Patil, Abhishek (2024) Development of a Health Monitoring System for condition assessment of truck fuel cell. Masterarbeit, University of Applied Sciences Nordhausen.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Kurzfassung
Proton Exchange Membrane Fuel Cells (PEMFC) are a promising power source for automotive applications due to their high efficiency and zero emissions. However, largescale adoption faces challenges related to durability and lifespan, particularly under dynamic automotive conditions that accelerate degradation. This study proposes a novel method for predicting the Remaining Useful Lifetime (RUL) of PEMFCs under such conditions by integrating multiple operational parameters to improve prediction accuracy, unlike traditional models that rely on a single parameter. A Multiple Linear Regression machine learning algorithm, developed in Python, was used to facilitate predictions. The model was validated using three measurement cycles namely: Constant-Velocity, WLTC, and RDC obtained from a fuel cell powered passenger vehicle. The results show that the model performs well with large, consistent datasets, especially under controlled conditions like Constant-Velocity and WLTC. However, it faced challenges with more variable cycles like RDC, suggesting that further improvement is necessary to handle high variability datasets more effectively.
elib-URL des Eintrags: | https://elib.dlr.de/206479/ | ||||||||
---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Hochschulschrift (Masterarbeit) | ||||||||
Zusätzliche Informationen: | Betreuer: Nicolas Muck, Tobias Schneider | ||||||||
Titel: | Development of a Health Monitoring System for condition assessment of truck fuel cell | ||||||||
Autoren: |
| ||||||||
Datum: | September 2024 | ||||||||
Open Access: | Nein | ||||||||
Seitenanzahl: | 126 | ||||||||
Status: | veröffentlicht | ||||||||
Stichwörter: | Fuel Cell, Machine Learning, Remaining useful Lifetime, Python, Automotive | ||||||||
Institution: | University of Applied Sciences Nordhausen | ||||||||
Abteilung: | Department for Engineering | ||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||
HGF - Programm: | Verkehr | ||||||||
HGF - Programmthema: | Straßenverkehr | ||||||||
DLR - Schwerpunkt: | Verkehr | ||||||||
DLR - Forschungsgebiet: | V ST Straßenverkehr | ||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | V - FFAE - Fahrzeugkonzepte, Fahrzeugstruktur, Antriebsstrang und Energiemanagement | ||||||||
Standort: | Stuttgart | ||||||||
Institute & Einrichtungen: | Institut für Fahrzeugkonzepte > Fahrzeugenergiekonzepte | ||||||||
Hinterlegt von: | Muck, Nicolas | ||||||||
Hinterlegt am: | 09 Okt 2024 08:07 | ||||||||
Letzte Änderung: | 09 Okt 2024 08:07 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags