Chen, Hao und Gläser, Philipp und Hu, Xuanyu und Willner, Konrad und Zheng, Yongjie und Damme, Friedrich und Bruzzone, Lorenzo und Oberst, J. (2024) ELunarDTMNet: Efficient reconstruction of high-resolution lunar DTM from single-view orbiter images. IEEE Transactions on Geoscience and Remote Sensing. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/TGRS.2024.3501153. ISSN 0196-2892.
PDF
- Verlagsversion (veröffentlichte Fassung)
44MB |
Offizielle URL: https://ieeexplore.ieee.org/document/10755220
Kurzfassung
High-resolution Digital Terrain Models (DTMs) are critical for supporting planetary exploration missions and advancing scientific research. Recently, Deep Learning (DL) techniques have been applied to reconstruct high-resolution DTMs from single-view orbiter optical images, particularly for the Moon. However, DL-based methods face challenges in retrieving high-quality multi-scale topographic features, especially in regions with irregular terrains or significant relief. Additionally, their generalization capability across diverse datasets is rarely evaluated. In this paper, we propose an efficient DL-based single-view method with a coarse-resolution DTM as a constraint for high-quality lunar DTM reconstruction, named ELunarDTMNet. This approach introduces a hierarchical transformer-based backbone with a residual-connected mechanism, specifically designed to capture and integrate multi-scale features from single-view lunar images, thereby enhancing prediction accuracy. Meanwhile, given the diverse and complex surface relief, new elevation normalization strategies are proposed to preserve terrain feature contrast while accommodating different elevation distributions. Our method performs well on diverse lunar landscapes with various topographic features and elevation changes. It outperforms existing DL-based methods in accuracy and detail, effectively addressing their encountered challenges. Moreover, the proposed method achieves effective resolutions similar to those of the Shape-From-Shading technique for subtle-scale terrain retrieval, but with enhanced elevation accuracy, illumination robustness, and approximately 850 times faster processing speed. Trained with the Lunar Reconnaissance Orbiter (LRO) Narrow Angle Camera (NAC) images, our model shows superior performance on other high-resolution lunar orbiter images, such as Chang’E-2 imagery.
elib-URL des Eintrags: | https://elib.dlr.de/206540/ | ||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||||||||||||||
Titel: | ELunarDTMNet: Efficient reconstruction of high-resolution lunar DTM from single-view orbiter images | ||||||||||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||||||||||
Datum: | 19 November 2024 | ||||||||||||||||||||||||||||||||||||
Erschienen in: | IEEE Transactions on Geoscience and Remote Sensing | ||||||||||||||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||||||||||||||
DOI: | 10.1109/TGRS.2024.3501153 | ||||||||||||||||||||||||||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||||||||||||||||||
ISSN: | 0196-2892 | ||||||||||||||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||||||||||||||
Stichwörter: | Deep learning ,High-resolution, Lunar DTM reconstruction, Lunar Reconnaissance Orbiter Narrow Angle Camera, Single-view | ||||||||||||||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||||||||||||||
HGF - Programmthema: | Erforschung des Weltraums | ||||||||||||||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EW - Erforschung des Weltraums | ||||||||||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Exploration des Sonnensystems | ||||||||||||||||||||||||||||||||||||
Standort: | Berlin-Adlershof | ||||||||||||||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Planetenforschung > Planetengeodäsie | ||||||||||||||||||||||||||||||||||||
Hinterlegt von: | Willner, Dr Konrad | ||||||||||||||||||||||||||||||||||||
Hinterlegt am: | 26 Nov 2024 09:30 | ||||||||||||||||||||||||||||||||||||
Letzte Änderung: | 29 Nov 2024 12:26 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags