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A B S T R A C T

Building models are important for urban studies. Remote sensing multi-spectral (MS) images are widely used
for its rich semantic information. The lack of geometry features is fulfilled by introducing photogrammetry
derived digital surface models (DSMs), resulting in pairs of DSMs and MS images. Utilizing such pairs and a
convolutional neural network, level of detail (LoD) 2.2 building models, which contain roof planes and major
roof elements (e.g. dormers), are reconstructed in this work. Leveraging both raster and vector predictions,
3-D building models with straight edges and sharp corners are obtained. The proposed two-stage method first
extracts vectorized roof lines from pairs of DSMs and RGB images, followed by generation of detailed 2-D and
3-D polygonal building models. We conducted our experiments based on two datasets: a custom dataset in
Landsberg am Lech in Germany, and an open dataset named Roof3D. For the custom dataset, our proposed
model achieved mean average precision (mAP) for building roof vertices of 64.3% and for building roof lines
of 54.5% at highest. Mean precision and recall for reconstructed 2-D building roof plane polygons are 52.2%
and 54.7% respectively. For the Roof3D dataset, mAP is reported to be 25.3% and 12.4% for the extracted
building roof lines and roof plane polygons respectively.
1. Introduction

Detailed building models are useful in many urban studies, e.g. en-
ergy budget estimation, real estate valuation. Remote sensing technique
has become a major source of building reconstruction (Brenner, 2005),
especially with multi-spectral (MS) imaging, for its rich spectral infor-
mation. With the rise of deep learning methods, convolutional neural
networks (CNNs) are comprehensively studied and applied to the task
of building reconstruction, in sense of RGB images (Mahmud et al.,
2020; Robinson et al., 2022).

Despite of their rich spectral features, the lack of geometry informa-
tion of RGB images leads to final products with compromised quality.
Therefore, to achieve better performance, the combination of RGB
images and geometric information is inevitable. Photogrammetry de-
rived digital surface model (DSM) and corresponding orthophoto form
naturally an ideal image pair for 3-D building extraction, consisting
both spectral and geometric information.

Although there are many conventional methods targeting at build-
ing reconstruction using DSMs and RGB image pairs (Arefi and Reinartz,
2013; Mousa et al., 2019; Liu et al., 2021), limited amount of deep
learning based fusion of DSMs and RGB images exist in literature. Some
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pioneering works integrating DSMs and RGB images in neural networks
are applied to building boundary extraction (Bittner et al., 2018) and to
roof planes extraction (Schuegraf et al., 2024). However, these methods
present curved building corners in the final products and lack of finer
details of roof objects.

Depending on the degree of reconstructed details, Biljecki et al.
(2016) proposed different level of detail (LoD) building models. In our
work, we adapt similar definitions and aim to extract LoD-2.2 models
using remote sensing images. Specifically, the LoD-2.2 models under
study consist of individual roof planes, dormer surfaces and other large
roof installations (larger than 4 m2 ), with assumed vertical walls and
no overhangs. There are some recent studies trying to extract 2-D
vectorized LoD-2 models using remote sensing images (Hensel et al.,
2021; Qian et al., 2022; Zhao et al., 2022), but the authors focused only
on roof lines extraction. For down-stream tasks, complete and closed
building polygons are needed, especially for 3-D model reconstruction,
as well as higher LoDs.

Based on the above mentioned research gaps, we propose a deep
learning method that combines DSMs and RGB images for LoD-2.2
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Fig. 1. General workflow of our proposed method. Our designed CNN takes as input RGB image and nDSM and predicts the geometry primitives according to our proposed
building representation model. Roof lines are extracted by the connectivity learning module, and polygons are generated based on the predicted roof lines. LoD-2.2 models are
finally built using 2-D roof plane polygons.
building reconstruction. More specifically, our targeted task is LoD-
2.2 3-D building reconstruction using paired RGB images and DSMs.
Our work contributes to the study of paired DSMs and orthophotos
for building extraction, and fills the gap in literature from roof lines
extraction to 3-D building models generation.

Fig. 1 presents our proposed method. We propose a multi-class
joint learning backbone network to first obtain raster predictions.
Our designed network is able to fuse information from RGB images
and DSMs to improve model performance. More specifically, we use
normalized DSM (nDSM) for better generalization, which is calculated
by subtracting digital terrain model (DTM) from a DSM. The follow-
ing connectivity learning converts the raster predictions to vectors of
straight lines. Using the raster and vector predictions, 2-D roof plane
polygons are generated, and are extruded to 3-D polygons based on
DSMs. With added vertical walls and projected ground polygons, final
3-D building models are obtained in polygonal format. In all, our
contributions are summarized as follows:

• we propose a backbone network that fuses geometric and spectral
information for detailed building extraction, contributing to the
study of DSM and orthophoto pairs,

• our work fills the gap between predictions of roof lines and 3-
D building models, with intermediate products being closed roof
plane polygons with straight edges and sharp corners,

• we propose a simple yet effective LoD-2.2 building abstraction as
semantic raster prediction which models all kinds of buildings,

• we develop an effective workflow of generating LoD-2.2 3-D
building models in polygonal format based on RGB images and
DSMs.

2. Related work

2.1. Building footprint extraction

There are a lot of emerging deep learning based methods for the
task of 2-D building footprint extraction in literature. Most of research
use geometry primitives as base information to reconstruct building
footprints. Three types of geometry primitives are usually involved:
segments, lines and points.

The most straightforward method to extract building footprint is to
apply semantic/instance segmentation models. This kind of methods is
built upon a backbone network to extract building segments (Mahmud
2 
et al., 2020; Robinson et al., 2022), followed by post-processing such
as regularization (Zhao et al., 2018; Zorzi et al., 2021). Other than
building segments, building lines and corners are also useful. Under
this category of methods, building corners and their connections are
predicted (Zorzi et al., 2022), sequence of building corners are gen-
erated (Li et al., 2019; Huang et al., 2022), or building edges are
incorporated in neural network design (Chen et al., 2022).

These methods provide decent building outlines and/or building
polygons, but the final products are not detailed enough semantically.
Besides, they cannot be applied directly to the task of roof planes
extraction, for they generate one polygon for each building instance.

2.2. Building roof planes extraction

Due to highly varying and complicated building roof structures,
the task of building roof planes extraction is much more challenging
than building outline or building footprint extraction. In literature, the
extraction is mostly based on roof lines and building corners in context
of MS images.

Based on edge mask predictions, Qian et al. (2022) used semantic
segmentation to predict rasterized roof lines, but without further poly-
gonization for closed roof plane polygons, which limits its application.
Additionally, the predicted rasterized roof lines suffer heavily from
problems such as broken or irregular line segments, leading to rounded
and curved building corners (Schuegraf et al., 2024).

Based on the issues mentioned above, instead of rasterized predic-
tions, it is beneficial to switch to vector learning. The idea is adapted
widely in line parsing and wireframe parsing models (Huang et al.,
2018; Zhou et al., 2019), where vertices and their connections are
predicted. This kind of methods has the advantage of generating vector
format data and is more semantically abstract and more representative
than raster-based methods.

With this idea, Hensel et al. (2021) leveraged a point-pair graph to
extract roof line segments. Similarly, Zhao et al. (2022) used a graph
convolutional network on the point-pair graph to predict roof lines.
These methods produce closed roof plane polygons only when roof
lines are without gaps. However, for down-stream tasks, generation of
polygons and 3-D models need to be further studied.
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Fig. 2. Proposed network architecture. Our designed backbone network leverages stacked Hourglass modules, and fuses information from RGB and nDSM branches. Skip connection
for separately encoded features from the two branches is able to enhance the final extracted features.
2.3. Inclusion of digital surface models

The study of deep learning based fusion of DSMs and orthophotos
is still limited in literature. A pioneering work (Bittner et al., 2018)
studies the fusion of multi-modal data including nDSM and RGB images
at bottle-neck of a CNN, but is applied to building footprint extraction
only. Recently, Schuegraf et al. (2024) combined features from RGB
images and DSMs for LoD-2 roof planes extraction. These methods
exhibit shortcomings of raster prediction based problems, especially the
lack of sharp building corners.

In comparison to the existing methods, our method combines the
advantages from raster and vector predictions, i.e. rich semantic infor-
mation and more abstract geometry features, by fusing spectral and
geometric information. Consequently, 3-D building models of higher
quality with straight edges and sharp corners are obtained.

3. Methodology

Overall, our method consists of two stages to reconstruct 3-D build-
ing models. The first stage utilizes a CNN with inputs being paired RGB
images and DSMs or nDSMs and outputs being 2-D roof plane polygons.
The second part extrudes the extracted roof planes to 3-D polygons and
builds complete 3-D building models in polygonal format.

3.1. Backbone network

The base backbone network we chose is stacked Hourglass net-
work (Newell et al., 2016). Its architecture suits well, given that we
seek to combine RGB and height information, although the choice of
backbone network is not strictly limited. As elevation input, nDSM is
preferably used for its better generalization without influences from
varying ground heights. The architecture of our design is shown in
Fig. 2.

Information from RGB focuses more on texture, while nDSM focuses
more on geometry. In our design, we make use of the general idea of
stacked Hourglass network, and pre-encode RGB and nDSM differently
to achieve information fusion.

The stacked Hourglass network first downsamples and aggregates
local information gradually. We follow this procedure and add a second
branch to process nDSM in a similar but separate way, namely ‘‘pre-
encoding’’. Next, the two sets of feature maps from RGB and nDSM are
concatenated and passed to a merging layer, which consists of several
Conv-BatchNorm-ReLU stacks. Consequently, the merged feature maps
contain both information from RGB and nDSM, and are further refined
in the following Hourglass modules.

To better incorporate initial states of the extracted feature maps,
we add another skip connection (implemented as concatenation) be-
tween the refined features and the pre-encoded features from the two
branches. This skip connection allows the network better exploit the
separately aggregated features that have different focuses without fur-
ther refinement or interactions, i.e. image texture and object geometry
for RGB and nDSM respectively.
3 
Fig. 3. Our defined building representation model. In general, we divide the roof
structures into three basic geometry primitives: segments, lines and points. Specifically,
two sets of elements are defined: building vertices and building parts. Further break-
downs are defined based on location relative to the building outline. See main text for
details.

3.2. Geometry primitives prediction design

As semantic prediction design (Fig. 3), we define three major types
of geometry primitives: building footprint, roof lines and building
vertices. Since roof lines at building boundary and inside building foot-
print have different image texture and geometric features, we further
decompose these primitives into outline-related (directly adjacent to
non-building areas) and inner-plane-related. For building vertices, we
divide them into two classes: building boundary vertices and roof line
vertices, all being endpoints of lines. Similarly, for building roof lines,
we define building outlines and roof lines. Note that for buildings that
contain ‘‘holes’’, e.g. inner yards, we define the corresponding roof lines
as building outlines.

We only distinguish different types of building vertices and roof
lines based on location for simplicity and efficiency. Moreover, this
modeling covers all possible kinds of buildings, even when the building
structure is too complicated to be described by a standard eave-ridge
representation. One special case is for round-shaped buildings, where
the outline is discretized into line segments.

With this building model, we treat the geometry primitives predic-
tion as a problem of classification, and separate the predictions into two
parts: building vertices and building parts. Building vertices contain
building boundary vertices and roof line vertices. Building parts contain
three classes: roof lines, building outlines and roof planes.

3.2.1. Building vertices
For building vertices, we use the same heatmap representation

proposed by Zhou et al. (2019). With given image 𝐈 and corresponding
building vertices 𝐕, we first divide the input image 𝐈 of size 𝐻×𝑊 into
𝐻𝑏 × 𝑊𝑏 bins, i.e.

(

𝐻𝑏,𝑊𝑏
)

=
(

⌈

𝐻
𝑏 ⌉, ⌈

𝑊
𝑏 ⌉

)

, where 𝑏 is the downsize
factor. Each pixel in downsized 𝐈 is assigned 1 when there is a building
vertex present, and 0 otherwise. We use two channels for building
vertex heatmaps for the two building vertex classes, denoted as 𝐈𝑣 ∈
Z2×𝐻𝑏×𝑊𝑏 .
∈{0,1}
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In order to compensate offsets within each bin/pixel, a 2-channel
offset map is constructed as 𝐈𝑜 =

(

𝐈𝑜,1, 𝐈𝑜,2
)

, where

𝐈𝑜,1 =
(𝑐𝑖 − 𝑣𝑖)

𝑏
, 𝐈𝑜,2 =

(𝑐𝑗 − 𝑣𝑗 )
𝑏

,

where 𝐜 =
(

𝑐𝑖, 𝑐𝑗
)

is the location of each bin center in 𝐈, and 𝐯 =
(

𝑣𝑖, 𝑣𝑗
)

is the location of each building vertex (regardless of vertex class) in 𝐕.

3.2.2. Building parts
Building parts contain classes of roof lines, building outlines and

roof planes. We construct a 3-channel one-hot-encoded heatmap as
building parts representation, denoted as 𝐈𝑝 ∈ Z3×𝐻𝑏×𝑊𝑏

∈{0,1} , using the
same downsize factor as building vertices. Since the three classes are
exclusive to each other, we are able to make the prediction in a multi-
class manner. The building outlines 𝐈𝑝,1 and roof lines 𝐈𝑝,2 are rasterized
with a buffer of 1 pixel on both sides to compensate possible small
annotation shifts. The roof planes are obtained with

𝐈𝑝,3 = 𝐈𝑓 −
(

𝐈𝑝,1 + 𝐈𝑝,2
)

,

where 𝐈𝑓 is the rasterized building footprint heatmap.

3.3. Multi-class prediction

The network outputs a feature map 𝐅 ∈ R𝑑×𝐻𝑏×𝑊𝑏 , where 𝑑 is
the number of channels. The following prediction head consists of
three parallel modules containing Conv-ReLU-Conv layers with dif-
ferent numbers of output channels and activation functions, handling
predictions of building vertices, building parts and vertex offsets.

The output logits of building vertices (with three channels) and
building parts (with four channels) are passed to a softmax layer, while
the vertex offsets logits (with two channels) are input to a sigmoid
activation layer added with offset −0.5.

Cross-entropy loss is used for supervision of building vertices and
building parts predictions as 𝑣 and 𝑝. Masked 𝐿1 loss is used for
vertex offsets as

𝐿1 = |�̂�𝑜 − 𝐈𝑜| ⋅
(

𝐈𝑣,1 + 𝐈𝑣,2
)

, (1)

where �̂�𝑜 is the predicted vertex offset map. Note that we use hat nota-
tion to denote predictions associated with corresponding references.

Vertex offsets loss 𝑜 is then calculated as the sum of 𝐿1 averaged
over the total number of reference vertices.

3.4. Connectivity learning

To output data in vector format, we extract building vertices and re-
construct the connections. The building vertex candidates are extracted
using the predicted building vertex probability map �̂�′𝑣 = �̂�𝑣,1 + �̂�𝑣,2.
𝐾 candidates with highest predicted probability in each image are
selected regardless of vertex class, resulting in a predicted building
vertices set �̂�.

The initial building roof line candidates set �̂� is built upon the
building vertex candidates set �̂� by pairing vertex candidates with each
other without direction, i.e.

�̂� =
{

𝑙 =
(

�̂�𝑖, �̂�𝑗
)}

,

where

𝑖 ∈
{

1, ..., 𝑁
(

�̂�
)

− 1
}

, 𝑗 ∈
{

𝑖 + 1, ..., 𝑁
(

�̂�
)}

,

where 𝑁 (⋅) is the total number of elements.
Labels of connections for building roof line candidates are assigned

by matching vertex candidates with reference vertices from 𝐕 based on
Euclidean distance. A building vertex candidate is considered matched
if the distance to the closest reference vertex is smaller than a threshold
𝜃𝑣. For each line candidate, we assign label 1 indicating positive con-
nection only when its two vertices are both matched with two different
reference vertices and are connected in reference, otherwise we assign
4 
Fig. 4. An illustration of line candidate pairing. The yellow points and lines simulate
reference building vertices and building roof lines. The green points simulate matched
predicted building vertices, and the red point simulates an unmatched predicted
building vertex. The red and green lines simulate initial building roof line candidates
obtained by pairing predicted building vertices, with red and green marking negative
and positive connections respectively. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

label 0. We keep all positive connections, and sample the same number
of negative connections to balance training samples, resulting in a
subset �̃� of �̂�. An example illustration is provided in Fig. 4.

Feature vectors are constructed by sampling 𝑛1 points along each
line in �̃�. Features at sampled locations in 𝐅 are recorded, referred as
line of interest (LoI) pooling (Zhou et al., 2019). Different from the
existing model, we sample points in a buffered area around each line
candidate. The reasoning behind is that a building roof line appears
never as a line segment with width 1 in image but a rectangular region
with certain width. Considering a buffered area leads to a more robust
feature representation for each line candidate. Additionally, it helps
compensate possible small misalignment between connected lines and
input image.

In practice, we calculate two parallel lines for each line candidate
on both sides with offset ±0.5 and ±1, and sample along each added
line 𝑛1 locations, resulting in total 5 × 𝑛1 sampled points. The feature
vectors at each sampled location are concatenated together to form a
feature matrix 𝐟 ∈ R5×𝑛1×𝑑 . Max-pooling is used to reduce the feature
matrix into shape 𝑛2×𝑑, which is flattened to obtain feature vectors for
each line candidate.

Next, the feature vectors for each line are passed to a multi-layer
perceptron (MLP), which outputs the connection probability after a
sigmoid activation layer, denoted as 𝑠𝑖, 𝑖 ∈

{

1,… , 𝑁
(

�̃�
)}

. We use
binary cross-entropy loss for connectivity learning supervision as 𝑐 .

The whole network is trained in an end-to-end manner, with total
loss

 = 𝐰𝐿 ⋅
(

𝑣,𝑝,𝑜,𝑐
)𝑇 , (2)

where 𝐰𝐿 is a weight vector containing empirically set balance factors
for each loss.

3.5. Further modifications

In connectivity learning, DSMs or nDSMs provide useful geometry
information, since building outlines are usually with drastic change
of height between two sides, and large height difference along a line
usually indicates negative connection. Therefore, we concatenate the
input height images as additional feature channels with the extracted
feature maps in LoI pooling to improve connectivity learning.

We found it beneficial to use non-directed LoI in experiments. To
achieve this, we randomly change the order of start- and endpoints for
each building line candidate before LoI pooling. With this change, the
connectivity learning has the advantage of input order invariance.
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3.6. 3-D polygonization

The 3-D building models studied in this work is in wireframe
representation, i.e. 3-D coordinates of building vertices are recorded.
Starting from the predicted building roof lines, we build such 3-D mod-
els by first generating 2-D polygons of roof planes, and then lift the 2-D
polygons to 3-D using random sample consensus (RANSAC) (Fischler
and Bolles, 1981).

After thresholding on prediction scores, predicted building roof
lines are not all connected with each other. To obtain closed polygons
for buildings in cases with dangle points, we design an algorithm to
collect and expand the predicted building roof lines set, described in
Pseudo-Code 1.

Pseudo-code 1 Closing building roof planes

�̂� =
{

𝑙𝑖, 𝑠𝑖
}

, 𝑖 ∈
{

1, ..., 𝑁
(

�̂�
)}

if 𝑠𝑖 ≥ 𝜃𝑠

𝐼𝑝𝑙𝑎𝑛𝑒𝑠 =
(

argmax 𝐼𝑝 = 3
)

∧
(

RV
(

�̂�
)

= 0
)

�̂� = ∅
for 𝑅 in CCA

(

𝐼𝑝𝑙𝑎𝑛𝑒𝑠
)

do
�̄� = �̂� ∩ binary_dilation (𝑅)
�̃�, �̄� = detect_closed_polygons

(

�̄�
)

if ∑𝑃∈�̃� 𝐴𝑃 < 𝐴𝑅 or �̄� ≠ ∅ then
�̃� = (𝑅 > 0) ∧

(

RV
(

�̃�
)

= 0
)

∧
(

RV
(

�̄�
)

= 0
)

�̃� = �̃� ∪ VR
(

�̃�
)

end if
�̂� = �̂� ∪ �̃�

end for

First, we threshold the predicted connection scores 𝑠𝑖 for each
predicted building roof line 𝑙𝑖, and obtain a new line candidates set.

ext, roof plane segments are extracted using the predicted building
arts map 𝐼𝑝, where the score in roof planes channel is maximal,
.e. argmax of 𝐼𝑝 along channel dimension equals to 3.

The extracted roof plane segments could still be connected, resulting
n merged roof planes. Therefore, we include the vector predictions
y removing predicted building roof lines RV

(

�̂�
)

from the roof plane
segments to further separate connected roof planes. Here and in the
following, we use RV (rasterize vectors) to denote the algorithm to
rasterize vector data, where lines or polygons are rasterized into binary
images. All rasterized lines have width of 3.

Each roof plane need to be processed individually. Single roof plane
segment is obtained using connected component analysis (CCA) on
image 𝐼𝑝𝑙𝑎𝑛𝑒𝑠, and the corresponding predicted building roof lines are
collected by an intersection check: if a line intersects with a roof plane
segment, this line is then assigned to this roof plane segment. For each
group of predicted building roof lines, closed linear rings are detected
(algorithm detect_closed_polygons in Pseudo-Code 1) to form primitive
predicted polygons �̃�, with remaining lines set �̄�.

Due to false negative samples, �̃� might not cover the whole roof
plane segment, i.e. sum of the areas of the primitive predicted polygons
∑

𝑃∈�̃� 𝐴𝑃 is smaller than the area of the roof plane segment 𝐴𝑅, or
there are extra lines that lie inside the primitive polygons. Therefore,
we use the roof plane segment itself to help complete the missing
polygons. The missing areas �̃� contain pixels that are (a) inside the roof
plane segment, (b) not in primitive polygons �̃� and (c) not covered by
predicted building roof lines. The missing polygons are then obtained
by tracing the contour of each connected component in �̃� followed by
Douglas–Peucker algorithm (Douglas and Peucker, 1973), denoted as
VR (vectorize rasters) in Pseudo-Code 1. The new polygons as well as
the primitive polygons are all recorded, resulting in the final predicted
roof plane polygons set �̂�. An example of before and after the closing
algorithm is shown in Fig. 5.

RANSAC (Fischler and Bolles, 1981) is adopted to obtain 3-D build-
ing models in an iterative manner. With given DSM, for each predicted

̂
roof plane polygon in 𝐏, all pixels inside this polygon are selected as

5 
input points with coordinates (𝑋, 𝑌 , 𝑍). In each iteration, noncolinear
sample points are randomly selected from input points, and are used
to estimate a flat plane using singular value decomposition (Klasing
et al., 2009). The best approximation is selected as the estimation
with the most point inliers. Vertical walls are added for each polygon
edge, assuming that each wall is flat and vertical. Ground polygons are
obtained by projecting the 3-D roof planes to the input DSM. The final
3-D building models are the ensemble of roof planes, walls and grounds,
as an example shown in Fig. 6.

4. Dataset and experiment

4.1. Studied datasets

In this work, we used two datasets to test our proposed method.
The first dataset studied is a custom dataset. The study area was
chosen to be Landsberg am Lech in Germany. Aerial images of ground
sampling distance (GSD) 0.05 m were collected. Orthorectified images
and corresponding DSMs were calculated using software SURE from
nFrames.1 We used the DTMs published by authorities available online2

and calculated nDSMs by subtracting DTMs from DSMs.
Reference annotations were collected manually. LoD-2.2 related

roof elements were labeled. We aim to cover all possible types of
buildings in our study area in annotation. Non-overlapping training and
testing areas were selected randomly, with their distributions shown in
Fig. 7. We tiled the image into patches of size 512 × 512 pixels with
overlap 256 pixels on four sides. In total, we have training samples
1,379 and testing samples 732.

The second dataset is named Roof3D (Schuegraf et al., 2023). The
training data in Roof3D dataset contains RGB satellite images and
synthetic images, with paired DSM data, while the validation data
are satellite images and corresponding DSMs. The GSD of the satellite
images and DSMs are 0.3 m, with size 512 × 512 pixels. In total, 3,337
training samples and 36 validation samples were used. We report the
results on the validation set as our test results.

The annotations in Roof3D are in LoD-2, i.e. excluding roof ele-
ments, and are given in format as binary images. To generate the train-
ing references for our proposed network, we polygonized the binary
masks of roof planes followed by Douglas–Peucker algorithm (Douglas
and Peucker, 1973) to obtain simplified roof plane polygons (same
algorithm as VR in Pseudo-Code 1). Straight lines were extracted from
the roof plane polygons and were used as training references. Poly-
gon vertices were used as reference building vertices. Note that these
references are considered as pseudo-labels, since the remaining ver-
tices in polygons after simplification are not all true building vertices.
Consequently, overall performance is expected to be compromised.

4.2. Implementation and experiments

In our experiments, we fixed the number of stacked Hourglass
modules to 1 for demonstration. We chose threshold 𝜃𝑑 = 1.5 pixels
when matching building vertices with reference vertices, and 𝐾 was
set to 150 and 300 for the custom and the Roof3D dataset respectively.
In LoI pooling, we selected 𝑛1 = 32 points and 𝑛2 = 8 after max-pooling.

In the second stage of 3-D polygonization, threshold of prediction
scores 𝜃𝑠 was set empirically to 0.95. We selected 20 sample points in
RANSAC plane fitting to reduce the impact from noise, and set the
maximal number of iterations to 500.

Table 1 shows our model variants. We present the results based
on multi-class building representation as base design, with the rest of
architecture identical to the baseline model L-CNN (Zhou et al., 2019).
‘‘nDSM-backbone’’ model uses our designed network with separate RGB

1 https://www.nframes.com
2 https://www.ldbv.bayern.de/produkte/3dprodukte/gelaende.html

https://www.nframes.com
https://www.ldbv.bayern.de/produkte/3dprodukte/gelaende.html
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Fig. 5. Example of our proposed roof plane closing algorithm. Dangle points exist in the unprocessed polylines, which makes polygon generation impossible. After leveraging
information from raster predictions, complete roof plane polygons are reconstructed.
Fig. 6. Example of a LoD-2.2 building model. The 3-D model is built by extruding 2-D roof plane polygons, in (a), to 3-D roof polygons with added vertical walls and projected
ground, in (b).
and nDSM pre-encoding, but without skip connection for the two sets
of pre-encoded features. ‘‘Skip-connect’’ is with skip connection of pre-
encoded features switched on in backbone network. ‘‘nDSM-vectorizer’’
is the model where we concatenate nDSM with the input features for
connectivity learning. ‘‘Buffered-LoI’’ is the model with our more robust
LoI pooling module.

4.3. Evaluation

4.3.1. Evaluation of raster predictions
We evaluate the predicted building parts map using F1 score, as

semantic evaluation. F1 score is calculated as

F1 =
2𝐴𝑡∩𝑡
𝐴𝑡 + 𝐴𝑡

, (3)

where 𝐴𝑡 and 𝐴𝑡 are the areas of reference and prediction respectively,
𝐴𝑡∩𝑡 is the area of the intersection of reference and prediction.

Intersection over union (IoU) is also widely used as a metric to
evaluate similarity of two objects, defined as

IoU =
𝐴𝑡∩𝑡
𝐴𝑡∪𝑡

× 100%, (4)

where 𝐴𝑡∪𝑡 is the area of the union of reference and prediction.
We use IoU to evaluate reconstructed polygons.
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Table 1
Ablation study models. We divide our experiments into backbone-related and vectorizer-
related, concerning different network modules. ‘‘X’’ indicates switched on for a specific
design. See main text for details of each model variant.

Backbone related

Name Multi-class Include nDSM Skip connection

L-CNN
Multi-class X
nDSM-backbone X X
Skip-connect X X X

Vectorizer related

Name Backbone related Include nDSM Buffered LoI pooling

nDSM-vectorizer X X
Buffered-LoI X X X

4.3.2. Evaluation of vector predictions
We adapt average precision (AP) from object detection and evaluate

our predicted building vertices, building roof lines and roof planes. AP
is calculated based on precision and recall, defined as

precision = TP
TP + FP , (5)

recall = TP
TP + FN , (6)

where TP, FP and FN are numbers of samples of true positive, false
positive and false negative respectively.
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Fig. 7. Overview of study area and distribution of training (red rectangles) and testing (green rectangles) areas. Training and testing areas were selected randomly. Annotations
aim to cover all possible types and shapes of buildings in the study area. After tiling, we collected 1,379 training samples and 732 testing samples. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
We adapt mean AP (Zhou et al., 2019) for building vertices and
roof lines. For roof plane polygons which do not have prediction scores,
we report mean precision (mP) and mean recall (mR) to evaluate the
quality of predicted polygons. The term ‘‘mean’’ refers to averaging
across different IoU thresholds when counting TP, FP and FN in sense
of polygons.

Additionally, we report mean IoU (mIoU) for each pair of prediction
and reference. Each prediction is matched with the reference polygon
with the maximal IoU value if this IoU value exceeds a threshold, oth-
erwise we consider this prediction as unmatched. Mean IoU is defined
as the averaged IoU values of all matched prediction–reference pairs.
We report mIoU without penalty as the averaged IoU of all matched
pairs, and mIoU with penalty as the averaged IoU of all matched and
unmatched pairs, where unmatched IoU values are set to 0%.

To evaluate locations of building vertices, we calculate polygon
difference (PD) as

PD
(

𝑃1, 𝑃2
)

= 1
𝑁

(

𝑃1
)

𝑃1
∑

𝐩∈𝑃1

min ‖𝐩, 𝑃2‖, (7)

where 𝑁
(

𝑃1
)

is the number of vertices of polygon 𝑃1, 𝐩 is the coordi-
nate of each vertex in polygon 𝑃1, and ‖𝐩, 𝑃2‖ is the Euclidean distance
of vertex 𝐩 to each vertex in polygon 𝑃2.

We report bidirectional PDs as PD𝑡,𝑝 = PD
(

𝑃 , 𝑃
)

and PD𝑝,𝑡 =
PD

(

𝑃 , 𝑃
)

to measure the polygonal differences based on vertex loca-
tions, where 𝑃 and 𝑃 are reference and predicted polygons respectively.

In contrast to location performance, complexity of reconstructed
polygons is evaluated based on ratio of vertex numbers (RN), calculated
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Table 2
Quantitative evaluation results. The switched on modules can be found in Table 1. F1
scores from 1 to 3 are building outlines, roof lines and roof parts respectively. APv
and APl are AP for vertices and lines respectively. Other than mAPv and mAPl, we
also report APv at threshold 1.5 pixels and APl at threshold 3 pixels. The best results
are highlighted in bold text. Units are percentage.

Name F1𝑝,1 F1𝑝,2 F1𝑝,3 mAPv APv@1.5 mAPl APl@3

L-CNN – – – 50.8 54.8 37.8 34.2
Multi-class 53.9 45.3 85.3 56.2 60.7 44.3 40.2
nDSM-backbone 58.3 51.8 88.0 62.6 67.0 51.5 47.6
Skip-connect 56.7 53.1 87.5 63.9 68.3 54.2 49.8
nDSM-vector 57.2 50.7 87.7 63.2 68.0 54.5 50.4
Buffered-LoI 57.2 52.5 87.7 64.3 69.1 54.0 50.0

as

RN =
𝑁

(

𝑃
)

𝑁 (𝑃 )
. (8)

We consider PD and RN only for matched prediction–reference
pairs. The final results are the averaged PD and RN over all matched
prediction–reference pairs in a dataset.

5. Results and discussion

5.1. Evaluation on custom dataset

5.1.1. Evaluating raw outputs
We present evaluation results based on different variants of our

models to evaluate validity of each module. For raster evaluation, we
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Table 3
Evaluation results of predicted polygons. We report mP, mR and mIoU that are averaged
over different IoU thresholds. Two specific IoU thresholds are presented, i.e. 50% and
75%. Specially for mIoU, we report the evaluation results for with penalty (before
/) and without penalty (after /). Bidirectional PDs and RN are calculated for each
prediction–reference pair matched at IoU threshold 50%. PDs are in unit of pixels
while the other units are percentage. The best results are highlighted in bold text.

Name mP P@50 P@75 mR R@50 R@75

nDSM-vector 46.4 59.0 50.6 54.7 68.9 59.4
Buffered-LoI 52.2 66.7 56.1 47.7 60.6 51.1

Name mIoU IoU@50 IoU@75 PD𝑡,𝑝 PD𝑝,𝑡 RN

nDSM-vector 41.7/90.8 51.2/86.7 45.8/90.5 4.4 9.3 1.2
Buffered-LoI 47.1/91.0 57.8/86.6 51.0/91.0 4.6 9.3 1.2

report F1 scores for building outlines, roof lines and roof parts. For
vector evaluation, we report mean AP for building vertices (mAPv) and
building roof lines (mAPl). We choose from 0.5 to 3 pixels with step 0.5
(including 3) as distance thresholds for mAPv, and from 3 to 9 pixels
with step 2 for mAPl.

As is shown in Table 2, improvements for all metrics from baseline
(L-CNN) to our designed multi-class building representation model
are observed. By leveraging both RGB and nDSM, the performance is
further improved significantly, with increase in mAPv and mAPl of
6.4% and 7.2% respectively.

With our proposed skip connection, we were able to further improve
the quality of predictions, with mAPv increased from 62.6% to 63.9%
and mAPl from 51.5% to 54.2%. Interestingly, a small decrease con-
cerning raster predictions is observed, especially for building outlines
and roof parts. It can be explained by the fact that the pre-encoded
features from the RGB and nDSM branches are not refined enough as to
improve the raster predictions, rather harm the performance. However,
the separated semantic (RGB) and geometric (nDSM) features are able
to improve the vector related performance.

As expected, using nDSM in connectivity learning is beneficial,
which further increased mAPl from 54.2% to 54.5%, but surprisingly
with small decrease in mAPv. Furthermore, although ‘‘Buffered-LoI’’
achieved the best performance regarding building vertices, but mAPl
is slightly smaller than the non-buffered LoI pooling model.

The observations above suggest that the performances of the ex-
traction of building vertices and of the reconstruction of roof lines
might be a trade-off. We suspect that it is because of the information
flow in LoI pooling. The LoI pooling samples points along line that
include non-corner edge points, and the corresponding features are
used to learn the connectivity between extracted points. In this process,
the pooled features from each sampled point are encouraged to be
more homogeneous, since they all indicate positive connection, and this
information is back-propagated to the extraction of building vertices.
However, for the task of building vertices extraction, the edge point
features and the corner point features should be more distinguishable.
Consequently, a trade-off appears between the task of building vertices
extraction and the task of connectivity learning. Therefore, better per-
formance regarding building vertices does not necessarily lead to better
performance in sense of building roof lines, and vice versa.

5.1.2. Evaluating 2-D roof plane polygons
We evaluate the quality of reconstructed 2-D roof plane polygons

and present the evaluation results in Table 3. We used IoU thresholds
from 50% to 95% with interval 5% to calculate mIoU, and present
IoU values at threshold 50% and 75%. Prediction–reference pairs were
matched at IoU level 50% for PDs and RN.

The two model variants reported in Table 3 achieved matching
results regarding building vertices and roof lines (shown in Table 2),
but differences are more distinguishable in polygon evaluation.

First of all, it is observed that the non-buffered LoI pooling model

(‘‘nDSM-vector’’) performs better in favor of recall while the buffered
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LoI model (‘‘Buffered-LoI’’) achieved higher precision. It suggests that
with buffered LoI pooling, more predicted polygons are correct but with
less portion of successfully extracted reference polygons.

This conclusion is also supported by the results regarding IoU.
Higher IoU values are observed for all IoU related metrics for ‘‘Buffered-
LoI’’, with the exception of IoU without penalty at threshold 50% being
0.1% lower than the non-buffered LoI model. It further confirms that
with our proposed buffered LoI pooling module, roof plane polygons of
higher quality are reconstructed.

The non-buffered LoI pooling model, on the other hand, tends to
be more exhaustive in extracting reference polygons at the cost of
producing more poor quality polygons, i.e. higher recall but lower pre-
cision and IoU. This observation indicates that the proposed buffered
LoI pooling helps solve the problem of misalignment of reference
annotations and input images: when there are a large amount of
shifted annotations, it is expected for the model to output more shifted
polygons, resulting in more wrong polygons (lower precision) but larger
portion of correctly retrieved reference polygons (higher recall). If this
shift is corrected by the network, precision is expected to increase and
recall is expected to drop. Therefore, our proposed buffered LoI pooling
should perform better dealing with datasets of more poorer annotations
in sense of annotation shifts.

Very high mIoU for without penalty is observed for both models,
suggesting that both models are able to generate polygons close to
manual delineation. However, low mIoU with penalty suggests that our
method missed reference polygons. Typical failure cases are shown in
Fig. 8. Such scenarios are difficult to handle for the methods which
are optical photogrammetry based. When the texture difference of two
objects is not distinguishable enough, our method can hardly extract
the corresponding polygons.

Our method achieved good performance in sense of localizing build-
ing vertices. In average, our predicted vertices are around 0.5 m
away from reference vertices. Furthermore, complexity of reconstructed
polygons is satisfying, with RN close to 1 for both models.

5.1.3. Qualitative evaluation
Fig. 9 shows a collection of different types of buildings and the

corresponding reconstructed polygons. Overall, our method is able
to produce accurate polygons with sharp corners. Finer details such
as small dormer windows are successfully reconstructed. Complicated
scenes, e.g. as is shown in Fig. 9(b), are handled satisfyingly.

There are still some issues to be solved. Firstly, it seems that
shadow leads to wrong polygons in some cases, as is highlighted in
Fig. 9(d). This is surprising, since the shadow issue with RGB images
is expected to be solved by utilizing nDSM. One possible explanation
is that in some cases, the information from RGB images is somewhat
more dominant than the information from nDSM, resulting in residual
impacts of shadows, especially when the pre-encoded RGB features are
directly used in connectivity learning. Secondly, background roof-top
objects could result in redundant vertices in reconstructed polygons and
introduce small distortions.

For 3-D building reconstruction, we processed the whole city of
Landsberg am Lech in Germany for qualitative evaluation. Fig. 10
shows four examples of LoD-2.2 building models with increasing build-
ing complexity. With our proposed method, smaller dormers are cor-
rectly extracted in most cases. Complicated buildings, shown in Fig. 10(c
and 10(d), are also reconstructed with satisfying correctness, especially
on finer details.

The reconstructed models are not perfect. Fig. 11 shows two typical
failure cases. Due to false negative predictions of building roof lines,
incomplete roof objects are obtained (Fig. 11(a)) and merged roof
planes lead to wrong reconstruction (Fig. 11(b)).

To conclude, based on quantitative and qualitative results, our
proposed method is able to reconstruct high quality LoD-2.2 building
models, in spite of large variations of building structures and complexi-
ties. False negative predictions, especially missing roof lines, can result

in incomplete or wrong building models.
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Fig. 8. Examples of typical false negative samples (marked with red rectangles). These two example areas are visualized as RGB images overlaid with reconstructed polygons. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 9. Examples for qualitative evaluation. Areas of interest are highlighted with red rectangles. Generally speaking, our method produces accurate and visually pleasing polygons,
even in very complicated scenes. However, it seems that shadow influences our model in some cases, resulting in wrongly reconstructed polygons. Other roof-top objects,
e.g. chimneys, produces redundant vertices. More examples can be found in appendix. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
5.2. Evaluation on Roof3D

For the Roof3D dataset, we compare our method with Plane4LoD2
(Schuegraf et al., 2024), as is shown in Table 4.

Overall, mAPv and mAPl are both much smaller than the results
using the custom dataset. This is explained by the fact that the training
data provided in the Roof3D dataset is of poor quality, especially the
9 
references from public sources, as is shown in Fig. 12. Since connec-
tivity learning plays an important role in our proposed method, high
quality and accurate annotations are required, i.e. correct locations
and connectivity of building vertices. When false information is given,
wrong connections are captured, resulting in errors being propagated
throughout the network.

The methods proposed by Schuegraf et al. (2024) are all raster
based. It is reported that the result was improved using channel and
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Fig. 10. Examples for qualitative evaluation of LoD-2.2 models. Different buildings with varying complexity are visualized. Overall, the proposed method is able to produce high
quality polygonal LoD-2.2 building models with fine details. It is also capable of handling varying types and structures of buildings. More examples can be found in appendix.
Fig. 11. Examples of failed reconstructions. Typical failure cases are missing roof objects and merged roof planes.
spatial attention, which encourages the network to focus more on
specific channels and spatial locations. We believe that this mechanism
helps the network identify wrongly annotated areas, in which the
attention gets higher and ‘‘forces’’ the model to predict incorrect results.
Therefore, the impact of false annotations is less dominant, resulting in
higher mAPp than our proposed method.

The influence of incorrect references, especially shifts between an-
notations and images, is further confirmed by mAPl of the two mod-
els with non-buffered and buffered LoI pooling. While in Table 2,
‘‘nDSM-vector’’ and ‘‘Buffered-LoI’’ have very close mAPl (54.5% and
10 
54.0% respectively), but for Roof3D, the difference is much larger:
the buffered LoI pooling model is 6.1% higher than the non-buffered
model. It proves that the buffered LoI pooling design improves model
performance when references of poorer quality have to be used.

Additionally, the GSD of the images in Roof3D is 0.3 m. Since the
raster predictions of our proposed method in its current form are of size
fourth of the input images, real building vertices could be aggregated
into one pixel, leading to information loss. However, this issue could be
solved by replacing the backbone network with a network that outputs
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Fig. 12. Examples of two annotations in the Roof3D training data. False reference data exist in large amount, leading to drastic performance drop.
Fig. 13. Examples of results from Roof3D. Each column from left to right shows predicted building roof lines, reconstructed 2-D polygons and final LoD-2 building models. Areas
that show fairly good performances are highlighted with colored rectangles. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
Table 4
Evaluation results of the Roof3D dataset. ‘‘mAPp’’ denotes mean AP
of polygons. Note that all prediction scores were set to 1 for mAPp
calculation. For Plane4LoD2, we present three different backbones, and
refer to Schuegraf et al. (2024) for details.
Name mAPv mAPl mAPp

Fuse-UResNet34 – – 11.9
Plane4LoD2-UResNet34 – – 12.7
Plane4LoD2-EfficientUnetB3 – – 13.8

nDSM-vector 52.9 19.2 12.4
Buffered-LoI 52.5 25.3 11.7
11 
predictions of the same spatial dimensions as the inputs. We include
this point into our future outlooks.

Fig. 13 shows two examples of predictions using our proposed
method. When comparing with the results based on the custom dataset,
more false positive and false negative predictions exist, leading to
poorer quality of reconstructed building models, e.g. zigzag bound-
aries, broken polygons for complete roof planes. Moreover, height
incontinuity at polygon borders appears more frequently, suggesting
that the 3-D polygonization stage requires higher quality of DSMs to
obtain better building models. Nevertheless, when the roof lines are
well extracted, the corresponding generated polygons and 3-D building
models have good quality, with two example areas highlighted using
colored rectangles in Fig. 13.
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Fig. A. Additional examples for qualitative evaluation from the custom dataset. From left to right each column presents: (a) predicted polygons with RGB overlay, (b) predicted
polylines with RGB overlay, and (c) raster prediction. Best viewed zoomed-in electronically.
6. Conclusion

In this paper, we present a novel neural network to extract 2-D
building roof planes based on photogrammetry products and demon-
strate a method to generate 3-D polygonal building models. Experi-
ments show that our method is able to automatically reconstruct high
quality and satisfying 3-D building models, for both LoD-2 and LoD-2.2.

Our proposed backbone network utilizes RGB and nDSM to extract
semantic building models and achieved high accuracy in sense of raster
predictions. Furthermore, the extracted building roof lines have quality
close to manual delineation, as is suggested by the evaluation metrics
and visual inspection. In the end, we are able to fill the gap between
12 
extraction of roof lines and obtaining roof polygons and provide high
quality polygons of LoD-2.2 building models with finer details, which
are useful in many important decision making processes.

However, limitations still exist in our work. Firstly, as a method that
is essentially based on RGB images, there are some cases (usually for
dormers) where the extraction and polygonization of roof objects are
hardly possible. Secondly, in its current form, the performance of the
proposed model on datasets with larger GSD and poorer annotations is
compromised, which requires further study. Thirdly, topology of roof
objects and associated roof planes is only hinted in this work. Explicitly
modeled topological relations could better the final LoD-2.2 models.
Future works will be focused on solving mentioned issues.
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Fig. B. Additional examples for qualitative evaluation on LoD-2.2 building models and 3-D scenes from the custom dataset. Best viewed zoomed-in electronically.
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