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Abstract

In the field of remote sensing, the scarcity of stereo-
matched and particularly lack of accurate ground truth data
often hinders the training of deep neural networks. The
use of synthetically generated images as an alternative, al-
leviates this problem but suffers from the problem of do-
main generalization. Unifying the capabilities of image-
to-image translation and stereo-matching presents an ef-
fective solution to address the issue of domain generaliza-
tion. Current methods involve combining two networks—an
unpaired image-to-image translation network and a stereo-
matching network—while jointly optimizing them. We pro-
pose an edge-aware GAN-based network that effectively
tackles both tasks simultaneously. We obtain edge maps
of input images from the Sobel operator and use it as an
additional input to the encoder in the generator to enforce
geometric consistency during translation. We additionally
include a warping loss calculated from the translated im-
ages to maintain the stereo consistency. We demonstrate
that our model produces qualitatively and quantitatively su-
perior results than existing models, and its applicability ex-
tends to diverse domains, including autonomous driving.

1. Introduction
The challenges in obtaining ground truth images in the re-
mote sensing domain stem from the difficulty in capturing
matching images due to temporal changes, sparse measure-
ments and a significantly large baseline. The correspon-
dence tasks like disparity estimation or stereo reconstruc-
tion for these images, can be both cumbersome and expen-
sive. The concept of using synthetic data for training deep
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(a) Original

(b) Translated

Figure 1. Examples of aerial scene translated by SyntStereo2Real.
Our model can produce semantic-consistent realistic translations.

neural networks arises from the persistent challenges posed
by data scarcity, privacy concerns, and the overall difficulty
in acquiring authentic data. Synthetic data provides essen-
tial ground truth such as accurate labels and stereo dispar-
ity maps information for training machine learning models.
While the synthetic data is obtained from a simulation of
real-world scenario, it may not perfectly represent the com-
plexities and variations in real-world data. This can result
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in domain shift, where the model struggles to generalize to
real world data. Unpaired image-to-image translation algo-
rithms have been used to address the problem of domain
shift [6, 14, 18]. They provide promising results to reduce
the domain gap between the domains. However they can
alter the structural information of the image as shown in
Fig. 2. This can pose as a serious challenge when training
for downstream tasks as the translated images do not align
with their corresponding labels.

Our approach focuses on the specific task of translating
synthetic images to realistic domain while maintaining the
stereo constraints, which means that pixels do not move
within or to another epipolar line and we particularly ad-
dress the two-view image case. Some of the existing meth-
ods such as StereoGAN [15] have addressed this task for
autonomous driving datasets with joint optimization of im-
age translation and disparity estimation networks. Images
from remote sensing domain are rich with diverse content.
Existing methods suffer from the problem of an increased
likelihood of hallucinations and discrepancies in disparity.

We address this problem using a lightweight edge-
aware GAN network, that performs unpaired image-to-
image translation while maintaining the disparity values. At
first, the edge maps of input images are obtained from Sobel
operator and are provided as an additional input along with
image pairs from both domains to the generator. The en-
coder of the generator computes the content and edge code
separately from the input image and its edge map and is
added together as content edge code. The content edge code
is provided to the decoder along with a random style code
to generate images of different domain as shown in Fig. 3.
The use of edge maps ensures that the structure of the im-
age is retained and not lost in translation and thus prevents
the matching algorithm fail due to blurred boundaries. Ad-
ditionally, we use a warping loss, where we warp the left
translated image with its respective disparity map and com-
pare it to the right translated image to enforce stereo con-
sistency. Extensive experiments across multiple datasets
demonstrate our method outperforms the existing methods
quantitatively and qualitatively. Moreover, we use a single
lightweight network to perform optimization on two tasks
without the use of any pre-trained networks. To sum up,
our main contributions are:

• Developing a lightweight framework for image-to-image
translation of stereo pairs considering a consistent trans-
lation of left and right images that preserves the matching.
By including edge maps and a warping loss, we improve
the matching features of the generated pairs.

• Results show that the quality of the translated images
leads to a better disparity prediction than other state-of-
the-art translation methods.

• By testing on data of remote sensing and autonomous
driving tasks, we demonstrate that our approach works

(a) Original

(b) Translated

Figure 2. Aerial images translated using CUT [18]. The model
tends to hallucinate when translating images with diverse scenes,
where the target distribution is more likely to be unbalanced.

with a variety of datasets.

2. Related work
2.1. Stereo matching

Semi-global matching [3], a classical stereo method uses
pixel-wise matching cost for computing the disparities be-
tween two images. It produces an approximate global opti-
mal solution and is still one of the best performing tech-
niques for disparity estimation in certain domains. MC-
CNN [25] introduced deep learning based techniques to es-
timate disparity using a deep siamese network where match-
ing cost for cost volume is computed from the network and
cost aggregation is carried out through average pooling, fol-
lowed by additional refinement. GANet [26] has optimized
the cost aggregation by introducing semi-global aggregation
(SGA - guided) layer which aggregates matching cost in
multiple directions and local guided aggregation (LGA) to
recover disparities at thin structures and object edges. The
use of warping operation as a constraint for stereo matching
has proven to be useful. It ensures that the estimated dispar-
ities produce geometrically consistent results. Nonetheless,
all of these methods suffer from a significant domain gap
when applied to data from a different acquisition nature.

Other disparity algorithms focus on tackling the domain
gap while learning the matching. CFNet [21] proposes
a fused cost volume representation in a cascade design
for a more robust learning that can be applied to differ-
ent domains. DSMNet [27] applies a domain normaliza-
tion to the input images leading to sharper disparity maps.
GrafNet [13] transforms the features with a U-shape net-
work before inputting them to the cost volume, improving
the domain adaptation. AdaStereo [22] transforms the color
distribution into the target domain while training. In other
cases, networks are designed to have a robust domain gener-
alization on unseen data such as RAFT-Stereo [12], which is
based on convolutional gated recurrent units (GRUs) or the
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Figure 3. Illustration of the generator architecture in an autoencoder with edge map integration. The image along with its corresponding
edge map is encoded and added together as content edge code before applying it as an input to the decoder. The decoder merges the
content-edge code with style code from every domain to generate content that is contextually fitting. xca, xcb represents the input images
from both domains (content), xea, xeb represents the corresponding edge maps. ca, cb, ea, eb represents the content and edge code from
encoder for both domains. sa, sb are the randomly initialized style code before the training. xaa, xab, xba, xbb represents the respective
output images from the decoder.

(a) (b) (c) (d)

Figure 4. Pairs of translated images. For the translated left-view images 4a and 4c, the corresponding right-view images 4b and 4d are also
displayed. As can be seen from the images, a semantic-consistent translation is applied to both the left and right-view images.

case of IGEV-Stereo [23], where geometry encoding im-
proves the results in both stereo and multi-view networks.
FC-stereo [28] computes two losses (selective whitening
and contrastive feature) to preserve the stereo consistency
between images and helped existing networks to general-
ize better while training only on synthetic data. Still, we
consider that an offline adaptation of the dataset might lead
to a good domain generalization without compromising the
capabilities of the matching algorithms themselves.

2.2. Unpaired image-to-image translation

Unpaired image-to-image translation translation aims to
learn the mapping from a source image domain to a target
image domain without paired training data. CycleGAN [29]
has been a pioneer in solving this task by identifying the
key mappings in unpaired data from two different domains.
The authors introduced cycle consistency loss to constrain
the one-to-one mapping space by reconstructing the orig-
inal image back from the translated image. This loss, in
conjunction with adversarial loss and identity loss, plays
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a pivotal role in image-to-image translation, leading to re-
markable visual results. The CUT [18] model extends this
concept for one-sided image translation with a contrastive
loss. It is calculated using negative samples obtained from
the same input, thus enabling faster training. UNIT [14]
carries out unsupervised image-to-image translation under
the assumption that images from both domains consist of a
shared latent space. The model uses weight sharing between
the layers of generators and discriminators to learn the joint
distribution of data. MUNIT [6] extends this architecture
to handle multiple styles using the disentanglement princi-
ple to obtain content and style code separately. The content
code from the image is combined with a random style code
from cross-domains to obtain diverse styled images. How-
ever, these GAN-based methods produce visually appealing
image translations but sometimes fail to maintain semantic
consistency between source and translated image especially
given large number of features. In certain domains such as
remote sensing as shown in Fig. 2, CUT [18] still suffers
from the problem of hallucination.

2.3. Synthetic-to-real translation

The task of translating synthetic images to realistic while
preserving semantic consistency has been an active research
topic with multiple applications such as semantic segmenta-
tion, stereo matching and pseudo label learning. A straight-
forward approach relies on auxiliary information which is
extracted from a task network to track changes in the source
and target domains. CyCADA [4] leverages a method that
preserves semantic consistency by constraining on a cycle
consistent task-loss. It uses an additional loss which tracks
the discrepancy between segmentation maps predicted by a
pre-trained segmentation network from the generated im-
ages and the ground truth maps. Chen et al. [2] extend
the method further by incorporating depth maps. Semantic-
aware Grad-GAN [10] introduces a soft gradient-sensitive
objective and a semantic aware discriminator for domain
adaptation of virtual to real urban scenarios. To address al-
terations affecting object boundaries in generated images,
their method involves applying the Sobel filter to both
the image and its corresponding semantic map for devia-
tion tracking. StereoGAN [15] is specifically designed for
the task of translating synthetic images to realistic domain
while maintaining the stereo constraints. It utilizes a Cycle-
GAN for image translation and a DispNet [16] for disparity
estimation. SDA [11] utilizes the spatial feature transform
to fuse features of edge maps with source images. Differ-
ent than the previous works, Secogan [8] utilized content
disentanglement architecture from MUNIT for translating
synthetic images of autonomous driving datasets to realistic
domain. Instead of relying on a task network, it performs
content disentanglement by employing fixed style codes in
the generator, making the model computationally effective
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I = {(xl, xr, xd)d, xb, sa, sb}

{(xl, xr, xd)a, (xel, xer)a, xb, xeb, sa, sb}

Figure 5. Illustration of the GAN-based model architecture featur-
ing multiple loss functions. The design incorporates a combination
of adversarial, reconstruction, cycle and warping losses. Adversar-
ial loss promotes realistic image generation, while reconstruction
loss ensures faithful reproduction of input data, cycle loss enforces
the correct mapping between domains and warping loss enforces
geometrical stereo constraints.

while preserving semantic consistency.
The task of translating images to a realistic style while

maintaining the content structure for stereo matching is a
dual optimization task. Although the existing networks ad-
dress this issue, they suffer when applied to remote sensing
images due to large baselines (which implies more occlu-
sion), different acquisition times for left and right images,
and city growing. The models developed are predominantly
applied in the field of autonomous driving and struggle with
achieving domain generalisation. Another challenge is the
training of existing models tends to become computation-
ally expensive, as it is a combination of two deep learning
networks, one for image translation and the latter for stereo
matching. The number of parameters required for training
is high and can slow the training process. We address both
of the above concerns in our work by employing a single
edge-aware image translation GAN model trained addition-
ally with warping loss to enforce the stereo constraints.

3. Method
We carry out the translation of synthetic to realistic domain
images under the assumption that both domains share uni-
versal features that describe the elements in the scene (such
as buildings, roads, vegetation), as well as distinctive fea-
tures specific to the particular domain, focusing on visual
attributes like appearance or style.

Given a synthetic left-right-disparity tuple
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Figure 6. Comparison of image translations: The first row showcases original synthetic images, the second row presents images translated
using StereoGAN, and the third row exhibits images translated using our SyntStereo2Real.

(xl, xr, xd)a ∈ Xa denoting the stereo pair of left
and right image with its corresponding disparity for source
domain, a real image xb ∈ Xb representing the target
domain, and two randomly sampled style codes sa, sb
for each domain, our model synthesizes a realistic stereo
matched pair of the synthetic image.

Our work draws inspiration from MUNIT [6] and Seco-
gan [8] to learn disentangled representations from two do-
mains without supervision. Similar to [6], our translation
model consists of an autoencoder (encoder E and decoder
G) as a generator for both domains. The encoder factor-
izes each input into latent content code ci(i = a, b), where
ci = E(xi). Style code is initialized before the training
using normal distribution as si = (γi, βi) [8], for each do-
main and remains constant during the training. Here γi and
βi represents the mean and standard deviation of the normal
distribution. Edge maps of the corresponding input images
are obtained from the Sobel operator xei = SO(xi) and are
given as additional input to preserve structural information.
The encoder generates the latent edge code ei = E(xei)
from the edge maps. The edge code is added to the content
code as content-edge code cei = ci + ei and is provided as
an input to the decoder as shown in Fig. 3. The decoder gen-
erates the output image by swapping the content and style
codes. The discriminator distinguishes the original image to
the generated image by adversarial training. Since we have
a real and synthetic domain, we have two discriminators DA

and DB .
Multiple losses help in constraining and generating im-

ages in a meaningful manner in GAN based networks. Fig-
ure 5 shows an overview of the losses used in the training
of the model. A reconstruction loss:

Laa
rec(E,G) = Exa∼Xa

∥G(E(xa), sa)− xa∥1, (1)

ensures that the model generates accurate reconstruction of
images after content disentanglement.

In image-to-image translation, it is essential that the gen-
erated images in the target domain are not only realistic but
also faithfully represent the original content. Cycle consis-
tency loss [29]:

Laba
cycle(E,G) = Exa∼Xa

∥G(E(xab), sa)− xa∥1, (2)

enforces this constraint by calculating the loss between
original image and the transformation of original image to
another domain (xab), and transform it back again to origi-
nal domain (xaba).

Since we use a GAN based approach to train the model,
we use an adversarial loss:

La
adv(E,G,Da) =Exa∼Xa logDa(p(xa)) +

Exb∼Xb
log(1−Da(p(xba)),

(3)

which matches the data distribution of translated images to
the distribution of target domain. The adversarial loss is
employed by both the discriminator and generator, whereas
the other mentioned loss exclusively guides the training of
the generator. Since we use a patch based discriminator, the
p in Eq. (3) refers to random patches of image.
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Considering the images from one domain are syntheti-
cally generated, we assume to have access to additional in-
formation like ground truth labels, disparity maps, and seg-
mentation masks. Warping loss as an additional constraint
can be a useful addition, especially in tasks where the im-
ages are later used for training disparity estimation models.
We compute the warping loss as

Lwarp = λ1 · L1(G(E(xra), sb)

−W (G(E(xla), sb), xd)

+ λ2 · (1− SSIM(G(E(xra), sb)

−W (G(E(xla), sb), xd))),

(4)

which compares the warped left image W (xlab
, xd), which

has undergone translation, and the right image after transla-
tion xrab

. We use a combination of L1 loss and SSIM loss
for calculating the warping loss.

The corresponding losses from other domain Lbb
rec,

Lbab
cycle and Lb

adv are calculated in a similar manner. There-
fore, the overall loss function for the generator is given by

min
E,G

max
Da,Db

L(E,G,Da, Db) =λ3 · (Laa
rec + Lbb

rec) +

λ4 · (Laba
cyc + Lbab

cyc) +

λ5 · (La
adv + Lb

adv) +

Lwarp.

(5)

4. Experiments
4.1. Network Architecture and Training

The autoencoder with a pair of encoder and decoder for gen-
erator is based on MUNIT architecture [6]. The discrim-
inators are implemented using PatchGAN [7] architecture.
The input to the network consists of images from both the
domains and their corresponding edge maps and the output
consists of translated images of both domains with the style
and content interchanged. We recommend the use of So-
bel operator to obtain edge maps due to its simplicity and
effectiveness, which was compared in [11] with other exist-
ing edge detectors. The Sobel operator employs two 3 × 3
convolution masks: one for estimating the gradient in the
x-direction and the other for the y-direction. This design
aligns effectively with CUDA architecture, allowing indi-
vidual threads to apply the 3 × 3 convolution masks to their
assigned pixel and its neighboring pixels in the image.

The network model is implemented using PyTorch [19]
and the training is carried out for 100 epochs with a batch
size of 4. The hyperparameter values for λ1, λ2, λ3, λ4

and λ5 in Eq. (4) and Eq. (5) are set to 1, 1, 0.8, 10 and 10
respectively. We use stochastic mini batch gradient descent
with Adam optimizer [9]. Beta coefficients of Adam are set
to 0.5 and 0.999 respectively.

(a) Reference

(b) Ground Truth

(c) Baseline

(d) StereoGAN

(e) SyntStereo2Real(ours)

Figure 7. Results of disparity estimation from the AANet for the
KITTI 2015 dataset. Three models are computed for the image
shown in (a) RGB reference image, (b) Ground truth, (c) Model
trained on Driving (baseline), (d) Model trained on Driving trans-
lated using StereoGAN (e) Model trained on Driving translated
using SyntStereo2Real (ours).

4.2. Datasets

We use two sets of datasets from different application areas
to study the generalization capabilities of SyntStereo2Real
architecture. For remote sensing data, we use SyntCi-
ties dataset [20] for synthetic data and Urban semantic 3D
dataset [1] for real domain data. SyntCities is a large dataset
set consisting of synthetically generated images of aerial
imagery. It is specially developed to train deep learning net-
works for disparity estimation, providing accurate disparity
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Datasets Metrics Baseline StereoGAN SyntStereo2Real(ours)

SyntCities MAD ↓ 1.801 1.520 1.319
to US3D 3px-acc% ↑ 63.097 66.765 69.906

1px-acc% ↑ 30.790 33.619 35.928

Driving MAD ↓ 0.721 0.626 0.575
to KITTI 3px-acc% ↑ 88.871 89.646 91.373

1px-acc% ↑ 61.832 64.271 65.892

Table 1. Comparison of metrics for SyntCities to US3D and Driving to KITTI. The table illustrates the performance across datasets,
showcasing results for the SyntCities (baseline), StereoGAN, and SyntStereo2Real (ours). Bold values highlight superior performance in
MAD reduction and accuracy enhancement.

(a) Reference (b) GT (c) Baseline (d) StereoGAN (e) SyntStereo2Real(ours)

Figure 8. Results of disparity estimation from the AANet for the US3D dataset. Three models are computed for the image shown in
(a) RGB reference image, (b) Ground truth, (c) Model trained on SyntCities (Baseline), (d) Model trained on SyntCities translated using
StereoGAN (e) Model trained on SyntCities translated using SyntStereo2Real (ours).

Model nparams

StereoGAN 54M
SyntStereo2Real(ours) 11M

Table 2. Comparison of the number of learnable parameters to
train model between StereoGAN and SyntStereo2real models.

ground truth and different baselines. It consists of 8800
pairs of images resembling architectures of three cities:
New York, Paris and Venice, with size of each image being
1024 × 1024. We use 1000 tuples of images taken evenly
from all the three cities for training. The Urban3D (US3D)
dataset consists of satellite images taken from WorldView3
mission and ground truth disparities are derived from aerial
LiDAR data. In this dataset, a significant portion of the
images primarily consists of vegetation with limited urban
content. To address this, we filtered images based on label
data, retaining only those images that contain a minimum of
15% building-related content. We randomly selected 1000
samples each of size 1024× 1024 for training.

For autonomous driving data, we use the Driving
dataset from SceneFlow [16] for synthetic domain and
KITTI2015 [17] dataset in real domain. We use the com-
plete dataset from Driving consisting of 4400 images of
size 540 × 960 and the 160 training images each of size

385 × 1242 provided by KITTI2015 benchmark. We re-
size the images to 512× 512 for remote sensing dataset and
256 × 512 for autonomous driving dataset during training
due to memory and time constraints.

4.3. Evaluation metrics

We compare the two models based on performance of stereo
matching and number of learnable parameters (compactness
of the model architecture) required to train the model.

We acquire translated images and assess their perfor-
mance on disparity estimation by training them on a dis-
parity network. Specifically, we employ AANet [24] for the
training and evaluation of estimation. In case of SyntCities
to US3D we trained the model for 400 epochs and Driving
to KITTI 2015 for 120 epochs, as this is a larger dataset. In
both the cases we used a batch size of 20 and the maximum
disparity was set to 192. To evaluate the predicted disparity
maps, we removed the areas where the ground truth is not
defined. 60 samples from US3D were used for testing and
40 for KITTI 2015 (no overlapping with the training sam-
ples). The cases where the original data (before translation)
is taken as input is named as baseline.

Given the scarcity of models specializing in synthetic-to-
real domain adaptation with stereo constraints, we conduct
a comparative analysis of our model against StereoGAN.
The results are given in Tab. 1. We use MAD (Median Ab-
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Metrics No Edge With Edge With Disp With Edge
and No Disp and Disp

MAD ↓ 1.779 1.755 1.646 1.319
3px-acc% ↑ 62.670 62.887 63.847 69.906
1px-acc% ↑ 31.503 31.853 32.600 35.929

Table 3. Ablation studies. Here the Edge refers to the addition of edge information along with input image and Disp refers to the additional
use of warping loss to enforce disparity constraints.

solute Deviation) [5], 3px accuracy percentage and 1px ac-
curacy percentage for evaluation of stereo matching. MAD
is a robust statistic, being resilient to outliers in a dataset
compared to standard deviation because it is calculated by
obtaining the median of the absolute difference of pixels
and not the squared mean as in standard deviation. 3px ac-
curacy represents the percentage of pixels in the disparity
map for which the estimated disparity is within a range of
±3 pixels from the ground truth disparity and 1px refers to
the same metric but for a 1 pixel range.

4.4. Quantitative Results

As indicated in Tab. 1, our approach demonstrates enhance-
ments, showcasing a notable improvement with respect to
StereoGAN of +3.14% in 3px accuracy and +2.30% in 1px
accuracy for remote sensing images. Besides, the model
exhibits improvements of +1.727% in 3px accuracy and
+1.621% in 1px accuracy for autonomous driving datasets.
Please note that the ground truth in the KITTI dataset is
sparse and can not be evaluated for all the pixels. Despite
that, we can visually compare the reconstruction capabili-
ties for not labelled pixels. The disparity maps illustrated
in Fig. 7 and Fig. 8 highlights a more complete prediction
without empty regions. Comparing the number of parame-
ters in Tab. 2, our model has a significantly smaller number
of learnable parameters for training, making it ideal for ap-
plications with limited storage and processing capabilities.

4.5. Qualitative Results

Figure 6 displays the results of translation of StereoGAN
and our network SyntStereo2Real. The main challenge in
translating in remote sensing images are maintaining the
structural information for all resolution of images. Stere-
oGAN, while proficient in certain aspects of disparity esti-
mation, fails in the translation of shadows by hallucinating
green patches instead of building shadows. Our model ef-
fectively captures and reproduces the content such as archi-
tectural details of building rooftops, bridges and roads, im-
proving shadow handling, and preserving epipolar geome-
try simultaneously. Our method shows consistent prediction
of disparity maps for complete objects without empty gaps
or unclear boundaries. We also demonstrate our approach
performs well in different application domains beyond au-

tonomous driving.

4.6. Ablation Studies

In the Tab. 3, various configurations of the model are eval-
uated based on the presence or absence of edge informa-
tion and warping loss for disparity. Firstly, the inclusion of
edge information results in a decrease in the Mean Absolute
Deviation (MAD), indicating improved results in predicting
deviations from the ground truth. This decrease, coupled
with a corresponding increase in both 3px accuracy and 1px
accuracy indicates the importance of addition of edge maps.
Similarly, addition of warping loss helps in improving the
accuracy and MAD of the model significantly. We also ex-
perimented incorporating edges using Spatial feature trans-
form (SFT), where the model learns the weight of edges
along with image. This network produced images with
strong focus on edges and lost other details making the data
unsuitable for training. Thus the the ablation study demon-
strates that incorporating both edge information and dispar-
ity significantly improves the model’s performance across
all evaluated metrics for the used datasets.

5. Conclusion

In this paper, we propose a light-weight edge based GAN
model designed for unpaired image-to-image translation of
synthetic-to-real data, while adhering to stereo constraints.
Our approach leverages the importance of edge maps along
with input images to retain the structural information while
translation. Additionally, we incorporate a warping loss to
maintain the accuracy of disparities on translated images.
The integration of these two crucial elements yields state-
of-the-art results in a single synthetic to real image transla-
tion network.
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