elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Imprint | Privacy Policy | Accessibility | Contact | Deutsch
Fontsize: [-] Text [+]

Long-term relationships of ionospheric electron density with solar activity

Jakowski, Norbert and Hoque, Mohammed Mainul and Mielich, Jens (2024) Long-term relationships of ionospheric electron density with solar activity. Journal of Space Weather and Space Climate, 14 (24), pp. 1-16. EDP Sciences. doi: 10.1051/swsc/2024023. ISSN 2115-7251.

[img] PDF - Published version
1MB

Official URL: https://www.swsc-journal.org/

Abstract

Greenhouse gases such as carbon dioxide and methane that are causing climate change may cause long term trends in the thermosphere and ionosphere. The paper aims to contribute to explore long term effects in the ionosphere focusing on the impact of solar activity changes. Peak electron density data derived from vertical sounding measurements covering 65 years at the ionosonde stations Juliusruh (JR055), Boulder (BC840) and Kokubunji (TO536), have been utilized to estimate the long-term behavior of daytime ionospheric F2 layer ionization in relation to the solar 10.7 cm radio flux index F10.7. In parallel, Global Navigation Satellite System (GNSS) based vertical total electron content (TEC) data over the ionosonde stations in combination with the peak electron density data have been used to derive the equivalent slab thickness for estimating long-term behavior in the time period 1996-2022. A new approach has been developed for deriving production and loss term proxies for studying long-term ionization effects from F2 layer peak electron density and TEC data. The derived coefficients allow estimating the long-term variation of atomic oxygen and molecular nitrogen concentrations including their ratio during winter months. The noon-time slab thickness values over Juliusruh correlate well with the decrease of F10.7 and the F2 layer peak height and enable estimating the neutral gas temperature. The equivalent slab thickness decreases by about 20 km per decade in the period 1996-2022, indicating a thermospheric cooling by about 100 K per decade for Juliusruh. Whereas the oxygen concentration decreases, the loss term, considered as a proxy for molecular components of the neutral gas, in particular N2, increases with the long-term solar activity variation. Considering 11year averages of the production and loss terms under wintertime conditions, the long-term study reveals for the O/N2 ratio a percentage decrease of 5% per decade and for F10.7 about 3.1% per decade in a linear approach referred to the year 1970. Linear models of 11 years averaged NmF2 and foF2 from corresponding F10.7 show a very close correlation with the temporal variation of F10.7 until about 1990. The root mean square errors are in the order of 1.0 -1.3 ‧1010m-3 for NmF2 and 0.03-0.05 MHz for foF2. After 1990 the linear models clearly deviate from F10.7 at all selected mid-latitude ionosonde stations indicating a non-local effect.

Item URL in elib:https://elib.dlr.de/206627/
Document Type:Article
Title:Long-term relationships of ionospheric electron density with solar activity
Authors:
AuthorsInstitution or Email of AuthorsAuthor's ORCID iDORCID Put Code
Jakowski, NorbertUNSPECIFIEDhttps://orcid.org/0000-0003-3174-2624UNSPECIFIED
Hoque, Mohammed MainulUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Mielich, JensUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Date:July 2024
Journal or Publication Title:Journal of Space Weather and Space Climate
Refereed publication:Yes
Open Access:Yes
Gold Open Access:Yes
In SCOPUS:Yes
In ISI Web of Science:Yes
Volume:14
DOI:10.1051/swsc/2024023
Page Range:pp. 1-16
Publisher:EDP Sciences
ISSN:2115-7251
Status:Published
Keywords:ionosphere, vertical sounding, equivalent slab thickness, solar activity, long-term trends
HGF - Research field:Aeronautics, Space and Transport
HGF - Program:Space
HGF - Program Themes:Earth Observation
DLR - Research area:Raumfahrt
DLR - Program:R EO - Earth Observation
DLR - Research theme (Project):R - space weather influence
Location: Neustrelitz
Institutes and Institutions:Institute for Solar-Terrestrial Physics > Space Weather Observation
Deposited By: Jakowski, Dr.rer.nat. Norbert
Deposited On:30 Sep 2024 09:45
Last Modified:02 Oct 2024 12:24

Repository Staff Only: item control page

Browse
Search
Help & Contact
Information
OpenAIRE Validator logo electronic library is running on EPrints 3.3.12
Website and database design: Copyright © German Aerospace Center (DLR). All rights reserved.