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A B S T R A C T

Behaviour trees are a proven concept in the creation of complex task-switching control and artificial
intelligence for robotic systems and non-player characters in the computer games industry. Requirements
such as flexibility, maintainability, reusability of functionalities or expandability also apply to the control
of decentralised energy systems. Despite this, there is a noticeable research gap regarding the application of
behaviour trees in that sector. Based on a foundational heating system, including thermodynamic modelling
of a part-load capable heat pump with TESPy, tree structures for its control are created using the Python
library py_trees for implementation. With a view to minimising the annual operational performance indicators
electricity price and CO2 emissions, which reflect the optimal use of renewable shares, several control strategies
are compared. We identify and illustrate the principal limitations of decision trees, mixed-integer linear
optimisation performed with oemof-solph, as well as a classic rule-based approach. The proposed higher-level
behaviour tree combines the strengths of such approaches whilst pursuing the additional target of reducing
the start-up and associated wear of the heat pump without significantly increasing the computation time.
1. Introduction

Decentralisation and digitisation of our energy system pose major
challenges to us, notably the rise in actors and the shift from consumers
to prosumers, leading to increasingly complex systems. Furthermore,
the inherent intermittency and unpredictability of renewable ener-
gies present fundamental issues. This creates a significant demand for
flexibility in technologies and their control options, emphasising the
importance of system interpretability, along with considerations for
maintainability and expandability (Perger et al., 2022; Razmi and Lu,
2022).

Proposing a potential solution to address above requirements of
future system and component control, the concept of BTs stands out.
BT enable a structure for switching between different tasks in an
autonomous agent. They are characterised by high modularity, par-
ticularly in the reusable nature of individual subtrees or behaviours,
and clarity, along with a high reactivity to changing environmental
conditions (Biggar et al., 2020b). In this context, behaviour trees estab-
lished themselves since the mid-2000s in the computer game industry
for non-player character control. Pioneered by the works of Mateas
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and Stern (2002) as well as Isla (2005) and Champandard (2007),
the concept has seen numerous extensions for creating artificial intel-
ligence (AI) behaviour (Rabin, 2013; Colledanchise and Ögren, 2018).
Especially the possibility to easily extend behavioural patterns offers a
great advantage over the otherwise widespread control with finite state
machines (FSMs).

With an increasing number of scientific publications outside in-
dustry, further application areas have been opened up for the use of
BTs. Example fields, beyond the gaming realm, are humanoid robotics
(Marzinotto et al., 2014), automation of production (Guerin et al.,
2015) and support in brain surgery (Hu et al., 2015).

Only recently, their utility has also been proposed for application in
the energy sector, more specifically in the control of smart grids (Perger
et al., 2022) and the operation of microgrids (Jingsong, 2023). Again,
the focus is on ensuring stable and economic operation under a wide
range of environmental and working conditions. As the demand for
control solutions in decentralised energy systems continues to grow, the
theoretically well-researched and in diverse fields practically proven
concept of behaviour trees emerges as a promising candidate.
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Nomenclature

AI artificial intelligence
BT behaviour tree
CART Classification and Regression Trees
DT decision tree
ENaQ Energetisches Nachbarschaftsquartier
ES energy system
FSM finite state machine
HP heat pump
KPI key performance indicator
MILP mixed integer linear programming
MPC model predictive control
oemof open energy modelling framework
TES thermal energy storage
TESPy Thermal Engineering Systems in Python
𝐴TES surface area (TES)
𝐷 𝐻 𝐼 diffuse horizontal irradiance
𝐷 𝑁 𝐼 direct normal irradiance
𝐸TES energy content (TES)
𝐸t h thermal energy
𝑃HP, el electrical power input (HP)
𝑄HP,max nominal, i. e. maximum heat output (HP)
𝜀HP coefficient of performance, COP (HP)
𝑄dem heat demand
𝑇max upper temperature limit (TES) with respect

to 𝑇r ef
𝑇min lower temperature limit (TES) with respect

to 𝑇r ef
𝑇r ef reference temperature (TES, 𝐸TES = 0)
𝑇TES actual temperature (TES)
𝑉TES volume (TES)
𝛥𝑇TES temperature spread (TES)
𝛥𝑡ex period between two control activation steps

𝛥𝑡upd period between regressor updates
𝛽 lossrate (TES)
𝑄̇loss heat loss flow (TES)
𝜌 density
𝜏 time increment of loss (TES)
𝜃amb ambient temperature
𝜀HP coefficient of performance, COP (HP)
𝑎el, g r id amount of electrical energy (grid supply)
𝑐E normalised CO2 emissions associated with

heating
𝑐P normalised heating price
𝑐el,P specific price (grid supply)
𝑐p specific heat capacity
𝑛on start ups per day (HP)
𝑟xy correlation
𝑢 thermal transmittance (TES)

One relevant application alongside the above-mentioned can be
ound in the electrification of domestic heating systems using HPs. In

view of the growing proportion of renewable energies, smart energy
management seeks to reduce not only the price of heat provision but
lso associated emissions. Moreover, a component-friendly mode of

operation should be aimed for in order to reduce environmental costs.
he described advantages of BTs motivate to use them for such a

purpose.
1055 
Our notable contributions, expanding on previous research, are as
follows.

• Investigations on the basis of a part-load capable HP model
including domestic hot water in addition to space heating,

• Validation of a dynamic DT strategy, its sensitivity to demand
profiles, energy standard and heating season,

• Proposal of a superordinate BT control strategy, combining
strengths of MILP operation optimisation, DT and static, rule-
based hysteresis control,

• Consideration of CO2 emissions and number of HP start ups as
performance indicators in addition to electricity price.

The rest of this study is structured as follows: Section 2 contains
relevant information on the methodology, including a description of the
energy system model and data basis as well as a detailed explanation of
the control structures applied. In Section 3, simulation results of differ-
ent control strategies from two sample years are shown, comprising the
influence of varying demand characteristics on HP operation. Finally,
he transition to a resilient approach based on BT is justified here. Key

findings and further research opportunities are concluded in the last
Section 4.

2. Methodology

This section first presents project information, data basis and the
energy system model. An important part is concerned with the opti-
misation tool used and the development of specific control structures
based on BT.

2.1. Background - Energetisches Nachbarschaftsquartier

Simulation data from the project Energetisches Nachbarschaft-
squartier (ENaQ) was used as a basis. Within ENaQ possibilities for
energy distribution between producers and consumers in the immediate
icinity have been investigated (Grimm et al., 2021; Schmeling et al.,

2022; Schönfeldt et al., 2022). The project is linked to the construction
of a real neighbourhood on the former airbase in Oldenburg. Following
onsiderations comprise a total of approximately 140 residential units.

2.2. Data basis

The simulation process that was conducted to determine realistic
eat load profiles and specific emissions is described by Schmeling et al.

(2022). Note that both seasonal space heating and rather season-in-
dependent domestic hot water consumption were taken into account.
Two distinct sets of hourly data have been used for validating resilience
of subsequent control systems:

• 2017: lower efficiency standard with a more balanced daily pro-
file, renewable integration of 36.2%,

• 2020: higher efficiency standard but with larger load peaks,
renewable integration of 47.7%, see Fig. A.15.

An overview of the full demand profiles is given in Fig. 1 (a)
and of the specific CO2 emissions 𝑐el,E of the German energy mar-
ket in Fig. 1 (b). A reduction in cumulative demand from 642 to
389 MW h a−1 for the later year can be observed. This corresponds to
a daily heat consumption of 12.6 k W h resp. 7.6 k W h, which is realistic
or energy-efficient buildings (Wirth, 2023).

Apart from the variation in the assumed energy standards and
profiles, an explanation for the significant difference in cumulative
heating demand can be given with respect to the applied weather data
Table 1 and Fig. 1(c) (Deutscher Wetterdienst, 2023, Measurement
station Bremen, ID: 691). Lower temperature extrema and a mean
ifference of approximately one degree Celsius, but also the higher
verall irradiation were assumed to have an influence on the heating
ehaviour.

Furthermore a clear shift of emissions can be seen, which is con-
firmed by the trend of the German electricity mix. The share of renew-
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Fig. 1. Hourly data basis: cumulative spacial heating and domestic hot water demands (a), specific CO2 emissions of the German electricity mix (b) and ambient temperature (c).
Table 1
Overview of utilised weather data: ground level ambient temperature, direct and diffuse solar irradiance (Deutscher
Wetterdienst, 2023), specific CO2 emissions reflecting the share of renewable energy production in Germany (Schmeling
et al., 2022).
Data Minimum Maximum Mean

2017 2020 2017 2020 2017 2020

𝜃amb [◦C] −10.0 −5.8 30.2 33.8 10.1 11.1
𝐷 𝑁 𝐼 [W m−2] – – 831.0 794.0 46.5 63.6
𝐷 𝐻 𝐼 [W m−2] – – 614.0 536.0 64.4 61.1

𝑐el,E [t/MWh] 0.19 0.15 0.78 0.73 0.53 0.41
t,
able energies increased significantly in the later year (Umweltbundesam
2022). Using electricity at times when these are low favours the optimal
use of renewable energies and increases their share in the heating
sector. The fixed specific prices 𝑐el,P used for subsequent calculations,
on the other hand, hardly differ, 2017: 29.28 ct k W h−1, 2020: 31.81
ct k W h−1 (Deutschland, 2023).

2.3. Energy system and component modelling

The energy system (ES) under consideration, Fig. 2 consists of a
rid connected HP, a TES and a fixed heating demand 𝑄dem that can
e covered by either of them. Flexibility is only allowed in the form of
xcess, e.g. in case of a full TES. Through the introduction of storage, it

is conceptually the smallest system with a sensible application of energy
management.

Our choice of sizing was mainly based on an example from the work
f Schmeling et al. (2022) where a case study on the above described
1056 
Fig. 2. Bus representation of the considered Heating System.



P. Urban et al.

(

a
i

d

p
o

c
w
c

l
f

p

Energy Reports 13 (2025) 1054–1068 
Fig. 3. HP characteristics: It can be seen, that a linearisation with offset of the compressor power (a) approaches the TESPy results well, while deviation of the actual 𝜀HP maximum
⋆) gets larger for higher ambient temperatures (b).
t
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Table 2
Heat pump specification used to obtain 𝜀HP(𝜃amb, 𝑄HP)
values from the TESPy model.
Type Air–water
Working fluid R290
Feed temperature 67.5 ◦C
Return temperature 62.5 ◦C
𝜃amb range −10 – 35 ◦C
𝑄HP range 0.2 – 0.4 MW

neighbourhood was conducted. The size of the HP and the TES were
dopted directly: 𝑄HP,max = 400 k W, 𝑉TES = 20 m3. However, note that
t is only one solution for the optimisation of sizing in that paper. It is

thus definitely a large scale system, which is to be seen in distinction
to single-family house applications. Consequently, the influence of in-
ividual variation in demand patterns is already weakened, making the

system statistically more stable against supply and energy availability
fluctuations. Further assumptions are made below.

2.3.1. Heat pump
In simplified terms, the HP is merely a converter between electricity

art and heating part system as seen in Fig. 2. A key characteristic
f the heat pump is its coefficient of performance 𝜀HP = 𝑄HP/𝑃HP,el,

which is primarily temperature dependent. To obtain such dependency,
omponent based modelling with TESPy by Witte and Tuschy (2020)
as carried out. The full thermodynamic model corresponds to the

omponents of Fig. A.16. Associated input properties are concluded in
Table 2.

Now, in addition to the influence of the ambient temperature, part
oad behaviour of the single components can be taken into account
or the design range of operating power, Fig. 3. Note that TESPy

generic data was used for the characteristic line of the isentropic
efficiency of the compressor. To use this model for a MILP optimiser
a linearisation needed to be performed. It was found that fitting with
a negative offset (corresponding to a constant base load of the system)
matches the TESPy results especially for lower temperatures. Efficiency
differences of up to 13% for constant ambient temperatures are re-
roduced very well, while the position of the maximum deviates for
1057 
Table 3
Specifications for the TES.
Medium Water
𝑐p 4.19 k g k J K−1

𝑉TES 20 m3

𝛥𝑇TES 35 K
𝛽 (𝜏 = 1 h) 1.0%

higher temperatures. Linearisation without offset leads to a signifi-
cantly less computationally intensive optimisation (see Fig. 4), however
corresponds less well to the model.

2.3.2. Thermal energy storage
The energy content of the TES can be calculated with respect to

the heat capacity of the storage medium using the specifications from
Table 3, 𝐸t h = 𝜌𝑐p𝑉TES𝛥𝑇TES = 814.7 k W h.

A fairly basic approach for the storage loss was adopted, according
o which the energy content of a subsequent time step 𝐸TES(𝑡+ 𝛥𝑡) can
e calculated as follows, Eq. (1).

𝐸TES(𝑡 + 𝛥𝑡) = 𝐸TES(𝑡)(1 − 𝛽)
𝛥𝑡
𝜏 (1)

However, fixed absolute and relative losses were neglected. A time
ensitive loss rate 𝛽 results in exponential behaviour, approximat-

ing heat flow losses through the surface of the water tank 𝑄̇loss =
𝑢𝐴TES(𝑇TES − 𝑇r ef ). Assuming a number of smaller storage units and 𝑢
of 1.21 (Cruickshank and Harrison, 2010), 𝛽 was estimated at an upper
1.0% for 𝜏 = 1 h.

2.3.3. Performance indicators
Normalised price 𝑐P and emissions 𝑐E are calculated as key perfor-

mance indicators (KPIs) in the following. As the introduced ES only
rocures electricity from the grid as single external source, those values
an be calculated from 𝑐el,E and 𝑐el,P respectively. The amount of utilised

electrical energy per time step is denoted by 𝑎el,g r id.
𝐶i =

∑

𝑡
𝐶i(𝑡) =

∑

𝑡
𝑐el, i(𝑡)𝑎el, g r id(𝑡) (2)

𝑐i = 𝐶𝑖∕
∑

𝑄dem(𝑡) (3)

𝑡
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Fig. 4. Exemplary measurement of the computation time for two different HP models. 𝜀HP(𝜃amb) vs. 𝜀HP(𝜃amb, 𝑄HP).
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Fig. 5. Superordinate BT structure for the conducted simulations. The HP control node
is to be extended by various subtrees.

Another relevant quantity will be the average number of starts of the
HP per day 𝑛on. This indicator is particularly important as the overall
ervice life of the HP largely depends on that of the compressor, a. o.

its number of cycles (Aguilera et al., 2022).

2.4. Model based optimisation

The ES model above gives rise to a mixed-integer linear optimisation
roblem, when trying to minimise the described costs. In this work
he open energy modelling framework (oemof) (Hilpert et al., 2018)
ackage solph by Krien et al. (2020) was applied.

With a view to computational costs, i. e. Fig. 4, the performed
optimisations were split into clusters of either 24 h or 72 h and pro-
cessed separately. This exceeds the cycle time of the TES. In addition,
he assumption of perfect foresight for optimisation in this temporal
ange should be somewhat closer to reality, e. g. in a model predictive
ontrol (MPC) approach. The increase in complexity when optimising

HP operation with varying part load efficiency as done here vs. constant
𝜀HP at a given ambient temperature can be seen in Fig. 4.

Note that, in contrast, for the simulations of BT based strategies
frequencies ranged between 700 and 900 execution steps per second.
This is far beyond the requirements of real-time applications with
periods of several minutes between two decisions (for the operation
of a comparably slow reacting thermal system like HPs). As soon as
ptimisations are incorporated during the creation of BT, this advan-
age partially vanishes. However, an error due to unpredictably long
1058 
optimisation durations can be prevented, for example if the BT is
pdated only upon completion of the optimisation of past data, see
ection 2.5.4.

2.5. Derivation of control structures

As described in the introduction, BT possess the main advan-
tages of being reactive and easily expandable (Biggar et al., 2020a;
Colledanchise and Ögren, 2018). The general framework and control
tructures realised with BT should now be introduced. There is a wealth
f documentation on the basic working principle of BT (Rabin, 2013;

Marzinotto et al., 2014; Colledanchise and Ögren, 2018; Colledanchise
and Natale, 2021). An overview of the node types and their signal pro-
cessing can be found in Table A.9. As commonly used, the organisation
of following graphic representations corresponds to execution from left
o right and top (root of the tree) to bottom. Final implementation was
arried out with the help of the Python package py_trees (Stonier, 2023).

2.5.1. Superordinate behaviour tree structure
The superordinate control system sequentially (→→) addresses the

three ES components, see Fig. 5. As decisions are only to be made
actively for the HP, the following passive update of the TES and grid
s realised here. However, in actual applications those leaves could
onveniently be used e. g. for status checks.

A regular query of environment and system variables is achieved
y an upstream parallel node (⇉⇉) that checks for new data but other-
ise has no influence on the main activities. Therefore the execution

requency of the BT is not limited to the data frequency, hence the
last existing data point is used to perform a control step. Information
exchange between different parts, i. e. behaviours of the tree runs via a
simple key/value storage, the so called blackboard. Typical execution
frequencies of up to 500 Hz in other domains (e.g. robot operating
systems) are easily achieved computationally, but are more relevant to
simulation time than to the actual application.

In the following only the active HP control will be discussed and
expanded. The complete tree structures then result from insertion
into the associated node in Fig. 5. This possibility to easily extend
the structure illustrates the mayor advantage compared to classical
FSM. Behaviour nodes can be edited independently to a great extent.
Resilience and efficiency are thus increased on another dimension. By
sustaining clarity in increasingly complex systems (a. o. component
wise) development and maintenance effort are reduced in particular,
as described for example by Iovino et al. (2022).
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Fig. 6. Realisation of a simple HP hysteresis controller using a BT.

2.5.2. Hysteresis control
The BT realisation of a simple hysteresis control for the HP, based

n a fixed set of temperature thresholds 𝑇min, 𝑇max is shown in Fig. 6.
As soon as one of the lowest level conditions returns a success

eedback, the respective HP action (start up/ turn off) is performed. For
TES temperature within the predefined boundaries current operation

is to be maintained. This can be achieved using a success decorator (✓).

2.5.3. Decision tree control
Another option resembling the dynamic operating strategy of Luo

t al. (2021) is the replacement of the HP control node by a DT. In
contrast to hysteresis, this allows for decisions to be made on partial
oads increasing the system flexibility. Here, on the other hand the
ajor drawback of missing information back flow in DTs is emphasised.

Without observing further boundaries, the coverage of demand cannot
be guaranteed. One option to avoid this is the introduction of safety
thresholds, such that the decision making is limited with respect to
demand 𝑄dem and actual storage content 𝐸TES, i. e. temperature, Eq. (4).

𝑄HP = min

{

𝑄dem +
𝐸TES, t ot − 𝐸TES

𝛥𝑡
,

max
{

𝑄HP,DT, 𝑄dem −
𝐸TES
𝛥𝑡

}

} (4)

For DTs there exist very mature training algorithms, as concluded
y Somvanshi et al. (2016). One that is able to create a DT regres-
or for continuous data is the so called Classification and Regression

Trees (CART) algorithm introduced by Breiman et al. (1984). Here
the python package scikit-learn (Pedregosa et al., 2011) was used for
mplementation with a mean-squared error loss function.

As features for training of the DT regressor we used storage content
and heating demand, hour of the day and ambient temperature. For
the analysis of system emissions, the electricity day-ahead price was
urthermore taken into account (correlation with emissions of the en-
rgy market 2017/2020: 𝑟 ≈ 0.7). Optimisation results from previous,
xy

1059 
i. e. known time periods could then be used for the regression. Details
are presented in Section 3.

Exclusive use of a DT for HP control causes difficulties as soon as
higher activation frequencies are required (e. g. 𝑛on > 130 for 𝛥𝑡ex =
0 s). Rapid fluctuation between tasks as a downside of reactivity is well

known from other applications (Biggar et al., 2020b).
Another disadvantage of DT is being addressed in the advancement

to BT: The inherent feedback of leaf nodes of the latter, in theory
largely improves error handling and backup processes. This is broadly
discussed e. g. by Colledanchise and Ögren (2018), however, plays a
subordinate role in the simulation of fault-free components as analysed
here.

2.5.4. Combined operating strategy
We propose the following combined operating strategy, Fig. 7, to in-

estigate the possibility of resilient integration. Now, the DT is inserted
into the above hysteresis control, Fig. 6. Hence, the HP is definitely
started or turned off at the respective condition, while the exact power
output is defined by the DT and demand coverage is ensured. This
does not improve the plausibility or accuracy of the latter decision per
se. Adaptation to environmental conditions initially appears reduced
compared to pure DT, as the decision space is restricted during certain
periods. On the other hand, allowance for higher frequencies in that
framework narrows down the time between decisions, i. e. control steps
and therefore adaption to a changing environment. Here, the changing
storage content itself is included as a decision feature.

There are two options for the actual creation of the DT regressor.
Either the system is pre-trained using a reasonable amount of historic
ata (e. g. of previous years) or it is updated on a regular basis. The
atter can be achieved using an upstream selective node (‘?’), as seen
n Fig. 7. Optimisation during run time but no demand predictions are

required in that case. As a consequence the computational advantage
anishes, a sensible choice of parameters for the regressor update is
nevitable. In the same manner, temperature limits can be derived from
he optimisation, using the scipy-signal module (Virtanen et al., 2020)

for averaged local minima and maxima of the TES.

3. Results

In this section the proposed control strategies should be applied
to the introduced ES model to thoroughly examine their functionality.
The following comparisons are based on the introduced KPI, see. Sec-
ion 2.3.3. In 3.1 and 3.3 annual operation of different simulation runs

will be considered, while in 3.2 comparison periods vary.
Fig. 7. Complete proposed control structure for the HP using a combination of superordinate BT with decision making DT sub tree. The update of regressor and temperature
hresholds is associated with a MILP optimisation using past (known) demand time series.
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Fig. 8. Results for 𝑐E vs. 𝑐P for annual operation of different hysteresis controllers (♦, +) with 2017 heat demands. Merged operation from optimisation of 24 h intervals (⋆) for
comparison. The ‘‘feasible’’ range of starts was defined as 𝑛on ≤ 1.1𝑛on , opt imisat ion.
Fig. 9. Results for 𝑐E vs. 𝑐P for annual operation of different hysteresis controllers (♦, +) with 2020 heat demands. Merged operation from optimisation of 72 h intervals (⋆) for
comparison. The ‘‘feasible’’ range of starts was defined as 𝑛on ≤ 1.1𝑛on , opt imisat ion.
3.1. Hysteresis and MILP optimisation

A control system was implemented in correspondence to the ex-
planations in Section 2.5.2, varying temperature limits of the TES
between 1 K and 10 K for the lower threshold 𝑇min and between 5 K
nd 35 K (2 K steps) for the upper 𝑇max with respect to 𝑇r ef (storage

minimum). Activation frequency 𝛥𝑡 of the BT was set to 60 s. For the
ex t

1060 
optimisation, however, the choice of an hourly resolution and the appli-
cation to sliced data proved appropriate with regard to computational
limitations, see. Section 2.4.

Figs. 8 and 9 conclude the results of both years, 2017 and 2020. For
the optimisation and best hysteresis runs, load duration curves without
emporal profile of HP and TES are shown additionally.
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Table 4
Results of the MILP and hysteresis optimisation of price and CO2 emissions. Note that temperature thresholds were inherently fixed for the
latter, while average values are given for the first.
KPI Optimisation Hysteresis (𝛥𝑡ex = 60 s)

2017 (24 h) 2020 (24 h) 2020 (72 h) 2017 2020

Price [ct k W h−1] 12.24 13.25 13.10 12.17 (−0.6%) 13.14 (+0.3%)
𝑇min∕𝑇max [K] 2.0/12.8 2.1/12.6 1.8/13.8 1/13 1/13
start ups [/d] 4.97 3.22 2.97 4.76 2.96

CO2 Em. [g k W h−1] 217.15 162.07 158.55 226.33 (+4.2%) 173.81 (+9.6%)
𝑇min∕𝑇max [K] 4.8/18.5 4.7/18.0 4.2/19.3 1/13 1/29
start ups [/d] 4.11 2.86 2.61 4.76 1.32
m
d

o

r

m

m

c

In 2017 the 1 K/13 K hysteresis presents the best option with respect
to price as well as CO2 emissions, while in 2020 the picture is more
diverse. Note, that the selection of feasible parameters was linked to the
switching behaviour for comparability, i. e. 𝑛on(hyst.) ≤ 1.1𝑛on(opti.).
The results of optimisation and hysteresis are very close to each other,
or 2017 operation of the latter even undercuts the lower resolution
ptimisation. At first, there are two reasons for this:

• Split of the optimisation: storage content is forced to a predefined
value (here 30% or 10.5 K) at the transition. An estimate of the
impact of different split lengths can be derived from Table 4
for 2020, i. e. the difference between 24 h and 72 h intervals.
However, the assumption of perfect foresight is if at all more
realistic in this time range.

• Optimisation is limited to hourly load decisions, while BT hys-
teresis adapts to its environment by the minute.

The best results are concluded in Table 4. A number of conclusions
an be drawn from that.

• In 2017, 𝑐P and 𝑐E show an exclusively linear dependency. The
higher overall demand is connected to more operating hours of
the HP, where-by an averaging effect is more pronounced. As a
consequence storage losses are more decisive for the result of both
price and emissions. A lower TES temperature level (limited by
requirements for 𝑛on) is aimed for, which can also be seen in the
duration curves of price optimisation and best hysteresis.

• Decoupling in 2020, in contrast, can be explained by the overall
lower demand and less operating hours of the HP. Full exploita-
tion of the storage is favourable to lower emissions, although the
effect is comparatively small.

• Average temperature thresholds of the price optimisation resem-
ble that of the best hysteresis. Higher values connected to higher
storage losses are accepted in the emission optimisation in order
to provide flexibility at time dependent ecological costs 𝑐el,E.

• This results in a comparatively higher potential for reducing
emissions.

Ultimately, the results presented are intended to serve as benchmark
values for further analyses. It should be mentioned that the selection of
the best hysteresis already represents a form of optimisation, i. e. of the
TES temperature thresholds.

3.2. Hourly decision tree control

For the simulation results shown below, DT decisions were intro-
duced into the control system as described in Section 2.5.3. Essentially,
the heating output is decided as soon as new data is available, i. e. once
an hour, instead of being fixed to nominal as in the hysteresis.

Here it was crucial to determine time periods for training of the
respective DT. In each case, the optimisation results of that period
(likewise in hourly resolution) served as the basis. Two approaches
were investigated:

• Subsequent training, i. e. comparison periods of one month and
DT regression using the previous 14, 28 or 56 days.
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• Training with 2017 optimisation and comparison within the same
date range of 2020.

Maximum depth of the DT regressor was also varied between 20
and 40 (𝛥 = 5). Fig. 10 shows the results of subsequent training using
2017 demand data.

It can be seen that during summer (June to August) the strategy
ight be favourable, as optimisation results can be approached. The
ifference to the hysteresis results is mainly due to the lower heating

demand, promoting part load operation of the HP. Sensible decisions
n 𝑄HP will have a higher influence compared to winter months. At

lower 𝜃amb, the maximum efficiency furthermore approaches operation
at nominal load, see Fig. 3, thus making the hysteresis more competitive
resp. advantageous. Extending the training period leads to more stable
results that are fairly independent of the max. tree depth and even
closer to the optimisation results during summer months.

Repeating those simulations for the different demand profiles and
higher building efficiency standard of 2020, see Section 2.2, draws a
completely different picture, as shown in Fig. 11. Now extension of the
egression period is proving to be disadvantageous and 𝑐E of operation

during summer months much higher when compared to the hystere-
sis. This can only partially be explained by the different hysteresis
benchmark (1 K/29 K) and possibly higher weather fluctuations. The
stronger peaks in the demand profile, see. Fig. A.15 are probably the

ain reason for the deviating results.
As a consequence also the second strategy of using pre-trained DT

with optimisation results of the lower efficiency standard 2017 data
shows operation of mixed quality, see Fig. 12. Especially for the shorter
periods (≤ 4 months) and for the beginning of both years CO2 emissions
clearly exceed that of the optimal hysteresis. This indicates high influ-
ence of the varying weather conditions (see Fig. 1). Furthermore the

ax. depth of the tree has an unpredictable effect. With a maximum of
training data, one full year, hysteresis results are barely approached.

The results show, that the application of pure DT to the presented
control problem can have a positive influence on the KPI of emissions
in the system. This in principal matches results obtained by Luo et al.
(2021) for a similar ES. On the other hand, efficiency standard, demand
profile characteristics and season may have a significant impact, mak-
ing the proposed strategies rather volatile. As an additional problem,
switching behaviour of pure DTs at higher execution frequency was
already mentioned in Section 2.5.3. The question remains if such
temporary advantages can nevertheless be employed in a more versatile
ontrol?

3.3. Behaviour tree based strategy of higher frequency

In the above consideration, pure DT proofed to be advantageous
during certain periods at least partially when using training resp.
comparison data in succession, here from the same year. The hysteresis
itself represents a reasonable choice at a higher execution frequency
𝛥𝑡ex. A major difficulty in application could be setting of the temper-
ature thresholds in advance. Here, finally both approaches should be
combined, corresponding to Section 2.5.2.
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Fig. 10. Strategy of subsequent training (14, 28 or 56 day s) and comparison (full month): Hourly DT operation (varied max. depth) is compared to static 1 K/13 K hysteresis and
emission optimisation for 2017. Absolute values (a) and relative deviation from optimisation (b).
Fig. 11. Strategy of subsequent training (14, 28 or 56 day s) and comparison (full month): Hourly DT operation (varied max. depth) is compared to static 1 K/29 K hysteresis and
emission optimisation for 2020. Absolute values (a) and relative deviation from optimisation (b).
In principal the BT is updated at constant intervals based on the
optimisation with known data (no ‘‘predictions’’ allowed). The (sub-
DT is then generated using the mentioned CART algorithm including

the features 𝑄dem, 𝐸TES, 𝜃amb, hour of the day and day-ahead-price.
atter play an important role considering the availability of renewable
nergies and their increased share. By including these variables, which

are correlated with the specific emissions (see Section 2.5.3), a higher
daptation to that is expected. For now, only the target value 𝑐E is

used for verification; more extensive statistical analyses and introduc-
tion of scenarios without conventional energy would certainly be next
insightful steps.

Thresholds 𝑇min and 𝑇max can be derived from that same optimisa-
tion by simple averaging of local TES extrema. Thereby the control
system dynamically adjusts its operation to available data from the
near past. Overall, the system is of course again more computationally
1062 
Table 5
Parametrisation for different strategies using the BT framework with and
without DT resp. variable TES thresholds.
Strategy 𝑇min 𝑇max DT

S1 variable variable x
S2 fixed (1 K) variable x
S3 fixed (1 K) fixed (13 K or 29 K) ✓

S4 fixed (1 K) variable ✓

intensive due to the inclusion of optimisation. Real-time performance
is not affected by this, as it is not updated for every new data step.
Different strategies, extracting different parameters, were investigated,
as concluded in Table 5.
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Fig. 12. Strategy of training and comparison in different years: Hourly DT operation (varied max. depth) is compared to static 1 K/29 K hysteresis and emission optimisation for
020. Absolute values (a) and relative deviation from optimisation (b). The regression period is varied within 2017.
Fig. 13. Results of the different strategies from Table 5 run on 2017 data and based on emission optimisation. Although 𝑐E of the hysteresis is not improved (top), a reduction
of 𝑛on is distinct (bottom). 𝛥𝑡upd was set to 1 d (+) or 10 d (♦).
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Referring to the investigation of hourly activated DT the regression
period was varied between one and eight weeks (7, 14, 28, 56 d) and
pdate frequency 1/𝛥𝑡upd either every day or every ten days. 𝛥𝑡ex for the

full BT was 60 s as in Section 3.1. The results regarding CO2 emissions
s well as start up behaviour based on 2017 data can be seen in

Fig. 13.
First, it becomes evident that none of the tested strategies is able

to undercut optimal hysteresis let alone optimisation results for 𝑐E. An
improvement, with respect to these benchmarks, using longer training
periods is present but rather low. Here, also the shorter period 𝛥𝑡upd
of 1 d tends to have a small negative effect. Despite that a significant
reduction of starts 𝑛on was observed. This key strengths is particularly
pparent in S2 and S4 as concluded in Table 6. Both possess the

additional advantage, that the upper TES storage threshold does not
1063 
need to be fixed in advance. In that sense also the application of S1
ight be a sensible choice, although showing lower reduction in 𝑛on.

It appears, that the introduction of a DT decision on the actual heat
utput results in a trade-off between 𝑐E and 𝑛on, which can be explained
y less efficient but more continuous part load operation.

Results for similar simulations based on the emission optimisation
n 2020 are concluded in Fig. B.17. However, due to the overall lower

heating demand in 2020 at unchanged ES dimensions 𝑛on is lower from
the outset, see. Table 4. A further reduction, especially of 𝑛on = 1.32
or the 1 K/29 K hysteresis, does not possess reasonable advantages.

Instead, the size of the HP could be questioned in this case.
The examination of strategies from Table 5 can also be applied

with a focus to price, using the 𝑐P optimisation base. Corresponding
operation results for 2020 are shown in Fig. 14. 𝑐 results are again
P
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Table 6
Results of two strategies seen in Fig. 13 compared to that of the corresponding optimisation for emissions and hysteresis. Based on 2017 demand
data, 7 d regression period.

Strategy 2 cf. opti./best hyst. Strategy 4 cf. opti./best hyst.

𝑐E [g k W h−1] 228.25 +5.1%/+0.8% 233.46 +7.5%/+3.2%
𝑛on [d−1] 3.33 −19.0%/−30.0% 3.07 −25.3%/−35.5%
Fig. 14. Results of the different strategies from Table 5 run on 2020 data and based on price optimisation. Heating price (top) and HP start ups (bottom) compared to hysteresis
nd optimisation results. 𝛥𝑡upd was set to 1 d (+) or 10 d (♦).
Table 7
Results of two strategies seen in Fig. 14 compared to that of the corresponding optimisation for price and hysteresis. Based on 2020 demand
data, 14 d regression period.

Strategy 2 cf. opti./best hyst. Strategy 4 cf. opti./best hyst.

𝑐P [ct k W h−1] 13.22 +0.9,%/+0.6% 13.65 +4.2%/+3.9%
𝑛on [d−1] 2.78 −6.4%/−6.1% 2.69 −9.4%/−9.1%
s
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very close for S1 and S2, resp. S3 and S4. Some detailed results for
the latter in each case and regression period of 14 d are concluded in
Table 7.

The part load capable approaches S3 and S4 using the DT subtree
are not able to assert themselves significantly here. Nevertheless, the
optimal 𝑐P values are approximated again with a reduction of the static
parameters and without predictions. This is confirmed by similar results
for 2017 demands, shown Fig. B.18.

Actual influences on the service life of the HP can only be roughly
estimated in quantitative terms. One assumption would be a linear
relation to the number of compressor cycles at an estimated service
life of 25 years for an optimum of three cycles per day. This results
in an extension of the lifespan for the emissions focused strategies by
 maximum of 8.7 a (against hysteresis) or 6.2 a (against optimisation)
nd for the price by approximately 2.6 a in both cases.

Although this might help to better categorise the above figures,
uch estimations should be treated with great caution. On the one
and, there are certainly other sources of error or indications of wear
nd tear, compare (Aguilera et al., 2022). On the other hand, the

values used as calculation basis are difficult to verify, especially as the
widespread use of heat pumps dates back no more than 25 years.
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3.4. Comparison and further benchmarking

Finally a few representative results should be compared as a bench-
mark. First, we use the same traditional hysteresis as Schmitz et al.
(2024) applied to the available data. Here temperature thresholds in
the TES are not optimised, a filling level between 20% and 100%
is aimed at and control steps are performed every 15 min. For the
comparison to pure DT we draw on the best results of Section 3.2. Here
a reasonable frequency 𝑛on is achieved by using only hourly control
teps. As explained in Section 2.2, the integration of renewable energies
ncreased significantly in 2020.

With the same linear estimation from that above, service life of
the HP might be included into the economic figures, i. e. extension
f lifespan reduces the averaged yearly price. The total demand of
he respective year was extrapolated for this purpose. Installation and
urchase costs of 250 e k W−1 nominal heat output for a large scale HP

were assumed (Vimpari, 2021).
A number of conclusions can be drawn from Table 8. From an

conomic perspective, proposed BT strategies can outperform the tra-
ditional hysteresis as well as DT benchmark. The effect is reduced,

hen including purchase costs in case of the hysteresis. A possibility
for additional costs due to more sophisticated controllers cannot be
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Table 8
Final benchmarking of the best BT simulation results vs. a traditional rule based strategy (hysteresis) and DT results. For the latter, results are
only available for 2020, as the data from the earlier period was used for training.

BT strategy Hysteresis DT (1h)

2017 𝑐P [ct k W h−1] 12.17 13.23 (+8.7%) –
including purchase 13.15 13.67 (+4.0%) –
𝑐E [g k W h−1] 228.25 245.88 (+7.7%) –

2020 𝑐P [ct k W h−1] 13.22 14.72 (+11.3%) 13.79 (+4.3%)
including purchase 14.17 15.17 (+7.1%) 14.84 (+4.7%)
𝑐E [g k W h−1] 178.10 186.11 (+4.5%) 175.26 (−1.6%)
b
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excluded here. Interestingly, relative savings when compared to the
ysteresis rise for the year with higher renewable integration. While
bsolute emissions per k W h are lowered accordingly, advantages of
sing BT control are reduced or disappear completely for a comparison

with pure DT control.

4. Conclusion

The development of BT as a conceptual extension of classic FSM
is motivated by the need for interpretable and maintainable control
structures with the ability for implementation of complex behaviour
patterns (Colledanchise and Ögren, 2018). This holds true not only for
raditional fields of application such as robotics or gaming, but also for
he control requirements of decentralised ESs. Here, a strategy based on
 superordinate BT structure was developed to obtain resilient dynamic
anagement of a foundational heating system including thermal energy
rovision (HP) and storage. Our method combines the optimisation
apabilities of oemof-solph with the tool of DT, in particular using
he CART algorithm. Concrete results for monetary and environmental

savings were summarised in Table 8. Weaknesses of these individual
approaches besides those figures were highlighted and addressed in the
BT design:

• No utilisation of predictions as in purely optimisation based ap-
proaches, i. e. MPC and initially lower computation costs,

• Feedback from the environment in contrast to pure DT, reducing
sensitivity for different energy requirements and demand profiles,

• Reduction of static control parameters that must be set before-
hand.

On the other hand their advantages could be exploited as follows:

• Pattern recognition of optimal operation and its integration,
• Mature and fast training algorithms for associated DT,
• Resilience through interpretable hysteresis-like envelope.

Particularly, the presented control strategy promises to increase
ifetime of the HP based on reduction of compressor start ups and asso-

ciated wear and tear when compared to other CO2 or price optimised
operating strategies (the ‘‘traditional’’ hysteresis used in the benchmark
must be excluded here). At the same time it remains competitive
to optimised hysteresis and MPC-like optimisation based results with
espect to the introduced KPI, price and CO2 emissions. Thus, choice of
he specific objective is decisive for actual implementation. Somewhat

counterintuitively, positive compromises were rather achieved for the
reduction in emissions in 2017 with lower integration of renewables
and a more balanced demand profile, and for the final heating price
rather in 2020 with higher integration of renewable energies.

The shown results are merely an example for the expected high
otential of using BT in ES for superordinate task switching, with mod-

ularity as a decisive advantage. This particularly holds true if BTs are
understood as a progression of classic FSMs (attempts to quantitatively

easure such advantage and aspects of expandability, interpretability
r maintainability has been endeavoured elsewhere but were not the
ain focus of this work). Their opportunities lie, among other things,

n the combination of different approaches as a connecting element
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between higher-level decision-making and subordinate component con-
trol. Possible applications in the energy sector, as otherwise suggested
y Perger et al. (2022) or Jingsong (2023), are thereby expanded.

Nevertheless structuring and development of meaningful behavioural
nodes remains challenging; on the one hand, because a real system
may be far more error-prone and fault tolerance can often not be
represented in an idealised simulation as conducted here. On the other
hand, because also BTs are relatively hierarchical, so that ultimately
a prioritisation of different mechanisms must be carried out. In the
ontext of residential buildings, customisation to individual user needs
ill certainly play an increasingly important role in the future.

A number of improvements might benefit the above shown perfor-
mance outputs or result in better understanding of it. Especially low
resolution and overall amount of demand data represents a relevant
imitation. Here an extension of the data set to several years should
e considered. An increase in resolution, e. g. to 15 min data, should
owever be viewed with caution in consideration of the computational
ffort as a main boundary. Further potential lies in the fine tuning of
yper parameters, here specifically also in the exploitation of extensive
nowledge and tools for DT (Pre Pruning, Random Forests etc.).

Next to the need for real-time application and experiments more
general further research options include direct learning of BTs using
for example genetic programming as proposed by Iovino et al. (2021)
and the influence of expansion or enlargement of the ES. How can
BT actually be extended in that case and how could the problem of
synchronisation be tackled if several components or systems use a
similar or the same control implementation?
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Fig. A.15. Three exemplary days for winter (left) resp. summer (right) of the simulated demand profiles. Different principal load structures despite similar ambient temperatures
(plots below) become visible.
Fig. A.16. Thermodynamic model for the simulated HP. Ambient temperature is set at the evaporator, connection 11, feed and return temperature at the condenser, 22, 21
respectively. Taken from Witte (2024).
Table A.9
Node types that a BT can be build of with conditions for their respective feedback. Control flow nodes process
the feedback of their children. Based on Colledanchise and Ögren (2018).
Node type Succeeds Fails Running

Control flow feedback from children
Sequence →→ All succeed One fails One running
Fallback ? One succeeds All fail One running
Parallel ⇉⇉ ≥ 𝑀 succeed > 𝑁 −𝑀 fail else
Decorator Custom Custom Custom
Execution

Action Upon completion If impossible During compl.
Condition If true If false –
Appendix A. Methodology

See Figs. A.15 and A.16 and Table A.9.
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Appendix B. Results

See Figs. B.17 and B.18.
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Fig. B.17. Results of the different strategies from Table 5 run on 2020 data and based on emission optimisation. Heating price (top) and HP start ups (bottom) compared to
ysteresis and optimisation results. 𝛥𝑡upd was set to 1 d (+) or 10 d (♦).
Fig. B.18. Results of the different strategies from Table 5 run on 2017 data and based on price optimisation. Heating price (top) and HP start ups (bottom) compared to hysteresis
nd optimisation results. 𝛥𝑡upd was set to 1 d (+) or 10 d (♦).
Data availability

Data will be made available on request.

References

Aguilera, J.J., Meesenburg, W., Ommen, T., Markussen, W.B., Poulsen, J.L., Zühls-
dorf, B., Elmegaard, B., 2022. A review of common faults in large-scale heat pumps.
Renew. Sustain. Energy Rev. 168, http://dx.doi.org/10.1016/j.rser.2022.112826.

Biggar, O., Zamani, M., Shames, I., 2020a. A principled analysis of Behavior Trees and
their generalisations. URL http://arxiv.org/pdf/2008.11906v2.

Biggar, O., Zamani, M., Shames, I., 2020b. On modularity in reactive control architec-
tures, with an application to formal verification. URL http://arxiv.org/pdf/2008.
12515v3.
1067 
Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J., 1984. Classification And
Regression Trees. Routledge, http://dx.doi.org/10.1201/9781315139470.

Champandard, A., 2007. Behavior trees for next-gen AI. Game Developers Conference
Europe.

Colledanchise, M., Natale, L., 2021. On the implementation of behavior trees in
robotics. IEEE Robotics Autom. Lett. 6 (3), 5929–5936. http://dx.doi.org/10.1109/
LRA.2021.3087442.

Colledanchise, M., Ögren, P., 2018. Behavior trees in robotics and AI: An introduction.
http://dx.doi.org/10.1201/9780429489105.

Cruickshank, C.A., Harrison, S.J., 2010. Heat loss characteristics for a typical solar
domestic hot water storage. Energy Build. 42 (10), 1703–1710. http://dx.doi.org/
10.1016/j.enbuild.2010.04.013.

Deutscher Wetterdienst, 2023. [dataset] Open Data Platform of Deutscher Wetterdi-
enst . availabe at: https://opendata.dwd.de/climate_environment/CDC/observations_
germany/climate/hourly/. (Accessed 29 December 2023).

http://dx.doi.org/10.1016/j.rser.2022.112826
http://arxiv.org/pdf/2008.11906v2
http://arxiv.org/pdf/2008.12515v3
http://arxiv.org/pdf/2008.12515v3
http://arxiv.org/pdf/2008.12515v3
http://dx.doi.org/10.1201/9781315139470
http://refhub.elsevier.com/S2352-4847(24)00855-2/sb5
http://refhub.elsevier.com/S2352-4847(24)00855-2/sb5
http://refhub.elsevier.com/S2352-4847(24)00855-2/sb5
http://dx.doi.org/10.1109/LRA.2021.3087442
http://dx.doi.org/10.1109/LRA.2021.3087442
http://dx.doi.org/10.1109/LRA.2021.3087442
http://dx.doi.org/10.1201/9780429489105
http://dx.doi.org/10.1016/j.enbuild.2010.04.013
http://dx.doi.org/10.1016/j.enbuild.2010.04.013
http://dx.doi.org/10.1016/j.enbuild.2010.04.013
https://opendata.dwd.de/climate_environment/CDC/observations_germany/climate/hourly/
https://opendata.dwd.de/climate_environment/CDC/observations_germany/climate/hourly/
https://opendata.dwd.de/climate_environment/CDC/observations_germany/climate/hourly/


P. Urban et al. Energy Reports 13 (2025) 1054–1068 
Deutschland, B., 2023. Erneuerbare-Energien-Gesetz vom 21. Juli 2014, Än-
derung Dezember 2023. https://www.bundesregierung.de/breg-de/schwerpunkte/
klimaschutz/novelle-eeg-gesetz-2023-2023972. (Accessed 8 January 2024).

Grimm, A., Schönfeldt, P., Torio, H., Klement, P., Hanke, B., von Maydell, K., Agert, C.,
2021. Deduction of optimal control strategies for a sector-coupled district energy
system. Energies 14 (21), 7257. http://dx.doi.org/10.3390/en14217257.

Guerin, K.R., Lea, C., Paxton, C., Hager, G.D., 2015. A framework for end-user
instruction of a robot assistant for manufacturing. In: 2015 IEEE International
Conference on Robotics and Automation. ICRA, IEEE, pp. 6167–6174. http://dx.
doi.org/10.1109/icra.2015.7140065.

Hilpert, S., Kaldemeyer, C., Krien, U., Günther, S., Wingenbach, C., Plessmann, G., 2018.
The open energy modelling framework (oemof) - A new approach to facilitate
open science in energy system modelling. Energy Strat. Rev. 22, 16–25. http:
//dx.doi.org/10.1016/j.esr.2018.07.001.

Hu, D., Gong, Y., Hannaford, B., Seibel, E.J., 2015. Semi-autonomous simulated brain
tumor ablation with ravenII surgical robot using behavior tree. In: 2015 IEEE
International Conference on Robotics and Automation. ICRA, IEEE, pp. 3868–3875.
http://dx.doi.org/10.1109/icra.2015.7139738.

Iovino, M., Förster, J., Falco, P., Chung, J.J., Siegwart, R., Smith, C., 2022. On the
programming effort required to generate Behavior Trees and Finite State Machines
for robotic applications. URL http://arxiv.org/pdf/2209.07392v1.

Iovino, M., Styrud, J., Falco, P., Smith, C., 2021. Learning behavior trees with
genetic programming in unpredictable environments. In: 2021 IEEE International
Conference on Robotics and Automation. ICRA, IEEE, pp. 4591–4597. http://dx.
doi.org/10.1109/icra48506.2021.9562088.

Isla, D., 2005. Handling complexity in the Halo 2 AI. Game Developers Conference
Europe.

Jingsong, W., 2023. Microgrid real-time decision control method based on behavior
trees. In: Proceedings of the 7th PURPLE MOUNTAIN FORUM on Smart Grid
Protection and Control. PMF2022, Springer Nature Singapore, pp. 561–574. http:
//dx.doi.org/10.1007/978-981-99-0063-3_40.

Krien, U., Schönfeldt, P., Launer, J., Hilpert, S., Kaldemeyer, C., Pleßmann, G., 2020.
oemof.solph — A model generator for linear and mixed-integer linear optimisation
of energy systems. Softw. Impacts 6, 100028. http://dx.doi.org/10.1016/j.simpa.
2020.100028.

Luo, X., Xia, J., Liu, Y., 2021. Extraction of dynamic operation strategy for standalone
solar-based multi-energy systems: A method based on decision tree algorithm.
Sustainable Cities Soc. 70, 102917. http://dx.doi.org/10.1016/j.scs.2021.102917.

Marzinotto, A., Colledanchise, M., Smith, C., Ogren, P., 2014. Towards a unified
behavior trees framework for robot control. In: 2014 IEEE International Conference
on Robotics and Automation. ICRA, IEEE, pp. 5420–5427. http://dx.doi.org/10.
1109/icra.2014.6907656.

Mateas, M., Stern, A., 2002. A behavior language for story-based believable agents.
IEEE Intell. Syst. 17 (4), 39–47. http://dx.doi.org/10.1109/MIS.2002.1024751.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blon-
del, M., Prettenhofer, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D.,
Brucher, M., Perrot, M., Duchesnay, E., 2011. Scikit-learn: machine learning in
Python. J. Mach. Learn. Res. 12, 2825–2830, URL https://arxiv.org/abs/1201.0490.
1068 
Perger, A.v., Gamper, P., Witzmann, R., 2022. Behavior trees for smart grid control.
IFAC-PapersOnLine 55 (9), 122. http://dx.doi.org/10.1016/j.ifacol.2022.07.022.

Rabin, S., 2013. Game AI Pro: Collected Wisdom of Game AI Professionals. CRC Press,
Hoboken.

Razmi, D., Lu, T., 2022. A literature review of the control challenges of distributed
energy resources based on microgrids (MGs): past, present and future. Energies 15
(13), 4676. http://dx.doi.org/10.3390/en15134676.

Schmeling, L., Schönfeldt, P., Klement, P., Vorspel, L., Hanke, B., von Maydell, K.,
Agert, C., 2022. A generalised optimal design methodology for distributed energy
systems. Renew. Energy 200, 1223–1239. http://dx.doi.org/10.1016/j.renene.2022.
10.029.

Schmitz, S., Brucke, K., Kasturi, P., Ansari, E., Klement, P., 2024. Forecast-based
and data-driven reinforcement learning for residential heat pump operation. Appl.
Energy 371, 123688. http://dx.doi.org/10.1016/j.apenergy.2024.123688.

Schönfeldt, P., Grimm, A., Neupane, B., Torio, H., Duranp, P., Klement, P., Hanke, B.,
von Maydell, K., Agert, C., 2022. Simultaneous optimization of temperature and
energy in linear energy system models. In: 2022 Open Source Modelling and
Simulation of Energy Systems. OSMSES, IEEE, pp. 1–6. http://dx.doi.org/10.1109/
OSMSES54027.2022.9768967.

Somvanshi, M., Chavan, P., Tambade, S., Shinde, S.V., 2016. A review of machine
learning techniques using decision tree and support vector machine. In: 2016
International Conference on Computing Communication Control and Automation.
ICCUBEA, IEEE, pp. 1–7. http://dx.doi.org/10.1109/ICCUBEA.2016.7860040.

Stonier, D., 2023. py_trees documentation. URL https://py-trees.readthedocs.io/en/
devel/. (Accessed 14 August 2024).

Umweltbundesamt, 2022. Erneuerbare Energien in Deutschland. Daten zur Entwick-
lung im Jahr 2022. https://www.umweltbundesamt.de/sites/default/files/medien/
1410/publikationen/2023-03-16_uba_hg_erneuerbareenergien_dt_bf.pdf. (Accessed 8
January 2024).

Vimpari, J., 2021. Should energy efficiency subsidies be tied into housing
prices? Environ. Res. Lett. 16 (6), 064027. http://dx.doi.org/10.1088/1748-9326/
abfeee.

Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D.,
Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M.,
Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R.,
Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Lax-
alde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R.,
Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contrib-
utors, 2020. SciPy 1.0: Fundamental algorithms for scientific computing in Python.
Nature Methods 17, 261–272. http://dx.doi.org/10.1038/s41592-019-0686-2.

Wirth, H., 2023. Recent Facts about Photovoltaics in Germany. Fraunhofer
ISE, https://www.ise.fraunhofer.de/en/publications/studies/recent-facts-about-pv-
in-germany.html. (Accessed 28 December 2023).

Witte, F., 2024. TESPy documentation. URL https://tespy.readthedocs.io/en/main/.
(Accessed 8 August 2024).

Witte, F., Tuschy, I., 2020. TESPy: Thermal engineering systems in Python. J. Open
Source Softw. 5 (49), 2178. http://dx.doi.org/10.21105/joss.02178.

https://www.bundesregierung.de/breg-de/schwerpunkte/klimaschutz/novelle-eeg-gesetz-2023-2023972
https://www.bundesregierung.de/breg-de/schwerpunkte/klimaschutz/novelle-eeg-gesetz-2023-2023972
https://www.bundesregierung.de/breg-de/schwerpunkte/klimaschutz/novelle-eeg-gesetz-2023-2023972
http://dx.doi.org/10.3390/en14217257
http://dx.doi.org/10.1109/icra.2015.7140065
http://dx.doi.org/10.1109/icra.2015.7140065
http://dx.doi.org/10.1109/icra.2015.7140065
http://dx.doi.org/10.1016/j.%20esr.2018.07.001
http://dx.doi.org/10.1016/j.%20esr.2018.07.001
http://dx.doi.org/10.1016/j.%20esr.2018.07.001
http://dx.doi.org/10.1109/icra.2015.7139738
http://arxiv.org/pdf/2209.07392v1
http://dx.doi.org/10.1109/icra48506.2021.9562088
http://dx.doi.org/10.1109/icra48506.2021.9562088
http://dx.doi.org/10.1109/icra48506.2021.9562088
http://refhub.elsevier.com/S2352-4847(24)00855-2/sb17
http://refhub.elsevier.com/S2352-4847(24)00855-2/sb17
http://refhub.elsevier.com/S2352-4847(24)00855-2/sb17
http://dx.doi.org/10.1007/978-981-99-0063-3_40
http://dx.doi.org/10.1007/978-981-99-0063-3_40
http://dx.doi.org/10.1007/978-981-99-0063-3_40
http://dx.doi.org/10.1016/j.simpa.2020.100028
http://dx.doi.org/10.1016/j.simpa.2020.100028
http://dx.doi.org/10.1016/j.simpa.2020.100028
http://dx.doi.org/10.1016/j.scs.2021.102917
http://dx.doi.org/10.1109/icra.2014.6907656
http://dx.doi.org/10.1109/icra.2014.6907656
http://dx.doi.org/10.1109/icra.2014.6907656
http://dx.doi.org/10.1109/MIS.2002.1024751
https://arxiv.org/abs/1201.0490
http://dx.doi.org/10.1016/j.ifacol.2022.07.022
http://refhub.elsevier.com/S2352-4847(24)00855-2/sb25
http://refhub.elsevier.com/S2352-4847(24)00855-2/sb25
http://refhub.elsevier.com/S2352-4847(24)00855-2/sb25
http://dx.doi.org/10.3390/en15134676
http://dx.doi.org/10.1016/j.renene.2022.10.029
http://dx.doi.org/10.1016/j.renene.2022.10.029
http://dx.doi.org/10.1016/j.renene.2022.10.029
http://dx.doi.org/10.1016/j.apenergy.2024.123688
http://dx.doi.org/10.1109/OSMSES54027.2022.9768967
http://dx.doi.org/10.1109/OSMSES54027.2022.9768967
http://dx.doi.org/10.1109/OSMSES54027.2022.9768967
http://dx.doi.org/10.1109/ICCUBEA.2016.7860040
https://py-trees.readthedocs.io/en/devel/
https://py-trees.readthedocs.io/en/devel/
https://py-trees.readthedocs.io/en/devel/
https://www.umweltbundesamt.de/sites/default/files/medien/1410/publikationen/2023-03-16_uba_hg_erneuerbareenergien_dt_bf.pdf
https://www.umweltbundesamt.de/sites/default/files/medien/1410/publikationen/2023-03-16_uba_hg_erneuerbareenergien_dt_bf.pdf
https://www.umweltbundesamt.de/sites/default/files/medien/1410/publikationen/2023-03-16_uba_hg_erneuerbareenergien_dt_bf.pdf
http://dx.doi.org/10.1088/1748-9326/abfeee
http://dx.doi.org/10.1088/1748-9326/abfeee
http://dx.doi.org/10.1088/1748-9326/abfeee
http://dx.doi.org/10.1038/s41592-019-0686-2
https://www.ise.fraunhofer.de/en/publications/studies/recent-facts-about-pv-in-germany.html
https://www.ise.fraunhofer.de/en/publications/studies/recent-facts-about-pv-in-germany.html
https://www.ise.fraunhofer.de/en/publications/studies/recent-facts-about-pv-in-germany.html
https://tespy.readthedocs.io/en/main/
http://dx.doi.org/10.21105/joss.02178

	Behaviour tree based control strategies for resilient heat pump operation in residential buildings
	Introduction
	Methodology
	Background - Energetisches Nachbarschaftsquartier
	Data Basis
	Energy System and Component Modelling
	Heat Pump
	Thermal Energy Storage
	Performance Indicators

	Model Based Optimisation
	Derivation of Control Structures
	Superordinate Behaviour Tree Structure
	Hysteresis Control
	Decision Tree Control
	Combined Operating Strategy


	Results
	Hysteresis and MILP Optimisation
	Hourly Decision Tree Control
	Behaviour Tree based Strategy of Higher Frequency
	Comparison and Further Benchmarking

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Methodology
	Appendix A. Methodology
	Results
	Appendix B. Results
	Data availability
	Appendix . Data availability
	References


