance
for individual buildings suggests that the extracted build-
ing edges (including CBs) must have higher quality, e.g.
less disconnected and isolated CBs. More accurate extrac-
tion of building vertices, especially for the shared non-cor-
ner vertices on the building block edges, must be achieved
for higher quality of individual building polygons. Never-
theless, our proposed method outperformed FFL (Girard

Fig. 6 Example of an annotation in the UBC dataset. For this building,
not only building corners are recorded but also vertices along building
edges. This leads to false building vertices, which influences our model

K



PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science

Table 4 Reported IoU based on the Inria dataset. “Stack 1”, “stack 2”
and “stack 3” are the model variants of different numbers of stacked
MBMs, i.e. stack of 1, 2 and 3 MBMs respectively. Full leader-board
is available online (see main text). We report specifically the result of
the comparative method based on FFL (Girard et al. 2021)

Model stack 1 stack 2 stack 3 FFL

IoU (%) 71.3 70.4 71.0 74.0

et al. 2021) regarding the four evaluation criteria reported
in Table 3.

Due to the nature of the assignment optimization algo-
rithm in PolyWorld (Zorzi et al. 2022) where each vertex is
only allowed to be matched with at most one vertex, it does
not work for individual buildings, where each vertex could
be shared with more than one building. In this sense, the
FFL based method (Girard et al. 2021) and our proposed
method are more flexible.

For the Inria dataset, the proposed method did not out-
perform FFL (Girard et al. 2021), as is shown in Table 4.
This can be explained by the fact that the pseudo-refer-
ences of building vertices are detrimental to our network
training. When wrong references are fed to the building
vertices branch, wrong information is then further propa-
gated to the other two branches, leading to performance
drop. With increased number of stacks, this harmful infor-
mation is possibly to become more dominant, resulting in
a decrease of IoU with 3 stacks of MBMs when compar-
ing with the variant with only 1 MBM. It further confirms
the dependence of high quality reference data for the net-

Fig. 7 Two examples of the final raster predictions from the CrowdAI (first row) and the UBC (second row) dataset. a, e RGB input image, b, f
predicted building vertex density, c, g predicted building edges, d, h predicted building footprints. All predictions are visualized as gray images.
Areas of interest are highlighted in red rectangles, where peaks of vertex density appear at true building vertex locations

work training in our proposed method. Nevertheless, for the
task of building footprint extraction, the proposed method
achieved adequate results with the highest overall IoU being
71.3%.

6.2 Qualitative evaluations

The first row in Fig. 7 shows an example of raster predic-
tions from the CrowdAI dataset. It is observed that most of
the building vertices are correctly extracted. The predicted
building edges are straight and have sharp corners at in-
tersections, despite some false negative pixels where line
pixels are disconnected. The predicted building footprints
are more irregular, which proves that the enhanced build-
ing polygonization and adjustment procedure is necessary
to obtain higher quality polygons.

The second row in Fig. 7 shows an example of the three
predictions from the UBC dataset. In the predicted vertex
density map Fig. 7f, the influence of the non-building cor-
ners in reference (Fig. 6) is clearly observed, where peak
values appear very often on building edges. Nevertheless,
peaks at true building corners and at shared CB vertices
(highlighted in red rectangles) are observed, which proves
that the proposed method is also able to handle individual
buildings, despite of the polluted training data.

Figure 8 shows three examples from the CrowdAI dataset
for qualitative evaluation. We visualize two possible poly-
gon adjustment methods in our enhanced building polygo-
nization procedure: the first method adjusts each vertex to
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Fig. 8 Examples of the CrowdAI dataset results. Each column from left to right: a RGB image, b reference annotation, c adjustment based on
the vertex density, and d adjustment based on the combined vertex density and edge response. Green rectangles show sharp building corners from
the adjustment based on the vertex density, while red rectangle shows where this method fails and the polygons collapse. Blue rectangle shows
robustness of the adjustment based on the combined vertex density and edge response, which is able to reconstruct the building shape correctly.
Color enhancement is applied to each image for better visualization

the highest predicted vertex density, and the second method
adjusts each vertex to the highest combined predicted vertex
density and edge response. The results of these two methods
are shown in the third and the fourth column respectively.

Overall, both methods are capable of producing fairly
satisfying polygons. However, the first method, which is
based on the predicted vertex density only, produces bet-
ter details and sharper corners, shown in green rectangles.
Without addition of the predicted edge response, non-corner
vertices are suppressed, and polygons appear more regular-
ized with sharp corners, without zigzag shapes introduced
by additional false non-corner building vertices. That being
said, this method highly relies on the quality of the pre-
dicted vertex density, and is more sensitive in the choice of
the adjustment threshold �d . If the corresponding predicted
vertex density is too low to surpass �d , the whole polygon
will collapse, leading to wrong building edges, shown in
red rectangles.

In contrast, the second method based on the combined
predicted vertex density and edge response seems more ro-
bust, but with loss in the overall quality of polygons. For
example, in the last example within the blue rectangle in
Fig. 8, the overall shape of the building is detected with
the second method, while the polygon collapses into the
building itself using the first method. In all, the choice of
the adjustment methods is a trade-off of robustness and the
final quality of polygons.

Figure 9 shows three examples from the UBC dataset.
Since the annotations in the UBC dataset for building cor-
ners are not guaranteed to be correct, we only consider the
adjustment strategy based on the combined predicted vertex
density and edge response. We compare our results with the
method based on FFL (Girard et al. 2021).

In general, our model works better and outputs mean-
ingful building polygons, with several example areas high-
lighted with yellow rectangles in Fig. 9 where the FFL
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Fig. 9 Examples of the UBC dataset results. Each column from left to right: a RGB image, b reference annotation, c results of our model, and
d results of the FFL based method. Orange rectangles in columns b and c show that our model works fairly well in some areas where individual
buildings are nicely separated, while red rectangles show examples where our model fails to separate individual buildings. Generally speaking, our
method outperforms the method based on FFL by visual inspection, exemplified with areas highlighted in yellow rectangles in column d

based method (Girard et al. 2021) failed, e.g. false positive
predictions, missing individual buildings. When transfer-
ring from building blocks to individual buildings, our model
is still able to extract individual buildings, even when they
are directly connected with each other, shown in orange
rectangles. However, there are cases where our model fails
to separate different individual buildings, shown in red rect-
angles. We suspect that it is mainly due to our post-process-
ing for splitting individual buildings. It is possible that not
all CBs are correctly extracted and prolonged by Pseudo-
code 1, leading to merged individual buildings.

Moreover, the final polygons tend to have more zigzag-
ging edges than those from the CrowdAI dataset, since we
lost the information of building vertices in the UBC dataset.
This is considered a limitation of our model that it has spe-
cific requirements on the reference annotations.

Figure 10 presents some examples from the Inria test
dataset results. Since for this dataset, we only have pseudo-

references for building edges and building vertices, we only
show the predicted footprints in raster format. Generally
speaking, the proposed method was able to extract most of
the buildings correctly. It proves that the proposed method
performs well on very high resolution aerial images (0.3m
for the Inria dataset) and in different scenarios.

6.3 Ablation study based on the CrowdAI dataset

With focus on polygon-based evaluation, we present quan-
titative evaluation results in Table 5 for ablation study based
on the CrowdAI dataset. We compare different numbers of
stacks of MBMs, as well as different polygonization base,
i.e. adjustment (a) based on the predicted vertex density
maps only and (b) based on the combined predicted vertex
density maps and predicted edge maps.

The upper part of Table 5 presents the evaluation re-
sults where we replace each vertex in the initial polygons
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Fig. 10 Examples of the Inria test dataset results. RGB images are
overlaid with the corresponding predicted building footprints

with the location with the highest predicted vertex density.
Although with number of stacks of MBMs equal to 3 the
highest AP and AR are observed, the differences of all eval-
uation results are similar for each variant. Additionally, RN
values are roughly 0.25 smaller than the optimal value 1,
i.e. all polygons are oversimplified. It means that not all
building vertices were correctly extracted, possibly due to
shadows, vegetation obstruction, etc. Furthermore, the pre-
dicted polygons also highly depend on the thresholding of
the vertex adjustment �d . A simple global threshold might

Table 5 Ablation study. We tested variants of our method based on number of stacks of MBMs and different polygonization base at the second
stage. The upper part of the table is adjusting each initial polygon based on the predicted vertex density. The lower part refers to the adjustment
based on the combined predicted vertex density and edge response. “Stack 1*” refers to the original feature fusion proposed by Batra et al. (2019)
while the rest of the model variants are named consistently as in Table 4, indicating different numbers of stacks of MBMs. The hyperparameters
in the enhanced building polygonization step were kept constant for each variant. For the upper part and the lower part of the table, the best values
are highlighted in bold respectively

Vertex density based

Variant AP .%/ " AR .%/ " RN~1 C-IoU (%) " PDt;p .pixels/ # PDp;t .pixels/ #
stack 1* 58.1 70.1 0.78 68.1 4.26 2.06

stack 1 59.2 70.0 0.79 67.8 4.32 2.43

stack 2 57.9 68.6 0.77 66.2 4.46 2.43

stack 3 60.8 72.3 0.75 68.2 4.35 2.11

Combined vertex density and edge response based

Variant AP .%/ " AR .%/ " RN~1 C-IoU (%) " PDt;p .pixels/ # PDp;t .pixels/ #
stack 1* 56.9 69.1 1.08 65.1 3.65 4.92

stack 1 59.9 71.0 1.61 58.8 3.17 7.06

stack 2 58.5 69.5 1.43 60.0 3.61 5.50

stack 3 62.7 73.6 1.71 58.3 2.91 7.22

not lead to optimally adjusted polygons with given predic-
tions, resulting in oversimplified polygons.

The lower part of Table 5 shows the evaluation results
where each vertex in the initial polygons is replaced by
the highest predicted vertex density plus predicted edge re-
sponse. This method shows higher performance concerning
raster-based evaluation results, but is not necessarily better
regarding polygonal evaluation protocols. In general, the
RNs differ largely from the optimal value of 1, and PDp;t

is also very high for each variant. This is intuitively under-
standable, since vertices that are not building corners are
also included in the predicted edge maps, and these extra
vertices are hard to be filtered out simply by thresholding.
However, lower PDt;p is observed. This suggests that even
for building vertices extraction, line segments also play an
important role. Intersection of line segments helps identify
true building vertices, but brings risks of introducing more
false non-corner vertices.

Regarding the comparison between the previous feature
fusion design proposed by Batra et al. (2019) (“stack 1*”
in Table 5), our proposed method achieved higher AP for
vertex density based and combined vertex density and edge
response based adjustment. Interestingly, for the adjustment
based on combined vertex density and edge response, it
seems that “stack 1*” extracted polygon vertices very close
to reference building vertices: RN value is very close to 1,
and PDp;t is much smaller than the other model variants.
We believe that this is caused by the randomness in multi-
task learning.

Overall, the network targets at different tasks in different
branches. During training, it could happen that one branch
is more dominant than the others. For example, although
all model variants achieved similar results in extracting
building vertices (similar vertex density based evaluation
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Table 6 Model inference time in seconds based on the CrowdAI
dataset. “Inference” refers to the average network inference time for
a single image. “Polygonization” refers to the average processing time
of the enhanced building polygonization and adjustment. Each input
image size was 320×320 pixels. Test device was NVIDIA GeForce
RTX 2080 with 11,019 MB memory

Variant Inference Polygonization

stack 1 0.55s 0.80s

stack 2 0.58s 0.73s

stack 3 0.56s 0.62s

results), “stack 1*” was able to extract the building edges
better than the rest of the variants (better polygon quality
with added edge response), but with poorer building extrac-
tion performance (lower AP and AR). This is also why the
variant with 2 stacks of MBMs achieved slightly lower AP
and AR but higher polygon quality than the variant with 1
stack of MBM. This could suggest that weighting different
branches might lead to better performance, which we in-
clude in our future outlooks. Nevertheless, for the task of
building extraction, our proposed feature enhancement is
able to achieve better building extraction results.

The polygon-wise evaluation criteria penalize the mis-
match of polygon complexity between the prediction and
the reference concerning RNs. When this mismatch is large,
the C-IoU decreases accordingly. Due to high RNs pre-
sented in Table 5, our proposed method shows much lower
C-IoU in Table 2 than PolyWorld (Zorzi et al. 2022) and
FFL (Girard et al. 2021). This further confirms that, despite
of its simplicity, the proposed enhanced building polygo-
nization and adjustment must be improved to extract more
true building vertices and reduce the number of non-corner
vertices.

Table 6 reports network inference time and processing
time of the enhanced building polygonization and adjust-
ment. Despite of larger amount of parameters with more
stacks of MBMs, the network inference time is similar for
all the three variants. Differences are more obvious for the
second stage for building polygonization: with increase in
number of stacks of MBMs, decrease of processing time
is observed. This could be explained by the fact that, with
number of stacks equal to 3, the predictions of geometry
primitives are more accurate, with less noise that need to
be filtered out. Thus, it is easier for the enhanced building
polygonization module to obtain the optimal polygons with
given predictions.

Other than the inference time which depends highly on
computation environments, we report number of parameters
and Floating Point Operations (FLOPs) to better evaluate
model complexity, as is shown in Table 7.

With three parallel branches, our models have more
learnable parameters, with the smallest variant having
76.99 million parameters while PolyWorld (Zorzi et al.

Table 7 Model size and FLOPs for comparison. Generally speaking,
less parameters and smaller FLOPs indicate less model complexity.
“M” and “G” denote million and gillion respectively. Each input RGB
image size was 320×320 pixels

Model # of parameters # FLOPs #
FFL 76.69M 79.56G

PolyWorld 39.44M 181.23G

MBM-BP, stack 1 76.99M 88.73G

MBM-BP, stack 2 114.93M 108.02G

MBM-BP, stack 3 152.87M 127.30G

2022) has 39.44 million parameters and the FFL model
(Girard et al. 2021) has 76.69 million parameters. It means
that our model requires more memory in practice.

Despite of that, our models have lower computational
complexity, with the largest FLOPs being 127.30 gillion
while PolyWorld (Zorzi et al. 2022) has over 180 gillion.
Although the FFL based model (Girard et al. 2021) has
the least model complexity in sense of number of param-
eters and FLOPs, our model with 1 stack achieved match-
ing results on the CrowdAI dataset, with AP being 59.7%
and 61.3%, and AR being 71.4% and 64.9% for our pro-
posed method and the FFL model (Girard et al. 2021) re-
spectively. Therefore, we can conclude that our method
achieved matching performance of previous state-of-the-art
CNN models with less model complexity.

It is worth pointing out that, due to limitations of re-
sources (with batch size of 2 with input RGB images of
size 320×320 pixels, the model variant with 3 stacks of
MBMs occupies roughly 10,120 MB GPU memory during
training), we were not able to further increase the number
of stacks. We add this into our future outlooks for further
inspection.

6.4 Distributions of evaluation criteria

Figure 11 shows the histograms of RN, PDt;p and PDp;t for
each model variant. For RN, stack of 2 achieved the best
performance, with majority of samples closer to the optimal
value of 1. Stack of 3 achieved better results in sense of
PDt;p and PDp;t : it has more samples with bidirectional PDs
equal and closer to 0. In general, based on the evaluation
histograms, we can further confirm the conclusions we had
from the averaged evaluation results.

7 Conclusion

In this paper, we propose a two-stage method to extract
building polygons from remote sensing images. The first
stage adapts a CNN with stacked MBMs to extract the
three geometry primitives, which are the essential parts
of each building polygon. The MBMs provide learned in-
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Fig. 11 Histograms of polygonal evaluation protocols. The distribu-
tions of different measures help better evaluate and compare differ-
ent variants. “50%=” indicates the measured value when cumulative
counts reach half of the total number of samples. The overall conclu-
sions match the conclusions based on the averaged quantitative results.
We report here only the histograms for the adjustment based on the
vertex density for its better polygonization performance

teraction and information fusion across different geometry
primitive branches, which improves the final predictions. At
the second stage, we propose an efficient building polygo-
nization algorithm to reconstruct building polygons based
on the three predicted geometry primitives. Our algorithm
produces visually pleasing building polygons with straight
building edges as well as sharp corners. Moreover, our al-
gorithm is capable of handling both building blocks and
individual buildings.

Experiments show that our designed multi-branch CNN
is well suited for building extraction using remote sensing
images. With less computational complexity, our proposed
method achieved competitive results comparing with previ-
ous state-of-the-art CNN models.

However, there are still limitations in our work which
could be the reasons why the proposed method did not
outperform the previous state-of-the-art method proposed
by Zorzi et al. (2022). Firstly, our method depends on well-
annotated reference labels, especially for the second stage.
Secondly, the quality of the split individual buildings should
be improved, and further studies on non-global thresholding
should be considered. Lastly, number of stacks equal to 3 is
not necessarily a global optimum and a balance of different
branches need further study.
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