Rewicki, Ferdinand und Gawlikowski, Jakob und Niebling, Julia und Denzler, Joachim (2024) Unraveling Anomalies in Time: Unsupervised Discovery and Isolation of Anomalous Behavior in Bio-regenerative Life Support System Telemetry. In: European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, ECML PKDD 2024, 9 (14949), Seiten 207-222. Springer Cham. European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD) 2024, 2024-09-09 - 2024-09-13, Vilnius, Lithuania. doi: 10.1007/978-3-031-70378-2_13. ISBN 978-303170377-5. ISSN 0302-9743.
PDF
6MB |
Offizielle URL: https://link.springer.com/chapter/10.1007/978-3-031-70378-2_13
Kurzfassung
The detection of abnormal or critical system states is essential in condition monitoring. While much attention is given to promptly identifying anomalies, a retrospective analysis of these anomalies can significantly enhance our comprehension of the underlying causes of observed undesired behavior. This aspect becomes particularly critical when the monitored system is deployed in a vital environment. In this study, we delve into anomalies within the domain of Bio-Regenerative Life Support Systems (BLSS) for space exploration. We analyze anomalies found in telemetry data stemming from the EDEN ISS space greenhouse in Antarctica, using MDI and DAMP, two glassbox methods for anomaly detection based on density estimation and discord discovery respectively. We employ time series clustering on anomaly detection results to categorize various types of anomalies in both uni- and multivariate settings. We then assess the effectiveness of these methods in identifying systematic anomalous behavior. Additionally, we illustrate that the anomaly detection methods MDI and DAMP produce complementary results, as previously indicated by research.
elib-URL des Eintrags: | https://elib.dlr.de/206840/ | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag, Poster) | ||||||||||
Titel: | Unraveling Anomalies in Time: Unsupervised Discovery and Isolation of Anomalous Behavior in Bio-regenerative Life Support System Telemetry | ||||||||||
Autoren: |
*DLR corresponding author | ||||||||||
Datum: | 22 August 2024 | ||||||||||
Erschienen in: | European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, ECML PKDD 2024 | ||||||||||
Open Access: | Ja | ||||||||||
In SCOPUS: | Ja | ||||||||||
In ISI Web of Science: | Nein | ||||||||||
Band: | 9 | ||||||||||
DOI: | 10.1007/978-3-031-70378-2_13 | ||||||||||
Seitenbereich: | Seiten 207-222 | ||||||||||
Herausgeber: |
| ||||||||||
Verlag: | Springer Cham | ||||||||||
Name der Reihe: | Lecture Notes in Computer Science | ||||||||||
ISSN: | 0302-9743 | ||||||||||
ISBN: | 978-303170377-5 | ||||||||||
Stichwörter: | Unsupervised Anomaly Detection, Time Series, Multivariate, Controlled, Environment Agriculture, Clustering | ||||||||||
Veranstaltungstitel: | European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD) 2024 | ||||||||||
Veranstaltungsort: | Vilnius, Lithuania | ||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||
Veranstaltungsbeginn: | 9 September 2024 | ||||||||||
Veranstaltungsende: | 13 September 2024 | ||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||
DLR - Forschungsgebiet: | R SY - Technik für Raumfahrtsysteme | ||||||||||
Standort: | Jena | ||||||||||
Institute & Einrichtungen: | Institut für Datenwissenschaften > Datenanalyse und -intelligenz |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags