Xu, Yajin und Jubanski, Juilson und Bittner, Ksenia und Siegert, Florian (2024) Roof plane parsing towards LoD-2.2 building reconstruction based on joint learning using remote sensing images. International Journal of Applied Earth Observation and Geoinformation, 133, Seiten 1-14. Elsevier. doi: 10.1016/j.jag.2024.104096. ISSN 1569-8432.
PDF
- Verlagsversion (veröffentlichte Fassung)
6MB |
Offizielle URL: https://www.sciencedirect.com/science/article/pii/S1569843224004503
Kurzfassung
Building models are important for urban studies. Remote sensing multi-spectral (MS) images are widely used for its rich semantic information. The lack of geometry features is fulfilled by introducing photogrammetry derived digital surface models (DSMs), resulting in pairs of DSMs and MS images. Utilizing such pairs and a convolutional neural network, level of detail (LoD) 2.2 building models, which contain roof planes and major roof elements (e.g. dormers), are reconstructed in this work. Leveraging both raster and vector predictions, 3-D building models with straight edges and sharp corners are obtained. The proposed two-stage method first extracts vectorized roof lines from pairs of DSMs and RGB images, followed by generation of detailed 2-D and 3-D polygonal building models. We conducted our experiments based on two datasets: a custom dataset in Landsberg am Lech in Germany, and an open dataset named Roof3D. For the custom dataset, our proposed model achieved mean average precision (mAP) for building roof vertices of 64.3% and for building roof lines of 54.5% at highest. Mean precision and recall for reconstructed 2-D building roof plane polygons are 52.2% and 54.7% respectively. For the Roof3D dataset, mAP is reported to be 25.3% and 12.4% for the extracted building roof lines and roof plane polygons respectively.
elib-URL des Eintrags: | https://elib.dlr.de/206835/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||
Titel: | Roof plane parsing towards LoD-2.2 building reconstruction based on joint learning using remote sensing images | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | September 2024 | ||||||||||||||||||||
Erschienen in: | International Journal of Applied Earth Observation and Geoinformation | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Ja | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||
Band: | 133 | ||||||||||||||||||||
DOI: | 10.1016/j.jag.2024.104096 | ||||||||||||||||||||
Seitenbereich: | Seiten 1-14 | ||||||||||||||||||||
Herausgeber: |
| ||||||||||||||||||||
Verlag: | Elsevier | ||||||||||||||||||||
ISSN: | 1569-8432 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | AI4BuildingModelling, Building reconstructionDeep learningData fusionRemote sensingComputer vision | ||||||||||||||||||||
HGF - Forschungsbereich: | keine Zuordnung | ||||||||||||||||||||
HGF - Programm: | keine Zuordnung | ||||||||||||||||||||
HGF - Programmthema: | keine Zuordnung | ||||||||||||||||||||
DLR - Schwerpunkt: | Digitalisierung | ||||||||||||||||||||
DLR - Forschungsgebiet: | D DAT - Daten | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | D - Digitaler Atlas 2.0, V - V&V4NGC - Methoden, Prozesse und Werkzeugketten für die Validierung & Verifikation von NGC, R - Optische Fernerkundung | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse | ||||||||||||||||||||
Hinterlegt von: | Bittner, Ksenia | ||||||||||||||||||||
Hinterlegt am: | 27 Sep 2024 10:16 | ||||||||||||||||||||
Letzte Änderung: | 11 Okt 2024 15:28 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags