elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Behavior Tree based Control Strategies for Resilient Heat Pump Operation in Residential Buildings

Urban, Piet und Klement, Peter und Schlüters, Sunke und Schönfeldt, Patrik (2024) Behavior Tree based Control Strategies for Resilient Heat Pump Operation in Residential Buildings. Energy Reports. Elsevier. doi: 10.2139/ssrn.4951682. ISSN 2352-4847. (eingereichter Beitrag)

[img] PDF - Preprintversion (eingereichte Entwurfsversion)
979kB

Offizielle URL: https://ssrn.com/abstract=4951682

Kurzfassung

Behavior trees are a proven concept in the creation of complex task-switching control and artificial intelligence for robotic systems and non-player characters in the computer games industry. Requirements such as flexibility, maintainability, reusability of functionalities or expandability also apply to the control of decentralised energy systems. Despite this, there is a noticeable research gap regarding the application of behavior trees in that sector. Based on a foundational heating system, including thermodynamic modelling of a part-load capable heat pump with TESPy, tree structures for its control are created using the Python library py_trees for implementation. With a view to minimising the annual operational performance indicators electricity price and CO2 emissions, which reflect the optimal use of renewable shares, several control strategies are compared. We identify and illustrate the principal limitations of decision trees, mixed-integer linear optimisation performed with oemof-solph, as well as a classic rule-based approach. The proposed higher-level behavior tree combines the strengths of such approaches whilst pursuing the additional target of reducing the start-up and associated wear of the heat pump without significantly increasing the computation time.

elib-URL des Eintrags:https://elib.dlr.de/206397/
Dokumentart:Zeitschriftenbeitrag
Titel:Behavior Tree based Control Strategies for Resilient Heat Pump Operation in Residential Buildings
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Urban, Pietpiet.urban (at) dlr.dehttps://orcid.org/0009-0004-5259-5891NICHT SPEZIFIZIERT
Klement, PeterPeter.Klement (at) dlr.dehttps://orcid.org/0000-0001-7175-6145NICHT SPEZIFIZIERT
Schlüters, Sunkesunke.schlueters (at) dlr.dehttps://orcid.org/0000-0002-2186-812XNICHT SPEZIFIZIERT
Schönfeldt, PatrikPatrik.Schoenfeldt (at) dlr.dehttps://orcid.org/0000-0002-4311-2753NICHT SPEZIFIZIERT
Datum:10 September 2024
Erschienen in:Energy Reports
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
DOI:10.2139/ssrn.4951682
Verlag:Elsevier
ISSN:2352-4847
Status:eingereichter Beitrag
Stichwörter:Behavior Tree, Decision Tree, CART, Optimisation, MILP, Heat Pump, Energy Management, Machine Learning
HGF - Forschungsbereich:Energie
HGF - Programm:Energiesystemdesign
HGF - Programmthema:Digitalisierung und Systemtechnologie
DLR - Schwerpunkt:Energie
DLR - Forschungsgebiet:E SY - Energiesystemtechnologie und -analyse
DLR - Teilgebiet (Projekt, Vorhaben):E - Energiesystemtechnologie
Standort: Oldenburg
Institute & Einrichtungen:Institut für Vernetzte Energiesysteme > Energiesystemtechnologie
Hinterlegt von: Urban, Piet
Hinterlegt am:25 Sep 2024 10:58
Letzte Änderung:11 Nov 2024 14:51

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.