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Abstract—High-resolution Digital Terrain Models (DTMs) are
critical for supporting planetary exploration missions and ad-
vancing scientific research. Recently, Deep Learning (DL) tech-
niques have been applied to reconstruct high-resolution DTMs
from single-view orbiter optical images, particularly for the
Moon. However, DL-based methods face challenges in retriev-
ing high-quality multi-scale topographic features, especially in
regions with irregular terrains or significant relief. Additionally,
their generalization capability across diverse datasets is rarely
evaluated. In this paper, we propose an efficient DL-based single-
view method with a coarse-resolution DTM as a constraint for
high-quality lunar DTM reconstruction, named ELunarDTMNet.
This approach introduces a hierarchical transformer-based back-
bone with a residual-connected mechanism, specifically designed
to capture and integrate multi-scale features from single-view
lunar images, thereby enhancing prediction accuracy. Meanwhile,
given the diverse and complex surface relief, new elevation
normalization strategies are proposed to preserve terrain feature
contrast while accommodating different elevation distributions.
Our method performs well on diverse lunar landscapes with var-
ious topographic features and elevation changes. It outperforms
existing DL-based methods in accuracy and detail, effectively
addressing their encountered challenges. Moreover, the proposed
method achieves effective resolutions similar to those of the
Shape-From-Shading technique for subtle-scale terrain retrieval,
but with enhanced elevation accuracy, illumination robustness,
and approximately 850 times faster processing speed. Trained
with the Lunar Reconnaissance Orbiter (LRO) Narrow Angle
Camera (NAC) images, our model shows superior performance
on other high-resolution lunar orbiter images, such as Chang’E-2
imagery.

Index Terms—Deep learning, High-resolution, Lunar DTM
reconstruction, Lunar Reconnaissance Orbiter Narrow Angle
Camera, Single-view.
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I. INTRODUCTION

H IGH-RESOLUTION Digital Terrain Models (DTMs)
derived from optical imaging data of the lunar surface

acquired by orbiting spacecraft are critical for interpreting the
Moon. They serve as essential tools for scientific analysis of
surface morphology, geology, and resource [1]–[3], as well
as for supporting engineering applications such as mission
planning [4], and high-precision landing site selection [5], [6].

Previously, high-resolution DTMs of the planetary surface
have primarily been produced using Stereo-PhotoGrammetry
(SPG) [7] and Shape-From-Shading (SFS) [8] techniques. SPG
is a well-established method for accurately determining topo-
graphic models, which relies on geometric principles involving
images taken from stereo or multiple viewpoints [9]–[11].
Despite its reliability, the photogrammetric matching process
of stereo pairs may produce artifacts [9], [12], [13]. The
Narrow Angle Camera (NAC) onboard the Lunar Reconnais-
sance Orbiter (LRO) has captured the highest resolution and
quality orbital images of the lunar surface to date [14]. While
these images offer almost complete coverage of the lunar
surface, suitable stereo pairs for SPG terrain modeling are still
limited to small areas, as NAC does not have a built-in stereo
capability [14]. In contrast, SFS can deduce shape information
by estimating slope from a single image, with improved
performance when constrained by a coarse-resolution DTM
[15]. The technique can eliminate stereo artifacts and achieve
DTMs with pixel-level resolution. However, SFS methods can
be time-consuming for iterations to converge, and they require
a priori knowledge on the reflection parameters of the surface
[16]. They also exhibit reduced accuracy in the cross-sun
direction [8], [17].

In recent years, the application of Deep Learning (DL)
techniques to the reconstruction of high-resolution planetary
DTMs from single-view orbiter images has shown substan-
tial progress, as a valuable complement to SPG and SFS
[18]–[20]. They utilize existing regional high-quality mapping
products, such as SPG-derived high-resolution DTMs and
Ortho-Rectified Images (ORIs), to train the model and learn
the relationship between images and DTMs [21]. In certain
studies, coarse-resolution DTMs are incorporated as model
input to optimize model convergence and improve perfor-
mance [17]. The approaches typically rely on the encoder-
decoder framework. The encoder serves as the feature extractor
to extract multi-scale representations from fine to coarse
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resolution, while the decoder is responsible for recovering
the spatial resolution and estimating the pixel-level resolution
DTM. These methods have demonstrated their effectiveness
in automatically reconstructing 3D topography without the
requirement of prior knowledge of camera models, orbiter
state, or surface properties, offering advantageous processing
speed [21], [22].

While various DL-based strategies have been proposed to
improve the model performance, the dilemma of achieving
high-quality DTM reconstruction persists for all strategies,
especially for terrain features with irregular shapes and regions
with significant elevation relief [17], [23]. Despite the encoder-
decoder framework maintaining the size of the predicted DTM
consistent with the input image, DL methods still encounter
limitations in capturing subtle and fine-scale details, often re-
sulting in lower effective resolution compared to SFS methods
[17], [21]. The medium- and large-scale topographical fea-
tures exhibit some discrepancies compared to the topographic
models derived from SPG methods [17], [24]. Besides, it
is noteworthy that some strategies, such as the co-alignment
technique used to align predicted DTMs with coarse-resolution
reference DTMs for improved elevation accuracy [17], may
require additional time. This can significantly exceed the time
needed for predicting the DTM itself [17], [25].

In this paper, we present an efficient DL-based approach
to lunar DTM reconstruction with a single high-resolution
optical image and a coarse-resolution DTM as input (called
ELunarDTMNet), demonstrating good performance even in
regions with irregular terrain features and significant relief. In
contrast to the single-branch encoder module, which processes
different inputs within a unified backbone, the dual-branch
encoder module, as used in DLunarDTMNet [17], allows
for tailored backbones and strategies based on the specific
characteristics of images and DTMs. This results in improved
accuracy for the reconstructed DTM mosaics, as shown in
Fig. 1. Therefore, the proposed method consists of three
essential components: a dual-branch encoder module, a fusion
module, and a decoder module, trained using a hybrid loss
function. Our method achieves high-quality retrieval of multi-
scale terrain features while maintaining fast DTM mosaic
processing speed, with strong generalization capability across
diverse types of high-resolution lunar optical imagery. The
contributions of the proposed method can be summarized as
follows:

1) Multi-scale feature extraction and fusion: The lunar sur-
face displays various topographic features with varying
scales. Unlike previous approaches that typically utilized
Convolutional Neural Network (CNN)-based backbones
with hierarchical architectures to extract these features
from images, we incorporate a hierarchical transformer-
based backbone into the image branch of the dual-encoder
module to improve the ability to capture features across
scales, from local to global. To the best of our knowledge,
this represents the first application of a transformer-based
backbone to lunar DTM reconstruction. Additionally, a
novel residual-connected mechanism is devised to effec-
tively integrate these multi-scale features in the decoder
module to improve prediction accuracy.

Fig. 1. Reconstruction errors of DTMs using single-branch or dual-branch
encoder modules to process different inputs, based on the proposed ELu-
narDTMNet and DLunarDTMNet, illustrated with an example centered at
(334.27°W, 27.96°N).

2) New normalization strategies for lunar surface eleva-
tions: Considering the limitations of a narrow normal-
ization range in preserving the contrast of terrain undu-
lations, an elevation-statistics-based DTM normalization
strategy is proposed to determine a suitable normalization
range, which facilitates the preservation of elevation
disparities, thereby contributing to a more faithful and
detailed reconstruction result. Besides, the varied lunar
topographies lead to diverse elevation distributions. To
guide the network in learning useful information un-
affected by variations, we propose a mean-normalized
loss function to penalize vertical discrepancies based on
a uniform mean scale, rather than relying on varying
statistics.

3) Simplified DTM mosaic process: DTM mosaicking is an
essential step for generating large-scale DTMs. The pro-
posed ELunarDTMNet generates high-resolution DTMs
through end-to-end processing, eliminating the need for
multiple networks to incrementally produce DTM mo-
saics from coarse to high resolution. Besides, our method
can derive high-quality mosaics without relying on the
time-consuming co-alignment technique to enhance ele-
vation accuracy.

II. RELATED WORKS

Over the past decades, SPG and SFS methods have been
widely applied to planetary DTM reconstruction, demonstrat-
ing significant advancements [7]–[11], [16], [26]–[28]. This
section will specifically focus on the recently developed DL-
based single-view methods.
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The Martian surface was the initial focal target for applying
single-view DL methods to planetary DTM reconstruction.
Chen et al. [18], [29] were pioneers in employing CNN archi-
tecture for the 3D reconstruction from single Context Camera
(CTX) imagery. Their method yielded promising results, par-
ticularly in capturing topographic features on flat terrains. Tao
et al. [22] adopted a multi-scale architecture (incorporating
coarse-, intermediate-, and fine-scale) to estimate DTMs from
the High Resolution Stereo Camera (HRSC) images, CTX
images, and the High-Resolution Imaging Science Experiment
(HiRISE) images. Tao et al. [25] introduced a coarse-to-
fine strategy to sequentially reconstruct multi-scale DTMs,
utilizing coarser-scale predicted DTMs as constraints to es-
timate the higher-scale DTMs. Cao et al. [30] evaluated the
generalization of their method by using HiRISE images with
a higher resolution than those in the training set. Chen et al.
[21] applied the single-view DL method for estimating DTMs
on the lunar surface. Their approach is distinctive in that
it incorporates coarse-resolution DTMs in conjunction with
images as input for model training, leading to an enhancement
in the elevation accuracy. Nevertheless, the input images and
DTMs exhibit significant disparities in terms of resolution and
the types of surface information they represent. To alleviate
this issue, LDEMGAN implemented a two-step approach,
similar to the coarse-to-fine strategy in [25], utilizing two
identical CNN networks for DTM prediction [23]. On the
other hand, DLunarDTMNet devised a pure CNN-based dual-
branch encoder module to independently process input images
and DTMs [17]. This approach allows for the customization
of a suitable feature extraction architecture for both elements
within a single network, thereby eliminating the need for
multiple networks. DLunarDTMNet [17] and MADNet [24]
were applied to generate large-area, high-resolution DTMs
of the lunar surface. Muller et al. [31] applied the method
proposed by Tao et al. [25] to generate DTMs for candidate
landing sites in the lunar South Pole region. However, their
results indicate that further refinement may still be required to
achieve high-quality retrieval of features ranging from subtle
small-scale details (similar to the SFS method) to large-scale
components (comparable to the SPG method).

Training a network requires a well-defined loss function
to guide the learning process. Most single-view DTM re-
construction methods employed a hybrid loss function that
incorporates various types of loss terms [23]. These terms
typically include penalizing the differences between predicted
DTMs and their ground truth counterparts in the vertical
domain, as well as addressing the discrepancies of high-
frequency details in the horizontal domain [17]. The mean
absolute error (MAE), mean squared error (MSE), or their
variants, are commonly used to quantify and penalize vertical
discrepancies [21]–[23]. Nevertheless, the overall elevation of
the planetary topography may vary significantly from one
area to another. Further, the amplitude and pattern of the
topographic variations may also be locally distinct. These
variations may pose challenges for MAE or MSE-related loss
functions in guiding the training process to effectively learn
and adapt to the diverse topographic features.

Besides, single-view image-based DTM reconstruction

lacks absolute depth information. SFS methods integrate
coarse-resolution DTMs, e.g., derived from SPG and laser
altimetry, to provide the absolute depth information [8], [15].
DL methods typically process DTMs by normalizing them to
a fixed dimensionless scale, such as [0, 1] using the max-min
normalization strategy [19], [22], [23]. This process enhances
the effectiveness and fast convergence of the models. However,
the unprocessed DTMs often exhibit elevation differences
greater than this normalized scale. A narrow normalization
range would limit the contrast of the terrain undulations, which
is detrimental to the recovery of terrain details, particularly
those at subtle small-scale levels. Furthermore, to recover the
predicted DTMs from the normalized scale to their original
scale with absolute depth information, DLunarDTMNet and
MADNet utilized the co-alignment technique, aligning the
predicted DTMs with the coarse-resolution reference [17],
[24]. While this technique can improve elevation accuracy
and yield better results in terrains with small elevational
differences, its effectiveness diminishes for seamless DTM
mosaic generation in areas with significant relief [17].

III. METHOD

Fig. 2 illustrates the framework of our proposed ELu-
narDTMNet for pixel-level resolution DTM reconstruc-
tion of the lunar surface. Our network utilizes a high-
resolution optical image captured by an orbiter and a coarse-
resolution DTM as input, with a photogrammetric-derived
high-resolution DTM serving as the ground truth for train-
ing and validation. The process of DTM normalization and
image pre-processing is detailed in Section III-A. The ELu-
narDTMNet consists of three main components: a dual-branch
encoder module based on hierarchical transformer blocks for
images and Convolutional blocks (Conv blocks) for DTMs, a
fusion module, and a residual-connected decoder module, as
described in Section III-B. In Section III-C, we introduce a
hybrid loss function that incorporates terms targeting the errors
in both the vertical and horizontal domains. Besides, the steps
for deriving the large-sized DTM mosaics from the small-sized
predicted DTM tiles are presented in Section III-D.

A. DTM normalization and image pre-processing

1) Elevation-statistics-based DTM normalization: The
max-min normalization strategy might oversimplify the vari-
ations by stretching all values into a narrow range (Fig. 3a),
potentially obscuring subtle, but crucial, topographic details
with less pronounced elevation differences. Given the wide
range of elevation differences among the samples in the
training set, all exceeding 1 m (Fig. 3b), we propose an
elevation-statistics-based normalization strategy to determine
the normalization range. The mean value of the elevation
differences within the training dataset provides a measure of
the average tendency of topographic relief. Considering the
substantial coverage of flat areas compared to regions with
significant elevation differences, we derive the mean value
based on the inverse of the elevation difference to determine
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Fig. 2. The framework of our proposed ELunarDTMNet for pixel-level resolution DTM reconstruction. The CNN-based DTM branch is designed to process
input DTMs, while the Swin-T-based image branch is designed to process input images. Swin-T: Swin Transformer, Res-D: Residual-connected Decoder, H:
image height, W: image width.
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Fig. 3. DTM normalization strategy. (a) Elevation distribution of a DTM
sample, with normalized range determined by the max-min strategy [0, 1] and
our strategy [0, 50]. (b) Distribution of elevation differences among samples
in the training set, all of which exceed 1 m.

the normalization range, which is equivalent to increasing the
weight of flat areas in determining this value:

NR =
n(∑n

p=1
1

∆Zp

) , (1)

Znorm,p = NR ·
(
Zp −min(Zp)

∆Zp

)
, (2)

where n denotes the number of DTM samples in the dataset.
Zp refers to the original elevation value of sample p, ∆Zp

represents the elevation difference in sample p. NR is the
normalized range. Znorm,p represents the normalized value
of sample p. By using the actual elevation difference to
determine the normalization range, our approach can increase
the sensitivity and representations of subtle terrain features.

2) Image pre-processing: To pre-process input images, we
apply the max-min normalization strategy to scale the gray val-
ues to the range [0, 1], as described by DLunarDTMNet [17].
As presented in Section III-B1, one of the encoder branches in
the network, designed specifically for image feature extraction,
is primarily based on the Swin-T architecture. Instead of
directly processing images as input, the Swin-T architecture
employs a patch partition operation to split the input images
into non-overlapping 4 × 4 patches [32]. These patches are

subsequently concatenated into one volume. Following this,
the linear embedding step utilizes a convolution operation to
project this volume into a higher channel dimension [32]. In
this study, we considered 192 channels; the resulting higher-
dimension volume (H/4 × W/4 × 192) is then fed into the
Swin-T blocks to extract multi-scale features, as shown in Fig.
4.

B. Network architecture

1) Dual-encoder module for input image and DTM: Given
the different data types of high-resolution optical orbital
images, which display fine textures of the surface varia-
tions by image intensity, and coarse-resolution DTMs, which
provide direct high-precision (albeit relatively sparse) eleva-
tion measurements, this study adopts two separate encoder
branches with different design model architectures as feature
extractors. The images showcase a wide range of topographic
features, from regular to irregular, at various scales, such
as craters with diameters ranging from several meters to
kilometers. Previous approaches to planetary DTM estimation
relied on CNN-based backbones, such as ResNet [21], [33],
and DenseNet [22], [34], for multi-scale feature extraction.
The advent of transformer architectures in computer vision
offers a promising alternative to overcome CNN limitations in
capturing global information from the input image [35], [36].
Unlike CNNs, which process data locally and sequentially,
the attention mechanism of transformers makes the network
simultaneously attend to all positions when processing an
image [37]. An improved hierarchical transformer, the so-
called “Swin Transformer (Swin-T)”, demonstrates a notable
proficiency in capturing features from a local to global scale
[32], [38], aligning well with the multi-scale characteristic of
lunar surface features.

We incorporate the Swin-T backbone into the image en-
coder branch to extract multi-scale terrain features. Swin-T
considers four distinct multi-scale feature map sizes, similar
to the five multi-scale feature map sizes in ResNet utilized
by DLunarDTMNet [17]. In contrast to DLunarDTMNet, this
study replaces the max-pooling operation and the subsequent
ResNet blocks with Swin-T blocks to construct the encoder
architecture, as illustrated in Fig. 4. Unlike the max-pooling
(Fig. 4c-1) and convolution (Fig. 4c-2) operations used in
ResNet-based backbone to reduce spatial dimension, Swin-T
uses patch merging technique to select elements of the feature
maps at positions with a spacing of 2 in the row and column
directions, forming new patches. Then, all the patches are
concatenated together, increasing the number of channels to
four times, while reducing the width and height resolutions
by half (Fig. 4c-3) [32]. The architecture of stage 1 in ResNet
is preserved to extract local features from the input image.
Its output is directly passed to the decoder module, enhancing
the model’s capability to recover local features, as described
in Section III-B2.

The image-only architecture performs well in capturing 2D
shapes of terrain features but lacks accuracy in elevation for
the DTM estimation task. Inspired by the SFS [15] and DL
[17], [23], [29] methods, which leverage coarse-resolution
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Fig. 4. The architecture of the encoder branch for extracting multi-scale features from high-resolution optical images captured from an orbiter. (a) ResNet-
based architecture from DLunarDTMNet, (b) Swin-T-based architecture introduced in this paper, and (c) spatial dimension reduction methods of ResNet using
max-pooling (1) and convolution with a stride of 2 (2) operations, while Swin-T using patch merging (3). The values depicted on the left side indicate the
output size of each stage. Conv: convolution operation, BN: batch normalization, ReLU: an activation function.

Fig. 5. The architecture of the encoder branch for extracting features from coarse-resolution DTMs.

DTMs as a constraint to enhance performance, we use a
separate encoder branch dedicated to capturing elevation in-
formation from coarse-resolution DTMs. Given that the input
DTM provides limited information compared to images with
detailed textures, the architecture of the DTM encoder branch
consists of only five simple Conv blocks. Each block is
constructed with ‘a convolution layer → a batch normalization
layer → a Rectified Linear Unit (ReLU) activation function’,
as depicted in Fig. 5. Their convolution kernels are 11 × 11,
9 × 9, 7 × 7, 5 × 5, and 3 × 3 pixels in size, respectively.
The stride of the convolution operation in each block is set to
2 to down-sample the spatial dimensions of the feature maps,
creating a hierarchical structure. This ensures that the output
dimensions from each block match those of the image encoder
branch.

2) Fusion module: The dual-encoder module yields two
sets of feature maps: one from the image encoder branch sized
at H/32 × W/32 × 1536, denoted as E5

i , and another from the
DTM branch sized at H/32 × W/32 × 512, denoted as E5

d .
The fusion model is adopted to concatenate the outputs from
the two branches into one volume. Firstly, E5

i and E5
d are

combined into a single H/32 × W/32 × 2048 volume. Then,

a 3 × 3 kernel convolutional layer and a batch normalization
layer are applied to reduce the channel dimensions, resulting
in a new volume (E5) sized at H/32 × W/32 × 1536:

E5 = BN
(
Conv3×3

(
Concate(E5

i , E
5
d)
))

, (3)

where Concate represents the concatenation operation.
The output volume from the fusion module will serve as the

initial input to the decoder module. However, this volume, with
coarse resolution, is primarily suited for capturing abstract or
global features. In contrast to the inherently coarse-resolution
information of the input DTM, the multi-scale features ex-
tracted from the Swin-T-based encoder branch, particularly
those from the earlier stages, are enriched with fine-detailed
features. To facilitate DTM predictions that encompass in-
formation across a wider range of scales, with a particular
emphasis on fine details, a strategic integration operation is
introduced based on our dual-encoder module. This integration
involves establishing direct connections between the output
features from the initial four stages of the image encoder
branch (E4

i , E3
i , E2

i , E1
i ) and their corresponding counterparts

within the decoder module (D2, D3, D4, D5):

Concate
(
Eu

i , D
6−u
)
, (4)

This article has been accepted for publication in IEEE Transactions on Geoscience and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TGRS.2024.3501153

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



7

Fig. 6. The architecture of the decoder module. (a) Illustration of the overall structure, (b) details of decoder block1, and (c) details of subsequent decoder
blocks, where u ranges from 2 to 5. The dash-dot line in (c) represents the residual connection fashion of UPB, while the dashed line represents the residual
connection fashion proposed in this study. ’C’ represents the concatenation operation. ‘+’ represents the addition operation.

where u represents the image encoder stage number, ranging
from 4 to 1.

3) Residual-connected decoder module: The decoder mod-
ule utilizes multi-scale feature maps obtained from the image
encoder branch and the fusion module as input. It gradually
enhances feature resolution while simultaneously reducing the
feature channel dimension through five consecutive blocks
followed by a 3 × 3 kernel convolutional layer and a ReLU
activation function (Fig. 6a). This produces a single-channel
output with pixel-level resolution, matching the size of the
input image, and serving as the predicted DTM. Regarding
the decoder blocks, we incorporate residual connections to
establish short-circuit connections, depicted as dashed lines in
Fig. 6b and Fig. 6c. In contrast to the Up-Projection Blocks
(UPBs) [17], [25], [39], which establish a residual connection
with two convolution operation branches after the concatena-
tion and up-sampling operations (shown by the dash-dot line in
Fig. 6c), we establish a distinct residual connection for outputs
originating from the preceding decoder block (indicated by the
dashed line in Fig. 6c). Specifically, only one branch in UPBs
is preserved to pass the information concatenated from the
previous decoder block and the counterpart from the image
encoder branch. Unlike the Swin-T blocks in the encoder
module, the decoder blocks are positioned closer to the model
output, allowing them to retain a richer array of information
from earlier stages in the network. Therefore, a separate branch
consisting of an up-sampling operation followed by a 5 ×
5 kernel Conv block is designed to more effectively pass
features from the previous decoder block in the network.
These two separate branches form a new type of residual
connection of the decoder module, which can empower the
network to effectively integrate features, ultimately enhancing
the accuracy of our DTM predictions.

C. Hybrid loss function

The datasets, constructed from high-resolution optical im-
ages captured by an orbiter, encompass a wide range of
scenarios, demonstrating significant variations in the shapes
and scales of both regularly and irregularly shaped topograph-
ical features. These variations pose challenges when training
DL models for effective DTM estimation. To address these
challenges and achieve accurate vertical predictions while
capturing well-defined and properly shaped terrain features in
the horizontal domain, we define a hybrid loss function that
guides the model in minimizing the residuals in both domains:

l(z, z∗) = ϕlmn−elev(z, z
∗) + γlgrad(z, z

∗) + λlnorm(z, z∗),
(5)

where z and z∗ represent the ground truth and the predicted
DTMs, respectively. lmn−elev, lgrad, and lnorm are three loss
terms. ϕ, γ, and λ are the related weight parameters.

While the DTM is normalized to a fixed range during
the pre-processing stage, its elevation distribution deviates
significantly from a uniform distribution pattern. This disparity
is illustrated in Fig. 7a, where the mean values of different
DTMs show considerable differences. The mean absolute
error (l1 loss) directly measured from these DTMs is greatly
influenced by the process of finding the average scale of the
scenes [40]. This constitutes a substantial portion of the total
error and impacts the network performance [40]. Motivated by
this, we introduce a mean-normalized loss function (lmn−elev),
measuring the errors on the predicted DTM normalized by the
mean elevation values. The mean-normalized DTMs are with
uniform mean values as displayed in Fig. 7b.

The lmn−elev loss is defined by applying the l1 loss over
the mean-normalized values, i.e.,

z̄ =

m∑
q=1

zq/m; z̄∗ =

m∑
q=1

z∗q/m, (6)
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Fig. 7. Examples of the elevation distribution of DTMs. (a) DTMs normalized
to a fixed range during the pre-processing stage. (b) DTMs further normalized
based on mean elevation values.

lmn−elev(z, z
∗) =

m∑
q=1

|zq/z̄ − z∗q/z̄
∗|/m, (7)

where zq represents the pixel elevation value in the ground
truth, z∗q is the corresponding one in the predicted DTM, and
m is the number of pixels in the DTM. A small offset can be
added when the dataset contains samples with z̄ = 0.

The last two terms in Eq. (5) serve to penalize errors in the
horizontal domain. As presented in DLunarDTMNet, lgrad, is
the l1 loss defined over the gradient of the predicted DTM
and the ground truth, aimed at improving the accuracy of
terrain detail prediction. The third loss term, lnorm, measures
the angle between the surface normals of the predicted DTM
and ground truth, enhancing sensitivity to small surface undu-
lations [17].

D. DTM mosaic generation

To construct large-sized DTM mosaics from small-sized
predicted tiles, three essential steps are required: scale re-
covery, projection assignment, and DTM mosaicking [19],
[21], [22], [25]. Due to the improved performance in multi-
scale terrain feature reconstruction and elevation recovery, our
approach achieves seamless and high-quality DTM mosaick-
ing with direct scale recovery. This is accomplished by a
straightforward application of the inverse transformation of
DTM normalization (as presented in Eq. (2); Section III-A1):

Zsr = Zpred · (max(Z)−min(Z)) /NR+min(Z), (8)

where Zsr denotes the scale recovered DTM, and Zpred

refers to the predicted DTM. Z serves as the reference DTM,
supplying both real scale information and projection details

Fig. 8. The distribution of SPG-derived NAC products released on LROC
PDS within +/- 60° longitude. The sparse red pixels indicate the coverage
area of these products, while the gray background represents the SLDEM.

for projection assignment. After recovering both the real scale
and the projection information, the small-sized DTM tiles are
integrated into a contiguous DTM mosaic for the entire large-
sized orbiter imagery using the dem mosaic tool provided in
the Ames Stereo Pipeline [26].

IV. DATASETS AND IMPLEMENTATION DETAILS

A. Training and validation Datasets

The NAC onboard LRO is a highly advanced system de-
signed to perform high-resolution (0.5 – 2 m) imaging of
the lunar surface. While the availability of stereo NAC pairs
suitable for terrain modeling is spatially limited across the
entire lunar surface, high-quality DTMs and ORIs have been
generated for some local regions using the SPG method [7].
These products, mostly with a spatial resolution of 2 – 5 m,
are accessible through the LROC Planetary Data System (PDS)
node. Fig. 8 illustrates the distribution of these products across
lunar highlands and maria within a longitude range of +/-
60°. These datasets exhibit diverse terrain characteristics and
geomorphological elements, with elevation ranging from -9.1
km to 10.8 km. The NAC images used to derive these products
were captured at solar elevation angles ranging from 18.55°
to 63.65°. The varied and heterogeneous attributes make them
an optimal data source for constructing training sets for high-
resolution single-view lunar DTM estimation. Meanwhile, the
512 pixel per degree resolution photogrammetric models from
the Selenological and Engineering Explorer (SELENE) have
been co-registered with Lunar Orbiter Laser Altimeter (LOLA)
profiles to generate an improved, semi-global (within +/-
60° longitude) DTM, the so-called “SLDEM” [41]. It offers
high elevation accuracy and maintains consistent horizontal
positioning with NAC-derived products. In this study, we
utilize the NAC ORIs along with the corresponding SLDEM of
the respective regions as input sources, while the NAC DTMs
serve as the ground truth for training and validating the model.

To unify the resolution of inputs for the dual-encoder mod-
ule in the proposed ELunarDTMNet, SLDEM is interpolated
to match the resolution of the corresponding NAC ORIs by
spline interpolation [42]. The NAC operates in push-broom
mode as a line-scanner camera, offering images with dimen-
sions of up to 5, 000 pixels × 50, 000 pixels. Consequently,
the SPG-derived NAC DTMs and ORIs are of large size.
Following DLunarDTMNet, we split the data into small-sized
tiles with 256 pixels × 320 pixels without any overlap. These

This article has been accepted for publication in IEEE Transactions on Geoscience and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TGRS.2024.3501153

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



9

Fig. 9. Examples of the small-sized samples: top panel is the NAC ORIs,
middle panel is the SPG NAC DTMs, bottom panel is the corresponding
SLDEM.

tiles are then used to construct training and validation sets,
with each sample containing the NAC DTM and ORI, along
with the corresponding SLDEM covering the same small area.

We perform data filtering to exclude data with horizontal
offset discrepancies between NAC DTMs and ORIs, as well
as samples containing null values and image artifacts, such as
evident intensity errors. Additionally, due to the presence of
artifacts in both the NAC DTM and SLDEM, the elevation data
in certain samples may display considerable inconsistencies,
which need to be excluded. Specifically, we compare the
elevation difference between NAC DTM and SLDEM for each
sample. In cases where the disparity exceeds three times the
standard deviation (STD), we discard the samples,

∆ZD = ∆ZN −∆ZS , (9)

If µ− 3σ < ∆ZDp < µ+ 3σ, retain;
else, discard,

(10)

where ∆ZN represents the elevation difference of the NAC
DTM, while ∆ZS represents the elevation difference of the
SLDEM. µ and σ are the mean and STD of ∆ZD. ∆ZDp is
the value of ∆ZD at sample p. Examples of the samples are
shown in Fig. 9.

B. Testing dataset

To assess the effectiveness of our proposed ELunarDTM-
Net compared to the state-of-the-art single-view DL-based
approaches to lunar DTM reconstruction, including DLu-
narDTMNet, LDEMGAN, and MADNet [17], [23], [24], we
perform a comparative analysis reported in Section V-A. We
select four typical areas (Apollo 11, Imbrium, Lichtenberg, and
Highland Ponds (Hponds)) as used in LDEMGAN, depicted
in Fig. 10 (a to d), to evaluate the performance of DLu-
narDTMNet, LDEMGAN, and the proposed ELunarDTMNet.
Considering the focus of MADNet on the Von Kármán Crater,
the landing area of the Chang’E-4 mission, we select two ad-
ditional areas, the Chang’E-4 landing site and the MonsTai, as
depicted in Fig. 10e and Fig. 10f, to assess the performance of
their method alongside our ELunarDTMNet. Table I provides
the basic information for each area. These areas comprise a
variety of terrain types, ranging from relatively flat areas with
small elevation differences (e.g., Apollo 11 and Chang’E-4
landing site) to regions with significant variations in elevation

Fig. 10. The NAC images of the test areas with the SLDEM as background:
(a) Apollo 11 (M150361817LE, M150361817RE, M150368601RE);
(b) Imbrium (M1106095239LE, M1106095239RE, M183697099LE,
M183697099RE); (c) Lichtenberg (M191052644LE, M191052644RE,
M191059794LE, M191059794RE); (d) Hponds (M182432168LE,
M182432168RE, M182439316LE, M182439316RE, M182425021LE);
(e) Chang’E-4 landing site (M1303619844, M1303619844); (f) MonsTai
(M123417906, M123417906). The red boxes in (a), (b), (c), and (d) indicate
the areas considered for comparing the performance of our method with
the SFS method. (g) shows the Change’E-2 imagery for the Von Kármán
Crater area. The blue polygons mark the regions of SPG DTMs for accuracy
evaluation. The purple tracks in (f) and (g) indicate the LOLA tracks used
for accuracy assessment due to the absence of publicly released or reliable
SPG DTMs for reference.

(e.g., Lichtenberg and Hponds). Alongside the ubiquitous
multi-scale craters, these areas also showcase distinct features
such as mountains, central peaks, impact melts, etc.

For a comparative analysis between the single-view SFS
method [8] and our proposed method, as described in Section
V-B1, we specifically use four sub-regions indicated by red
boxes in Fig. 10 to test the results. To evaluate the robustness
of both our method and SFS approach under varying illumi-
nation conditions, we select two different NAC images that
collectively cover the landing site of Chang’E-3 for validation,
as elaborated in Section V-B2. Additionally, to evaluate the
generalization capability of our model (trained on the NAC-
based dataset) on other datasets, we employ imagery captured
by the Chang’E-2 orbiter, which provides the second-highest
resolution lunar global imaging, as input images. This is
detailed in Section V-C. The experimental area is the Von
Kármán Crater, covered by 7 m resolution Chang’E-2 imagery
spanning 175 km × 218.6 km, as indicated in Fig. 10g.

C. Implementation details

We implement our proposed network using the Pytorch
framework and train it on a single NVIDIA TITAN RTX with
24G memory. We perform the network training with a batch
size of 4 and an initial learning rate of 0.0001. The cosine
annealing learning rate strategy is employed for the learning
rate decay [43]. To assess the effectiveness of our proposed
improvements (the ablation study in Section VI), we randomly
select 40k samples for the training set and 5k samples for the
validation set. The network is trained with 15k iterations. As
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TABLE I
THE BASIC INFORMATION OF THE NAC IMAGE-BASED TESTING AREAS.

Area name MinLon, MinLat (°, °) MaxLon, MaxLat (°, °) Typical features Area size (km2) NOI Resolution (m) ER (km)
Apollo 11 23.37, 0.29 23.52, 1.24 Crater 117 3 1.5 0.26
Imbrium 333.37, 27.42 334.42, 29.90 Mountain 1949 4 1.5 1.56
Lichtenberg 291.89, 31.47 292.93, 32.23 Large crater 607 4 1.5 2.83
Hponds 166.92, 41.22 168.36, 43.64 Impact melt 2401 5 1.7 3.49
Chang’E-4 177.32, -45.99 177.80, -45.31 Crater 173 2 1 0.13
MonsTai 176.32, -44.33 176.58, -43.33 Central peak 171 2 1 1.14

“MinLon”, “MinLat”, “MaxLon”, “MaxLat” are abbreviations for minimum longitude, minimum latitude, maximum longitude, and maximum latitude,
respectively. ”NOI” and ”ER” are abbreviations for number of images and elevation range, respectively.

for the best-performing network determined by the ablation
study, we employ 162k samples for the final training process
with 60k iterations, and 18k samples for the validation. For
the initial 5k iterations, the network is trained only with the
loss function lmn−elev, followed by the addition of lgrad and
lnorm for subsequent training. The weights (ϕ of lmn−elev, γ
of lgrad, and λ of lnorm) in Eq. (5), are empirically set as
10, 1, and 1, respectively, based on experiments. The NAC
DTM and SLDEM in each sample are normalized to [0, 50],
meaning that NR is set to 50 according to our normalization
strategy.

For the ablation study, we quantitatively compare the im-
provements made by the proposed method using seven metrics
on the validation set, based on the normalized scale. These
metrics are defined as follows:

Average Relative Error (REL):(
m∑
q=1

|zq − z∗q |/zq

)
/m, (11)

Root Mean Squared Error (RMSE):√√√√ m∑
q=1

(zq − z∗q )
2/m, (12)

Average Log10 error:
m∑
q=1

| log10(zq)− log10(z
∗
q )|/m, (13)

Threshold accuracy (aj), including three metrics:

% of zq s.t. max

(
zq
z∗q

,
z∗q
zq

)
= aj < 1.25j for j = 1, 2, 3,

(14)
Peak Signal to Noise Ratio (PSNR):

10 · log10
(
max(z∗q )

2/mse(zq, z∗q )
)
, (15)

where zq represents the pixel elevation value in the ground
truth, z∗q is the corresponding one in the predicted DTM, and
m is the number of pixels in the DTM. The REL, RMSE,
Log10, and aj are the metrics used to evaluate elevation
accuracy. In general, lower values of REL, RMSE, and Log10,
while higher values of aj , indicate better quality. PSNR is
the metric that measures image similarity and quality, where
higher values indicate better results.

During the training process, we validate the trained model
with the validation set every 5k iterations. We utilize the well-
trained model of the proposed ELunarDTMNet, determined at

the iteration with the lowest RMSE values on the validation
set, to predict DTMs on the testing dataset. For the generated
DTM mosaics with recovered scales, we adopt the five metrics
proposed by LDEMGAN to assess the reconstruction errors
and compare them with other single-view DL methods (DLu-
narDTMNet, LDEMGAN, and MADNet) and the SFS method
[8]. These error metrics include the percentages of errors (less
than 2 m, 4 m, and 10 m) between the reconstructed DTM and
the ground truth, called Reconstruction Error (RE; Eq. (16)),
in addition to MAE and RMSE.

% of zq s.t. |zq − z∗q | = RE < t for t = 2, 4, 10, (16)

MAE =

m∑
q=1

|zq − z∗q |/m, (17)

where zq represents the pixel elevation value in the ground
truth, which is derived from the SPG method [7]. In areas
where reliable SPG DTMs are unavailable, we utilize LOLA
tracks as the ground truth. Here, all tracks are first co-
registered to the reconstructed DTM by minimizing the height
residuals between each track and the DTM [44], [45]. This
is achieved by shifting the LOLA tracks over the DTM
and calculating the STD at each location. The smallest STD
between the reconstructed DTM and each shifted LOLA track
represents the correct location of the track and is employed to
evaluate the accuracy:

STD =

√√√√ r∑
w=1

(zlaser,w − z∗DTM,w)
2/(r − 1), (18)

where r represents the number of LOLA spots, zlaser,w
denotes the elevation value of one LOLA spot, and z∗DTM,w

represents the corresponding one in the reconstructed DTM.

V. EXPERIMENTAL RESULTS

A. Results of the comparison with state-of-the-art DL methods

In this section, we conduct a comparative analysis be-
tween the proposed ELunarDTMNet and the state-of-the-art
single-view DL methods for lunar DTM reconstruction. The
reconstruction errors using SPG-derived DTMs as reference
[7] are provided in Table II. Overall, the performance of
our ELunarDTMNet is excellent compared to LDEMGAN
across all four areas on Apollo 11, Imbrium, Lichtenberg, and
Hponds. Particularly, in the case of Hponds where there are
large elevation differences, we observe a sharp decrease of
72% in MAE and 68% in RMSE. Both DLunarDTMNet and
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TABLE II
COMPARISON OF RECONSTRUCTION ERRORS OF THE PROPOSED ELUNARDTMNET WITH STATE-OF-THE-ART DL METHODS IN THE TESTING AREAS.

Area name Method RE < 2m (%) RE < 4m (%) RE < 10m (%) MAE (m) RMSE (m)

Apollo 11
LDEMGAN 48.32 73.06 91.54 2.76 3.02
DLunarDTMNet 58.68 88.83 99.71 2.02 2.62
ELunarDTMNet 59.11 89.16 99.79 1.98 2.56

Imbrium
LDEMGAN 42.27 70.47 85.67 3.03 3.64
DLunarDTMNet 52.41 83.17 99.38 2.36 3.09
ELunarDTMNet 51.76 81.69 99.64 2.37 3.06

Lichtenberg
LDEMGAN 27.52 45.11 68.89 9.26 10.52
DLunarDTMNet 21.27 41.47 80.12 6.47 8.71
ELunarDTMNet 23.31 45.37 83.20 5.89 7.83

Hponds
LDEMGAN 25.52 45.95 62.51 9.43 10.65
DLunarDTMNet 43.20 71.96 96.56 3.21 5.14
ELunarDTMNet 47.27 77.72 99.15 2.66 3.44

Chang’E-4 MADNet 33.72 63.13 95.00 3.83 5.27
ELunarDTMNet 55.42 85.86 99.53 2.19 2.86

The best results are in bold. The numbers reported by LDEMGAN are from their original paper, whereas DLunarDTMNet were obtained by using their
code repository. The metrics reported by MADNet are from their released DTM, which has been co-aligned to the SPG DTM in this study.

the proposed ELunarDTMNet maintain promising accuracy.
It is worth noting that DLunarDTMNet required the co-
alignment technique to ensure the predicted DTMs are highly
consistent with the reference data and further maintain self-
consistency among adjacent DTM tiles. However, the metrics
of DLunarDTMNet in Apollo 11, Lichtenberg, and Hponds
areas are still inferior to those of our method, particularly in re-
gions with significant elevation variations, such as Lichtenberg
and Hponds. For the Imbrium region, where the reconstruction
errors of DLunarDTMNet, specifically those less than 2 m
and 4 m, and MAE, exhibit better performance compared to
our method, the degradation is only marginal. Besides, our
proposed ELunarDTMNet also exhibits a significantly higher
level of elevation accuracy compared to that of MADNet. For
instance, at the Chang’E-4 landing site, utilizing SPG DTM
as the ground truth, our approach surpasses MADNet across
all five metrics. In the case of MonsTai, our STD with LOLA
tracks (the distributions are shown in Fig. 10f) is 1.36 m,
significantly lower than that of MADNet with 10.86 m.

Fig. 11 presents the reconstructed DTMs for the Lichtenberg
and Hponds regions using the proposed ELunarDTMNet. It
also includes the corresponding RE maps and local area
Hill-Shaded (HS) maps from the ELunarDTMNet and DLu-
narDTMNet reconstructions for performance comparison. As
shown in the RE maps, DLunarDTMNet displays more areas
with large errors in steep terrains, such as the wall of craters on
the Lichtenberg and Hponds regions. The HS maps in local
area 1 show DLunarDTMNet displays striped artifacts. The
results from the SPG DTM exhibit matching artifacts and
incongruities with the NAC image. In contrast, our method
captures the intricate texture and resembles the NAC image.
Local area 2 highlights a region characterized by irregular
impact melts. The proposed ELunarDTMNet manages to re-
construct the linear meandering features. In contrast, the SPG
method and DLunarDTMNet fall short of recovering these ter-
rain features. Also, the SPG method fails to reconstruct some
craters with diameters smaller than tens of meters, as marked
by the yellow arrows. In area 3, the shapes of craters with
diameters of several hundred meters, such as those highlighted
by yellow circles, derived from DLunarDTMNet, deviate from

the NAC images. In contrast, both the SPG and the pro-
posed methods yield more accurate results. Besides, while our
method uses a coarse-resolution DTM (e.g., SLDEM) as input
to provide elevation constraints, it is not affected by the lack
of topographic details in SLDEM and effectively recovers the
fine topographic features. Moreover, unlike DLunarDTMNet,
the proposed ELunarDTMNet eliminates the need for the
co-alignment technique during the DTM mosaic generation
stage. This key difference significantly streamlines our DTM
reconstruction process. To compare the computing time of both
methods, we select a specific area within the Imbrium region
with 3, 400 pixels × 14, 920 pixels (114 km2), indicated
by the red box in Fig. 10b. We can efficiently generate the
DTM mosaic in just 12 minutes. In contrast, DLunarDTMNet
requires 742 minutes to accomplish the same area DTM,
which is about 60 times longer than the time of the proposed
technique.

Fig. 12 displays the reconstructed DTMs derived from the
proposed ELunarDTMNet and performance comparison with
the MADNet in the Chang’E-4 landing site and MonsTai
areas. MADNet exhibits larger reconstruction errors in ter-
rain feature reconstruction, especially in the MonsTai region,
where elevation differences reach up to 1.14 km. The HS
maps in local area 1 show MADNet encounters challenges
in accurately reconstructing the depth information of craters
with a diameter of several hundred meters. This limitation
results in subtle changes in shadow intensity, as indicated by
the four craters highlighted with yellow circles. Conversely,
the results of our technique show changes with more contrast
in shadow intensity for craters of this scale, demonstrating
consistency with the NAC image. In local area 2, MADNet
shows deviations in the shape characteristics of some craters,
with diameters of several tens of meters, compared to the
NAC image and our results, as indicated by the yellow arrows.
Additionally, the irregular pimple-shaped feature, highlighted
by the red arrow, is missing in MADNet. In contrast, our
proposed ELunarDTMNet accurately captures the shape of this
feature.
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Fig. 11. The reconstructed DTMs using the proposed ELunarDTMNet and their performance comparison with the DLunarDTMNet in the Lichtenberg and
Hponds regions. (a) The DTMs generated by ELunarDTMNet, and the RE maps generated by ELunarDTMNet and DLunarDTMNet, (b) the NAC images, as
well as the HS maps derived from ELunarDTMNet, DLunarDTMNet, SPG method [7], and SLDEM on the local areas. The black boxes in (a) indicate the
locations of the local areas. The yellow arrows point to small-scale craters that the SPG method fails to capture, whereas the yellow circles highlight craters
that DLunarDTMNet struggles to accurately predict.

B. Results of the comparison with the single-view SFS method

1) Comparison of accuracy, resolution, and efficiency: In
this section, we compare the performance of the proposed
ELunarDTMNet with that of the SFS method [8], [26] using
the same NAC images and SLDEM as input. To ensure a fair
evaluation, we adopt the same tiling process as our method
to produce SFS DTMs, where the input data is split into
smaller tiles (256 pixels × 320 pixels) with padding (100
pixels). The tiles are then blended to create full SFS DTM
mosaics. This assessment is conducted across four different
areas, as indicated by the red boxes in Fig. 10. Table III shows
the reconstruction errors obtained by comparing the generated
DTMs with the SPG DTMs [7]. While three metrics of the

SFS method perform better than our method in the Apollo
11 region, the difference in advantage is marginal. However,
our method consistently outperforms the SFS method in the
Imbrium, Lichtenberg, and Hponds regions.

Fig. 13 shows the reconstructed DTMs of the Imbrium
and Lichtenberg regions, as well as the HS maps and RE
maps for local areas. Both the SFS method and our proposed
ELunarDTMNet depict terrain features consistently with the
SPG DTMs, exhibiting similar elevation trends. The SFS
method is renowned for its capability to reconstruct DTMs
with detailed terrain information. Among previous DL meth-
ods, DLunarDTMNet shows competitive elevation accuracy,
as shown in Table II, but it fails to preserve some terrain

This article has been accepted for publication in IEEE Transactions on Geoscience and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TGRS.2024.3501153

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



13

Fig. 12. The reconstructed DTMs using the proposed ELunarDTMNet and their performance comparison with the MADNet in the Chang’E-4 landing site
and MonsTai areas. (a) The DTMs generated by ELunarDTMNet, and the RE maps generated by ELunarDTMNet and MADNet, (b) the NAC images, and
the HS maps derived from ELunarDTMNet and MADNet on the local areas. The SPG DTM [7] in the Chang’E-4 landing site area and the SLDEM [41] in
the MonsTai area are used as the reference DTMs to determine the RE maps. The results from MADNet have been co-aligned to the SPG DTM (SLDEM)
in this study. The black boxes in (a) indicate the locations of the local areas. The yellow circles and arrows indicate some craters that MADNet struggles to
accurately predict. The red arrows point to an irregularly shaped feature that MADNet fails to reconstruct.

TABLE III
COMPARISON OF DTM RECONSTRUCTION ERRORS OBTAINED BY THE

SFS METHOD [8] AND THE PROPOSED ELUNARDTMNET.

Metric Method Apollo 11 Imbrium Lichtenberg Hponds

RE<2m (%) SFS 56.14 52.39 28.00 49.82
ELunarDTMNet 57.06 67.79 30.30 59.50

RE<4m (%) SFS 87.78 84.04 55.81 80.13
ELunarDTMNet 87.69 92.57 61.01 87.39

RE<10m (%) SFS 99.67 99.20 96.99 99.34
ELunarDTMNet 99.64 99.88 98.64 99.86

MAE (m) SFS 2.11 2.35 3.98 2.51
ELunarDTMNet 2.09 1.69 3.59 2.03

RMSE (m) SFS 2.71 3.08 4.84 3.25
ELunarDTMNet 2.72 2.24 4.34 2.67

The best results are in bold.

details. The HS maps of the local areas and further localized
areas illustrate that the proposed ELunarDTMNet outperforms
DLunarDTMNet in capturing small-scale and subtle terrain
features, demonstrating similar effective resolution as the SFS
method. In Fig. 13b, the SFS method demonstrates artifacts
in the dark region marked by the yellow circle. The RE
maps on these local areas show that the proposed method
achieves better accuracy compared to both the SFS method
and DLunarDTMNet. Furthermore, we evaluate the processing
time of the SFS method in generating the DTM mosaic on the
Imbrium region. This area is also the same one used in Section
V-A to evaluate the computation time of both DLunarDTMNet
and the proposed ELunarDTMNet. In contrast to our approach
which takes about 12 minutes, the SFS method requires a
significantly longer computational time of 10, 243 minutes to

derive the DTM mosaic. This sharp difference of more than
850 times highlights the superior efficiency of our approach.

2) Influence of varying illumination conditions: The NAC
images reveal variations in surface appearance due to differing
illumination conditions. To investigate the robustness of the
proposed ELunarDTMNet and the SFS method in handling
such varying illuminations, we analyze two NAC images
(M1154358210RE and M1164944600RE) of the same area in
the Chang’E-3 landing site, taken under different solar azimuth
and elevation angles. As shown in Fig. 14, we conduct cross-
illumination verification and generate HS maps on a local area
to assess the performance. Despite the DTMs being derived
from two different NAC images, the HS maps generated
from our DTMs demonstrate a high level of consistency. For
example, the wrinkle ridges exhibit identical shapes between
our results and remain consistent with the NAC images. In
contrast, when the illumination condition differs from that of
the NAC image used to generate SFS DTMs, the HS maps
from the SFS method show obvious discrepancies. Specif-
ically, the map derived from the illumination condition of
M1154358210RE, based on M1164944600RE-derived DTM
(the fifth column of Fig. 14a), fails to properly model the
shape of wrinkle ridges.

C. Generalization to other high-resolution orbiter imagery

We employ the well-trained model based on the NAC
dataset to directly predict DTMs using the 7 m resolution
Chang’E-2 imagery (Fig. 10g), in conjunction with SLDEM,
for the Von Kármán Crater area. The results are compared
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Fig. 13. The reconstructed DTMs by the proposed ELunarDTMNet and the SFS method [8], with comparisons of local areas using HS maps and RE maps.
(a) Imbrium region, and (b) Lichtenberg region. The black boxes 1 and 2 on the SFS DTMs mark the locations of the local areas shown in the left panels.
The locations of further localized areas in the right panels are indicated by the black boxes labeled α and β.

Fig. 14. Cross-illumination verification for the proposed ELunarDTMNet and
the SFS method [8] centered at (19.60°W, 44.43°N). (a) M1154358210RE
and (b) M1164944600RE. From left to right, the figures show: the NAC
images, the proposed ELunarDTMNet (second and fourth columns) and the
SFS (third and fifth columns) results from M1154358210RE-derived and
M1164944600RE-derived DTMs. The HS maps in columns two through
five are generated using the same illumination conditions as the left NAC
images. Bolded borders on the maps indicate that the corresponding DTMs
are generated from another NAC image.

TABLE IV
THE STD BETWEEN CHANG’E-2 IMAGERY-DERIVED DTMS AND LOLA

TRACKS.

Methods ELunarDTMNet MADNet SPG [46]
STD (m) 3.726 17.892 4.133

The best results are in bold.

with DTMs derived from Chang’E-2 imagery using MADNet
and the SPG method [46]. Table IV presents a comparison of
STDs between the Chang’E-2 imagery-derived DTMs and the
LOLA tracks. Our method demonstrates the highest level of
accuracy, with MADNet exhibiting a STD approximately five
times larger than ours.

Fig. 15a shows the features on the MADNet-derived DTM
appear blurred, whereas those on our and SPG DTMs are dis-
tinctly defined. When focusing on the enlarged pink box area,
it becomes evident that the elevation trends remain consistent
between the SPG method and our proposed ELunarDTMNet.
On the contrary, the DTM from MADNet displays noticeable
discrepancies, such as the three craters indicated by the yellow
arrows. Fig. 15b shows a comparison of the HS maps for three
Chang’E-2 DTMs across two local areas. Some terrain details
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Fig. 15. The reconstructed DTMs of the Von Kármán Crater area using the Chang’E-2 imagery. (a) The DTMs reconstructed by the proposed ELunarDTMNet
with a resolution of 7 m, MADNet with a resolution of 14 m, and SPG method [46] with a resolution of 20 m, (b) the Chang’E-2 imagery, and the HS
maps derived from ELunarDTMNet, MADNet, and SPG method in local areas 1 and 2. The yellow arrows point to some craters where MADNet exhibits
discrepancies compared to both SPG and our methods. The irregular yellow polygon indicates the areas identified by MADNet as over-smoothed. The black
boxes in (a) indicate the locations of local areas. (c) presents the Chang’E-2 imagery and the corresponding HS map generated by the proposed ELunarDTMNet,
along with the NAC image and the HS map derived from the SPG method based on NAC images in local area 3.

are not recovered by MADNet, such as the region, enclosed
by the irregular yellow polygon, showing over-smoothing.
The SPG-derived DTM also fails to accurately represent
terrain features, showing noticeable artifacts. In contrast, our
proposed ELunarDTMNet efficiently recovers the topographic
details on the depicted areas. Besides, Fig. 15c compares the
HS map generated by the proposed ELunarDTMNet using
Chang’E-2 imagery with the HS map from the SPG method
based on NAC images. While the Chang’E-2 imagery has a
lower resolution than the NAC images, the effective resolution
of our derived Chang’E-2 DTM is close to that of the SPG
DTM derived from the NAC images.

VI. DISCUSSION

A. Ablation study during training and validation stages

To validate the effectiveness of our proposed ELunarDTM-
Net, we perform five comprehensive ablation studies. Each
study aims to test specific enhancements, including the DTM
normalization strategies, the coarse-resolution DTM con-
straints, the image encoder branch backbones, the residual-
connected mechanisms in the decoder module, and the loss
functions. The training and validation logs for each enhance-
ment and variant, based on our proposed DTM normalization

strategy, are presented in Fig. 16. As the number of iterations
increases, the training losses gradually decrease and converge
(Fig. 16a). Concurrently, the overall accuracy demonstrates an
increase on the validation set, with a1 increasing (Fig. 16b)
and RMSE decreasing (Fig. 16c). The significant increase in
the loss curve at 5k iterations is due to the incorporation of the
lgrad and lnorm terms during training. From the perspective
of validation accuracy, their inclusion effectively guides the
network to better performance. The quantitative comparison
of well-trained models for each variation on the validation
set is presented in Table V. It shows that our enhancements
in each variation effectively improve prediction accuracy, with
our proposed ELunarDTMNet achieving the best performance.

B. Ablation study during testing stage

Table VI presents the reconstructed errors of the DTM mo-
saics derived from the well-trained models for each variation,
in three testing areas (Apollo 11, Imbrium, and Lichtenberg),
as marked by the red boxes in Fig. 10. Using SLDEM as
input significantly improves accuracy, which is essential for
achieving high-performance results. In the Imbrium region,
our metrics for the reconstruction errors less than 2 m and 10
m do not achieve the highest accuracy but still rank second
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TABLE V
QUANTITATIVE COMPARISON OF WELL-TRAINED MODELS FOR EACH VARIATION ON THE VALIDATION SET BASED ON OUR PROPOSED DTM

NORMALIZATION STRATEGY.

Architecture variant a1 a2 a3 REL RMSE LOG10 PSNR

Encoder module No SLDEM 0.7276 0.8976 0.9540 0.2408 4.9484 0.083 21.8864
ResNet-based 0.8995 0.9744 0.9909 0.1048 2.3309 0.0402 29.3058

Decoder module UPB 0.9092 0.9779 0.9917 0.1024 2.1776 0.0381 29.6611
Loss function l1 loss 0.8929 0.9718 0.9894 0.1120 2.3978 0.0417 28.9389

ELunarDTMNet 0.9109 0.9787 0.9924 0.0964 2.1654 0.0375 29.9208
The best results are in bold.

Fig. 16. The training and validation logs of the ablation study based on
our proposed DTM normalization strategy. (a) Training curves, (b) and (c)
metrics a1 and RMSE on the validation set every 5k iterations, respectively.
‘No SLDEM’ indicates training the network without using SLDEM as input.
‘ResNet-based’ indicates using ResNet-based instead of Swin-T-based back-
bone to extract features from images. ‘UPB’ indicates using UPB instead of
our proposed residual-connected mechanism to construct the decoder module.
‘l1 loss’ indicates using l1 loss instead of our proposed mean-normalized loss
function to train the network. ‘ELunarDTMNet’ represents using our proposed
method to train the network. The max-min DTM normalization strategy is not
compared in this context as it uses a different normalization range, resulting
in inconsistent metric scales.

in terms of accuracy. While some variations, such as the UPB
mechanism on the decoder module, show good performance,
our proposed ELunarDTMNet outperforms them all with the
lowest MAE and RMSE across all three areas.

In addition, we provide a detailed comparison in local
areas to evaluate the effectiveness of our proposed DTM
normalization strategy, the Swin-T-based backbone for the
image encoder branch, and the mean-normalized loss function
in fine topography retrieval. Fig. 17 compares the max-min
DTM normalization strategy with our proposed elevation-
statistics-based strategy. Fig. 17a and Fig. 17b present the areas
featuring multi-scale craters. The HS maps show that the ap-
plication of the max-min strategy does not effectively recover
some small-scale craters. Notably, the crater with a diameter
of 300 m, indicated by the yellow circles, displays artifacts
rather than accurate details under the max-min normalization
strategy. Moreover, this strategy also fails to effectively capture
the edge of the flat impact melt at the center of Fig. 17c,
as well as the subtle textures surrounding it. Conversely, our
proposed strategy performs well in capturing these details with
improved accuracy as shown in the RE maps.

Fig. 18 illustrates a comparison between the ResNet-based
backbone used in DLunarDTMNet and our Swin-T-based
backbone. While the ResNet-based backbone demonstrates
good performance in reconstructing the shapes of most craters
in Fig. 18a, it displays some artifacts, as marked by the yellow
arrows. In contrast, the Swin-T-based backbone maintains
consistency with the NAC images and does not exhibit these
artifacts. In the left ellipse of Fig. 18b, the result using the
ResNet-based backbone displays evident indications of over-
smoothing. The right ellipse in Fig. 18b highlights the region
where the reconstructed shapes by the ResNet-based backbone
show discrepancies with the NAC image. The region, indicated
by the yellow ellipse in Fig. 18c, displays albedo variances
as topographic relief. Overall, the results derived from the
Swin-T-based backbone align more consistently with the NAC
images. This is further evidenced by the RE maps. Our method
demonstrates better accuracy than that obtained by the ResNet-
based backbone.

Fig. 19 depicts the comparison between l1 loss and our
proposed mean-normalized loss function in penalizing dif-
ferences between predicted and true values. The HS map
obtained with the l1 loss training model in Fig. 19a exhibits
discrepancies from the NAC image for craters with diameters
of several hundred meters. In contrast, our proposed loss
function effectively guides the model in predicting the shapes
of these craters. Fig. 19b and Fig. 19c highlight that while
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TABLE VI
COMPARISON OF RECONSTRUCTION ERRORS FROM WELL-TRAINED MODELS FOR EACH VARIATION IN THREE TESTING AREAS.

Area name Method RE < 2m (%) RE < 4m (%) RE < 10m (%) MAE (m) RMSE (m)

Apollo 11

Max-min strategy 55.52 85.73 99.62 2.18 2.84
No SLDEM 42.59 72.84 98.59 2.94 3.80
ResNet-based 54.32 85.63 99.59 2.21 2.87
UPB 55.50 85.93 99.65 2.16 2.80
l1 loss 55.83 86.36 99.63 2.17 2.82
ELunarDTMNet 57.33 87.16 99.65 2.10 2.73

Imbrium

Max-min strategy 65.66 90.80 99.86 1.80 2.38
No SLDEM 47.53 73.02 92.94 3.53 5.70
ResNet-based 63.90 88.76 99.66 1.92 2.61
UPB 67.47 91.45 99.79 1.74 2.34
l1 loss 64.50 89.89 99.80 1.85 2.47
ELunarDTMNet 67.03 91.72 99.82 1.74 2.32

Lichtenberg

Max-min strategy 26.01 53.76 97.11 4.08 4.91
No SLDEM 15.70 31.19 66.17 11.31 19.65
ResNet-based 20.93 45.31 95.13 4.67 5.52
UPB 25.15 53.11 97.61 4.08 4.86
l1 loss 23.04 49.06 95.93 4.41 5.27
ELunarDTMNet 27.06 55.70 97.97 3.91 4.69

The best results are in bold. The second-best results are underlined.

the l1 loss-trained model can predict local albedo variances
as craters, it struggles to capture subtle surface features, for
example, the elephant hide features. Conversely, the proposed
approach can capture these features, aligning closely with the
NAC images. The RE maps indicate enhanced accuracy in
our results, illustrating the effectiveness of our proposed loss
function in optimizing the network performance.

C. Accuracy analysis for the large bright slopes

In this study, the coarse-resolution SLDEM is used as the
input DTM, which differs from the high-resolution SPG DTM,
as shown in Fig. 20. Overall, our predicted DTM reduces the
discrepancy to the SPG DTM; however, the bright slopes (sun-
facing sides of the terrain) exhibit larger errors compared to
the shaded slopes. Further investigations will focus on un-
derstanding and reducing this effect, thus improving accuracy
within areas with extended bright slopes.

VII. CONCLUSION

In this paper, we have proposed an efficient single-view
DL-based method for high-quality DTM reconstruction of
the lunar surface from a high-resolution optical image cap-
tured by an orbiter constrained by a coarse-resolution DTM
(ELunarDTMNet). It first incorporates the Swin-T architecture
into the image encoder branch to improve the model’s ability
to capture multi-scale features. In the decoder module, we
introduce a new residual-connected mechanism to improve
prediction accuracy. Moreover, we implement an elevation-
statistics-based DTM normalization strategy to preserve terrain
feature contrast, and a mean-normalized loss function to
accommodate the complex elevation distribution of the lunar
surface. Extensive comparative experiments demonstrate that
our proposed enhancements lead to an effective improvement
in network performance, yielding the following results:

1) High-quality terrain feature retrieval: The proposed
ELunarDTMNet demonstrates superior sensitivity in the
retrieval of multi-scale features, including irregular ter-
rains and regions with significant relief, outperforming

state-of-the-art single-view DL methods. It can gener-
ate fine terrain details comparable to the SFS method
[8], with improved elevation accuracy and robustness
under different illuminations. The medium- and large-
scale terrains in our results demonstrate a higher level of
consistency with the SPG method [7], while effectively
mitigating artifacts that may be present in the SPG DTMs.

2) Optimized processing speed and generalization capa-
bility: While DLunarDTMNet demonstrated a process-
ing speed advantage in reconstructing DTM mosaics
compared to the SFS method [8], [26], the proposed
ELunarDTMNet further significantly reduces processing
speed by simplifying the DTM mosaic generation pro-
cess. Our method is evaluated on diverse datasets and
demonstrates strong generalization across different types
of lunar optical imagery, such as NAC and Chang’E-2
orbiter images.

In the future, we will explore the potential of more DL
models, such as the Diffusion Model [47], [48], for lunar DTM
reconstruction. We will also focus on high-quality DTM recon-
struction for challenging areas, such as the lunar South Pole
region, and apply the proposed method to relevant scientific
analyses and engineering tasks. Additionally, we will explore
the feasibility of applying our method to shape modeling of
other celestial bodies.
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Fig. 17. Performance comparison using different DTM normalization strate-
gies in three local areas. Areas (a) centered at (23.45°, 0.70°), (b) centered at
(334.25°, 27.86°), and (c) centered at (167.28°, 42.50°). From top to bottom,
the images show: the NAC images, the HS maps using the proposed and the
max-min normalization strategies, and the RE maps using the proposed and
the max-min normalization strategies. The yellow circles indicate the crater
where artifacts appear with the max-min strategy.

are available at https://www.cosmos.esa.int/web/psa/ucl-mssl
moon von karman v1.0.
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[6] P. Gläser, J. Oberst, G. Neumann, E. Mazarico, E. Speyerer, and
M. Robinson, “Illumination conditions at the lunar poles: Implications
for future exploration,” Planetary and Space Science, vol. 162, pp. 170–
178, 2018.

[7] M. Henriksen, M. Manheim, K. Burns, P. Seymour, E. Speyerer,
A. Deran, A. Boyd, E. Howington-Kraus, M. R. Rosiek, B. A. Archinal
et al., “Extracting accurate and precise topography from lroc narrow

This article has been accepted for publication in IEEE Transactions on Geoscience and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TGRS.2024.3501153

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



19

Fig. 19. Performance comparison using our proposed mean-normalized loss
and l1 loss in three local areas. Areas (a) centered at (23.46°, 0.66°), (b)
centered at (292.48°, 32.04°), and (c) centered at (167.24°, 42.13°). From top
to bottom, the images show: the NAC images, the HS maps using the mean-
normalized and the l1 losses, and the RE maps using the mean-normalized
and the l1 losses.

angle camera stereo observations,” Icarus, vol. 283, pp. 122–137, 2017.
[8] O. Alexandrov and R. A. Beyer, “Multiview shape-from-shading for

planetary images,” Earth and Space Science, vol. 5, no. 10, pp. 652–
666, 2018.

[9] R. L. Kirk, E. Howington-Kraus, M. R. Rosiek, J. A. Anderson, B. A.
Archinal, K. J. Becker, D. Cook, D. M. Galuszka, P. E. Geissler, T. M.
Hare et al., “Ultrahigh resolution topographic mapping of mars with mro
hirise stereo images: Meter-scale slopes of candidate phoenix landing
sites,” Journal of Geophysical Research: Planets, vol. 113, no. E3, 2008.

[10] F. Preusker, J. Oberst, J. W. Head, T. R. Watters, M. S. Robinson, M. T.
Zuber, and S. C. Solomon, “Stereo topographic models of mercury after
three messenger flybys,” Planetary and Space Science, vol. 59, no. 15,
pp. 1910–1917, 2011.

[11] F. Scholten, J. Oberst, K.-D. Matz, T. Roatsch, M. Wählisch, E. Speyerer,
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based on reflectance modelling,” Advances in Space Research, vol. 53,
no. 12, pp. 1735–1767, 2014.
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