Venkatesan, Vasudha und Panangian, Daniel und Fuentes Reyes, Mario und Bittner, Ksenia (2024) SyntStereo2Real: Edge-Aware GAN for Remote Sensing Image-to-Image Translation while Maintaining Stereo Constraint. In: 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2024, Seiten 512-521. IEEE Xplore. CVPR 2024, 2024-06-17 - 2024-06-21, Seattle, WA, USA. ISBN 979-835030129-8. ISSN 1063-6919.
PDF
45MB |
Kurzfassung
In the field of remote sensing, the scarcity of stereo-matched and particularly lack of accurate ground truth data often hinders the training of deep neural networks. The use of synthetically generated images as an alternative, alleviates this problem but suffers from the problem of domain generalization. Unifying the capabilities of image-to-image translation and stereo-matching presents an effective solution to address the issue of domain generalization. Current methods involve combining two networks—an unpaired image-to-image translation network and a stereo-matching network—while jointly optimizing them. We propose an edge-aware GAN-based network that effectively tackles both tasks simultaneously. We obtain edge maps of input images from the Sobel operator and use it as an additional input to the encoder in the generator to enforce geometric consistency during translation. We additionally include a warping loss calculated from the translated images to maintain the stereo consistency. We demonstrate that our model produces qualitatively and quantitatively superior results than existing models, and its applicability extends to diverse domains, including autonomous driving.
elib-URL des Eintrags: | https://elib.dlr.de/206573/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Poster) | ||||||||||||||||||||
Titel: | SyntStereo2Real: Edge-Aware GAN for Remote Sensing Image-to-Image Translation while Maintaining Stereo Constraint | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | Juni 2024 | ||||||||||||||||||||
Erschienen in: | 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2024 | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||
Seitenbereich: | Seiten 512-521 | ||||||||||||||||||||
Herausgeber: |
| ||||||||||||||||||||
Verlag: | IEEE Xplore | ||||||||||||||||||||
ISSN: | 1063-6919 | ||||||||||||||||||||
ISBN: | 979-835030129-8 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | AI4BuildingModeling, image-to-image translation, stereo-matching, GAN | ||||||||||||||||||||
Veranstaltungstitel: | CVPR 2024 | ||||||||||||||||||||
Veranstaltungsort: | Seattle, WA, USA | ||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
Veranstaltungsbeginn: | 17 Juni 2024 | ||||||||||||||||||||
Veranstaltungsende: | 21 Juni 2024 | ||||||||||||||||||||
Veranstalter : | CVPR 2024 | ||||||||||||||||||||
HGF - Forschungsbereich: | keine Zuordnung | ||||||||||||||||||||
HGF - Programm: | keine Zuordnung | ||||||||||||||||||||
HGF - Programmthema: | keine Zuordnung | ||||||||||||||||||||
DLR - Schwerpunkt: | Digitalisierung | ||||||||||||||||||||
DLR - Forschungsgebiet: | D DAT - Daten | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | D - Digitaler Atlas 2.0, R - Optische Fernerkundung, V - V&V4NGC - Methoden, Prozesse und Werkzeugketten für die Validierung & Verifikation von NGC | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse | ||||||||||||||||||||
Hinterlegt von: | Bittner, Ksenia | ||||||||||||||||||||
Hinterlegt am: | 27 Sep 2024 07:47 | ||||||||||||||||||||
Letzte Änderung: | 11 Okt 2024 16:00 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags